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Let A be a finite group, and let p be a prime. Suppose that p® is the highest
power of p dividing |A/A’|, where A’ is the commutator subgroup of A, and
that the type A = (A1, Aa,...) with Ay > Ay > --- of a Sylow p-subgroup of
AJA" satisfies either Ay < 1 or Ay = 2 and A3 = 0. Let ma(d) denote the
number of subgroups of index d in A. If 1 <14 < [(s 4+ 1)/2] and ¢ is a positive
integer such that ged(p,q) = 1, then ma(qp~!) — ma(gp?) is a multiple of p
and m 4 (gplCTD/2) — m 4 (gpleTD/2H1) s a multiple of pl*/2l.

1. Introduction

For a finite group A, m(d) denotes the number of subgroups of index d in A.
For a real number z, [x] denotes the largest integer not exceeding x. Let p be a
prime. A finite group A is said to admit C(p®), where s is a nonnegative integer, if
the following conditions hold for any positive integer ¢ such that ged(p, q) = 1:

(C1) ma(qp*™1) = malgp®) mod p* withi=1,2,..., [(s+1)/2].
(C2) ma(gplTD/2) = m g (qpl+D/2+1) mod pl+/2,

A finite group A is said to admit CP(p®) if these conditions hold for ¢ = 1.
Any finite abelian p-group P admits CP(|P]) (cf. [4, Note], [7, Theorem 2.1]).
Hence we obtain the half p-adic property of an arbitrary finite abelian group:

THEOREM 1.1 Any finite abelian group A admits C(|A|,), where |A|, is the highest
power of p dividing | A|.

The following theorem is due to P. Hall [6, Theorem 1.61] and is also a conse-
quence of [8, Lemma 2.2].

THEOREM 1.2 Let P be a finite p-group such that p* = |P : ®(P)|, where ®(P)
denotes the Frattini subgroup of P. Then for any integer i with 0 <i <s+1,

mp(p') = mp/a(P) (p") mod p*~*+1.
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Combining this theorem with Theorem 1.1, we know that any finite p-group P
admits CP(|P/®(P)|). A generalization of this fact is [8, Theorem 1.1]:

THEOREM 1.3 Let A be a finite group. Then A admits C(|A/A" : (A/A")|,), where
A’ denotes the commutator subgroup of A.

Another generalization of a property of finite abelian groups is [8, Theorem 1.2]:

THEOREM 1.4 Let A be a finite group, and let p" be the exponent of a Sylow p-
subgroup of AJA". If i is a positive integer less than or equal to r, then

ma(gp’™") = ma(qp’) mod p’
for any positive integer q such that ged(p,q) = 1.

COROLLARY 1.5 Under the assumptions of Theorem 1.4, if r > [(s+1)/2]+1, then
A admits C(p®).

A sequence A\ = (A1, \g,...) of nonnegative integers in weakly decreasing order
which contains only finitely many non-zero terms is called the type of a finite abelian
p-group isomorphic to the direct product of cyclic p-groups of order p*', p*2, .. ..

The purpose of this paper is to establish a refinement of Theorem 1.3:

THEOREM 1.6 Let A be a finite group, and let X = (A1, Aa,...) be the type of a
Sylow p-subgroup of AJA". If either Ao <1 or Ay = 2 and A3 = 0, then A admits
C(A/Ap). If \a =2, A3 =1, and \y > Ao+ A3+ - -, then A admits CP(|A/A'|,).

For a finite group C and for a finite group H on which C acts, let Z(C, H) be
the set of complements of H in the semidirect product CH of H by C.

While the following theorem is of little use in our argument, certain methods for
its proof adapt successfully to the proof of Theorem 1.6.

THEOREM 1.7 ([1, 2, 3]) Let C be a finite abelian p-group of type A = (A1, Ao, ...),
and suppose that either Ao < 1 orp > 2, A\a = 2, and A3 = 0. Then for any finite
p-group H on which C acts, $Z(C, H) is a multiple of ged(|C|, |H]).

For a finite group A, let Hom(A, G) be the set of homomorphisms from A to
a group G, and set h,(A) = tHom(A,S,), where S,, is the symmetric group of
degree n. If a finite group A admits C(p®), then by [7, Theorem 1.2], h,,(A) is a
multiple of ged(p®, n!). This fact, together with Theorem 1.1, means that, if A is a
finite abelian group, then h,(A) is a multiple of gcd(|A[, n!). In general, Yoshida [9]
proved that, if A is a finite abelian group, then for any finite group G, fHom(A4, G)
is a multiple of ged(| A, |G|). If A is cyclic, then this fact is due to Frobenius [5]. By
an argument analogous to the proof of [2, Theorem D], Theorem 1.7 implies that,
if a Sylow p-subgroup of the abelianization A/A’ of a finite group A is isomorphic
to C given in Theorem 1.7, then for any finite group G, fHom(A, G) is a multiple
of ged(|A/A'|,,|G|). In this context, we state a corollary to Theorem 1.6:
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COROLLARY 1.8 Let A be a finite group such that the type of a Sylow p-subgroup of
AJA is X = (M, Aa,y...). If either Ao <1 or Ag = 2 and A3 = 0, then h,(A) is a
multiple of ged(|A/A'|p,n!).

Notation The notation is standard. Let G be a finite group. We denote by |G]|
the order of GG, and denote by exp G the exponent of GG, that is, the least common
multiple of the orders of the elements of G. The center of G is denoted by Z(G). For
Zi,...,xn € G, (x1,...,2,) denotes the subgroup generated by zi,...,x,. Given
r,y € G, we set ¥ = y~lazy and [r,y] = v~y lwy. Let H and K be subgroups of
G. We denote by H x K the direct product of H and K. The commutator subgroup
of H and K is denoted by [H, K]. We denote by Ng(K) and Cg(K) the normalizer
and the centralizer of K in G, respectively, and set Ng(K) = Ng(K) N H and
Cy(K) = Cq(K) N H. Suppose that K C H. We write K < H, and denote by
H/K the set of left cosets. The index of K in H is denoted by |H : K].

2. Preliminaries

Let A be a finite group and B a normal subgroup such that A/B is a finite
abelian p-group of order p°. We denote by M a normal subgroup of A containing B
such that A/B = (0)B/B x M/B with o € A. Let i be a positive integer.

DEFINITION 2.1 For any R < N < A, we define M4 (N, R;p’) to be the set of all
subgroups C' of index p’ in A such that C N N = R.

LEMMA 2.2 Let R be a subgroup of index p in B. Assume that A = Na(R) and
M/R is abelian. If |A/M| = plc+t)/2 then

ﬁMA(B,R;p[(S'H)/Q}) = M (B, R;p[(s+1)/2]+1) mod p[s/g]'

Proof. Suppose that |A/M| = pl(st1/2 By the assumption, A/M is cyclic. Hence
it follows from [3, Proposition 3.3] that for any subgroup C of A with A = CM
and C N B = R, $Z(C/(C N M), M/(C N M)) is a multiple of ged(pltD/2 |A/C)),
where C/(C'N M) acts on M/(C' N M) by conjugation. In particular, the number of
subgroups C of index plst1)/2] or pl(s+1D/2+1 iy A with A = CM and CNB = R
is a multiple of plst1)/2] Given a proper subgroup C of index p’ in A, A # CM if
and only if CM < (6P)M and |(oP)M : C| = p*~!, because A/B = (0)B/B x M/B.
Hence it suffices to verify that

My (B, R; pl DAY = Mgy v (B, Ripl D) mod pl/2 (1)
Clearly, for any nonnegative integer ¢,

M (goyat (B, Ry ') = mgoyrt/r(0") — muowyne 5 (0°)-
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By the assumption, (oP)M/B is a finite abelian group of order p*~!. Obviously,

[(s+1)/2] = [s/2] if s is even, and [(s+1)/2] = [s/2] + 1 if s is odd. This, combined
with Theorem 1.1, yields

m(a?)M/B(P[(SH)/Q}_l) = m<ap>M/B(p[(8+1)/2}) mod pl/2].
Since [A/R,A/R] < B/R < Z(A/R) and |B/R| = p, it follows that for any € M,
(0P, 2]R = [oP~ 1 2]7 - [o0,2]R = [0P ", 2] - [0,2]R = --- = [0,2]PR = R.

Thus o?R € Z(A/R), and hence (ocP)M/R is a finite abelian group of order p®.
From Theorem 1.1, we know that

[(++D/2-1y = p, (pl=+D/2)) mod plis+1)/2],

M (oryr/R(P (oP)M/R

Consequently, Eq. (1) holds. This completes the proof. O
Let IP(M) denote the set of all subgroups of M whose indices are powers of p.

LEMMA 2.3 Let Ky € IP(M), and suppose that the following conditions are satisfied.
(i) p™ <p' - [Np(Ko) : KoN Bl < |A: Kol.
(ii) Bither p* - [Nar(Ko) : Ko| < [A: Ko| or pexp Np(Ko)/(KoN B) < |A: Ko|.
(iii) p’exp Npar(Ko)/Ko < |A: Kol

Then ‘ , .
> {EMAM, K;p' 1) — tMa(M, K;p') } = 0 mod p’, (2)
K~ Ky

where the summation runs over all conjugates K of Ky in A.

Proof. We may assume that M4 (M, Ko;p') # (). Let C € Ma(M, Kg;p'). Then
|IC/Ko| = p7*-|A : Ko|. Set L = Na(Ko) and H = Ny (Kp). Since L/H is
cyclic, it follows that C'/Kj is a cyclic subgroup of L/Kjy which acts on H/Kj by
conjugation. Note that |C/Ko| > p, Np(Ko)/(KoNB) ~ KoNp(Ko)/Ko < H/K),
and |[H/Ky| > p. Set G = CH/Kj and C2(G) = [G, G]. Since L/Np(Ky) is abelian,
it follows that C2(G) < KoNp(Ko)/Ko. Hence (i) yields |Ca(G)| < |C/Kp|. We
define inductively C;(G) = [C;-1(G), G] for each integer j > 3, so that |C;(G)| <
|ICi—1(G)] if |Cj—1(G)| > 1. Set p* = |C/Ky|. For each integer j with 3 < j < u+2,
exp C;(G) < |Cj(G)| < p*™277, because |Co(G)| < p*. By [2, Lemma 2.5, Co(G) is
a proper subgroup of H/Kj. Thus (ii) yields exp Co(G) < p*. Since exp H/ Ky < p*
by (iii), it follows from [2, Lemma 2.7] that

M (M, Ko;p') = $2(C/ Ko, H/ Ko) = |H/Ky|.
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Likewise, if Ma(M, Ko;p*~1) # 0, then $Ma(M, K;p'~!) = |H/Kp|. On the other
hand, if M4 (M, Ko;p*~') = 0, then L = CH by [8, Proposition 2.2], which yields

> Mu(M,K;p') = |A:L|-|H : Ko| = |A: CH|-|CH : C| = p'.
K~ 4Ky

In either case, Eq. (2) holds. This completes the proof. O

LEMMA 2.4 Let K € IP(M), and set R= KN B. Let C € Mu(M, K;p'). Suppose
that either exp M/B < |C/K| or M/B = KB/B x N/B for some subgroup N
of M with exp N/B < |C/K|. Then there exists a subgroup F of C such that
C/R=F/Rx K/R and F/R is cyclic.

Proof. Set p* = p~*-|A : K|. Then C/K is a cyclic group of order p*. Choose
c € C so that C/K = (¢)K/K, and recall that A/B = (0)B/B x M/B. We may
assume that ¢ € oP" M for some nonnegative integer e. Hence ¢ = oz for some
z € M. Observe that ¢*"B = o?"™" 27" B and #"# "B = o?" "B < (o)BNM = B.
Thus, if exp M/B < p%, then " € B, and hence C/R = (c)R/R x K/R. Now
let N be a subgroup of M containing B with exp N/B < p", and suppose that
M/B = KB/B x N/B. Since &*"z7P" € B, it follows that ¢?" B = 27" B = y*" B for
some y € K. Consequently, C/R = (cy ')R/R x K/R. This completes the proof.
O

DEFINITION 2.5 For any K € IP(M), we define M4 (M, B, K;p') to be the set of
all subgroups C of index p’ in A such that CN B = K N B, Ny (CNM) = Ny (K),
and (CNM)Np(CNM) = KNg(K). Given K € I?(M) and C € Ma(M, B, K;p"),
we define M4 (M, B, K, C;p') to be the set consisting of all D € M4 (M, B, K;p')
such that DNp(K) = CNp(K).

REMARK 2.6 For any K € IP(M), there exist C; € Ma(M,B,K;p'), j =1,2,...,
such that M4 (M, B, K;p') is a disjoint union of M4 (M, B,C; N M,Cj;p%), j =
1,2,....

LEMMA 2.7 Let K € IP(M), and set R = KN B. Let C € Ma(M,K;p"), and
suppose that there exists a subgroup F of C such that C/R = F/R x K/R and F/R
is cyclic. If Ng(K) # R, then

tMa(M,B, K,C;p") =0mod ged(p™ - |A: K|,|Ng(K) : R|) - |K/R: ®(K/R)|.
Proof. Suppose that Np(K) # R. Set G = CNp(K)/R, C1(G) = Np(K)/R, and
C2(G) = [G, G]. We define inductively C;(G) = [Cj—1(G), G] for each integer j > 3.
Set p* = p~¢-|A : K|, and observe that p* = |F/R|. If u > 1, then we define a
subgroup @ of Np(K) containing R to be
Q/R Np(K)/R  if |[Np(K): R| <p“!,
Q(C(G)  if pt < |CH(G)] and [Cya(G)] < po
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where Q,(C;(G)) is the subgroup of C;(G) generated by all elements of order at
most p*. (In [2, Definition 2.6], Q)/R is denoted by Q,(CNp(K)/R).) If uw = 0,
then we set @ = R. By [2, Proposition 2.8], |Q/R| > ged(p*, |[Np(K) : R|) and
|{(zog)R/R| = p" for any g € Q and xR € CNp(K)/R with |[(xo)R/R| = p* and
(xg) RNNB(K) = R. We have [Q/R, (DNM)/R] = 1for each D € M (M, B, K;p'),
because

Q/R < Np(K)/R=Np(DNM)/R=Cp/r((DNM)/R).

There exists an element z of Ng(K) such that zR € Z(Nas(R)/R) N Np(K)/R
and [(z)R/R| = p. Now let S be the direct product of /R and an elementary
abelian p-group (g1) x {g2) x --- x (g}, where p* = |K/R : ®(K/R)|, and define a
monomorphism ¢ from S to the symmetric group on the set M (M, B, K, C; p') by

((xo, 1, ... ,xk>R)“’(9R’gfl""’ng) = (x0g,x12°, ..., 22°*)R

where (zg,71,...,25)R € Ma(M,B, K,C;p') such that FNg(K) = (z0)Np(K)
and (r1,...,7;)Np(K) = KNp(K). Then S acts on M(M, B, K,C;p') via the
action ¢. Since this action is semiregular (see [2, Lemma 3.1]), we conclude that

EMA(M, B, K, Csp') = 0mod |Q/R| - |[K/R : ®(K/R)|.
This completes the proof. O

REMARK 2.8 Let K € IP(M), and set R = K N B. If Ng(K) # R, then by an
argument analogous to the proof of Lemma 2.7, we have

#My(M,B,K;p') = 0mod |K/R : ®(K/R)|. (3)
We need one more lemma.

LEMMA 2.9 Let K and T be subgroups of M such that R := KNB =TNB € IP(M),
Ny (K) = Ny (T), and KNg(K) = TNp(T). Set p* = exp Ny (K)/K. Assume
that exp M/B < p?. Then either p* < pexp Ng(T)/R or p* < exp Ny (T)/T.

Proof. By the assumption,
KNp(K)/R=K/Rx Ng(K)/R=T/R x Ng(T)/R=TNg(T)/R.

Choose z € Ny(K) so that [(z)K/K| = p*. If |(#) K Ng(K)/KNg(K)| < p, then
p* < pexp Np(T)/R. If |(z) KNp(K)/KNp(K)| = p?, then 2" € Np(K) = Np(T)
and |(z)T/T| = p*. Hence we have p* < exp Nps(T)/T. This completes the proof.
a
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3. The proof of Theorem 1.6

Recall that |[A/B| = p®. Let A = (A1, A2, . ..) be the type of A/B. We show that,
if either Ao < 1 or Ay = 2 and A3 = 0, then A admits C(p®) and that, if Ay = 2,
Az =1, and A\; > A9 + A3 + - - -, then A admits CP(p®).

The proof of the following proposition is analogous to that of [8, Theorem 1.1].

PROPOSITION 3.1 Assume that every subgroup C' of A admits CP(|C/(C N B)|).
Then A admits C(p®).

Proof. Suppose that i < [(s + 1)/2], and let ¢ be a positive integer such that
ged(p, g) = 1. In the statement of [8, Proposition 3.2], we may remove the assump-
tion that A/B is elementary abelian, if we assume that every subgroup C' of A
admits CP(|C/(C N B)|). Hence the statements (1) and (2) of [8, Proposition 3.2]
hold under the assumption of this proposition. In particular,

ma(gp'™") —ma(gp’) = Y ¥(C)modp, (4)
CeMual(q)

where M 4(q) is the set of all subgroups of index ¢ in A and v{(C) are integers

determined by C' € M 4(q) (see [8, Definition 3.1]). Let C' € M 4(q). Then C/(CN
B) ~ A/B. By the above congruence with A = C' and ¢ = 1, we have

me(p™h) — me(p') = v/(C) mod p'.

Hence the assumption implies that v¢(C') = 0 mod p*. This, combined with Eq. (4),
yields (C1). Likewise, (C2) holds. We have thus proved the proposition. O

By Proposition 3.1, it suffices to verify that, if either Ay <1 or Ao =2 > A3 and
A1 > A2+ A3+ -+, then A admits CP(p®) (see the end of this section). We owe the
first half of the proof to [8, Proposition 2.1]:

PROPOSITION 3.2 Let Ry be a subgroup of B with Ng(Ro) = Ro. Ifi <[(s+1)/2],
then

> {tMa(B,Rip™") — $Ma(B, R;p')} = 0 mod p'.

R~4 Ry

Moreover,

Z {ﬁMA(Bv R;pletV/2) s My (B, R; p[(S“)/mH)} = 0 mod pl*/%.
R~ Ro

The following proposition completes the second half of the proof.



Yugen Takegahara / The number of subgroups of a finite group (II) 8

PROPOSITION 3.3 Assume that either Ao <1 or Ay = [(s+1)/2] and Ay = 2 > As.
Let M A(B;p?) be the set of all subgroups C of index p* in A with Ng(CNB) # CNB.
Then

ﬁﬂA(B;p[(erl)/?}) = M 4(B; plsTD/2+1) mod pls/2,

Moreover, if i < [(s+1)/2] and A2 <1, then
SMA(B;p'~Y) = $Ma(B;p') mod p'.
Proof. For each K € IP(M) with Ng(K N B) # K N B, we have
KNp(K)/(K N B) = Ngnyknp)/(knp)(K/(KNB)) # K/(KNB),

whence Np(K) # K N B. Suppose that 1 <i < [(s+ 1)/2] + 1. Let X be the set
of all K € IP(M) with Ng(K N B) # K N B and Y the set consisting of all K € X
which satisfy the following conditions.

(i) p*-|[Np(K): KNB| < |A: K|
(ii) Either p*-|Ny(K): K| <|A: K| or plexp Ng(K)/(KNB) < |A: K|.
(iii) p'exp Ny (K)/K < |A: K].

Obviously, both X and ) are closed under conjugation. Given Kg € Y, it follows
from Lemma 2.3 that

Z {j:t./\/lA(M,K;pi_l) - ﬁMA(M,K;pi)} = 0 mod p'.
K~ aKo

Assume that M/B is of type (A2, A3,...). If Ay = [(s+ 1)/2], then by Lemma 2.2,
tMa(B, R plotD/2) = M (B, R; pltD/211) mod pl*/2

for any subgroup R of index p in B such that A = N4(R) and M/R is abelian. For
each K € X — ) with |A: K| > p'~!, we consider the two conditions

fMa(M,B,K;p™") = tMa(M, B, K;p') = 0 mod p*~*+! (5)
and

> M B s T im0, B, o ple D) |
aNa(R)EA/N4(R) (©)
= 0 mod p[s/Z]’

where R = K N B. (Note that s = [s/2] + [(s +1)/2].) Given K € X and C €
Ma(M, B, K;p'), it follows from Lemma 2.9 that K € ) if and only if CN M € ).
Hence it suffices to verify that for any K € X — Y with |4 : K| > p'~!, Eq. (5)
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holds if Ay <1, and either Eq. (5) or Eq. (6) holds if A = [(s +1)/2], Ao =2 > A3,
i=[(s+1)/2]+1, and R(= K N B) does not satisfy the assumptions of Lemma 2.2.

Suppose that K € X —) with |A: K| > p~1, and set R = KN B. We complete
the proof by three steps.

Step 1. We first assume that |A : K| = p~!. Obviously, M4 (M, B, K;p') = (.
By the assumption, we have |[Ng(K) : R| > p > p~**1|A : K|. Moreover,

|A: K|-|K/R:®(K/R)| >p~"-|A: R| > p".

Hence it follows from Lemma 2.7 that M (M, B, K;p*~1) = 0 mod p¥~¢+1L.

Step 2. We next assume that p’ - |[Ng(K) : R| > |A : K| > p’ and one of the
following conditions are satisfied.

(i) |B: R| > p*.
(i) Either |[A: K|=p'and exp K/R<por |A: K|=p"™! and exp M/B < p.

By the assumption, |A : K| - |K/R: ®(K/R)| > p*™!. Hence, if |A : K| = p’, then
Eq. (5) follows from Eq. (3). Suppose now that |A : K| > p'*!. If |B : R| > p?,
exp K/R < p, and |A: K| = p'*l, then

P |E/R: ®(K/R)| = |A: K| |K/R: ®(K/R)| = |A: R| > p*?,

and hence Eq. (5) follows from Eq. (3). Excepting the case where |B : R| > p?,
expK/R < p, and |A: K| = p*!, Eq. (5) follows from Lemmas 2.4 and 2.7. Thus
Eq. (5) holds in any case.

Step 3. In the situation apart from the assumptions for Steps 1 and 2, the
remaining cases are as follows.
(a) pP=p"~1-|B:R|=|A: K| and exp K/R = p°.
(b) ptt=p' - |B:R|=|A: K| <p'~! |Ny(K): K| and exp M/B = p.
(c) pt - INg(K): R| <|A: K| <plexpNy(K)/K.

(In the cases (a), (b), and (c), we assume that |A : K| = p’, |A : K| = piT!, and
|A: K| > p*2, respectively. By the hypothesis, K € X —), which is reflected in the
conditions.) Obviously, exp Ny (K)/K < p?exp Ng(K)/R. If either exp M/B < p
or exp K/R = p?, then 2P € KNp(K) for any * € Ny (K), which implies that
exp Ny (K)/K < pexp Np(K)/R. Hence the case (c) is rewritten as

(c) p*1 - |Ng(K) : R| = |A : K| = ptexp Ny (K)/K, exp M/B = p? and
exp K/R < p.

In this case, if |B : R| > p?, then Lemmas 2.4 and 2.7 yield Eq. (5). Hence we may
restrict the case (c) to the following.
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(d) p*2 = p*1 . |B: R| = |A: K| = p"lexp Ny(K)/K, exp M/B = p?, and
exp K/R < p.

Note that exp M/B = p? in the cases (a), (b), and (d). Hence Eq. (5) already
holds in any case if A2 < 1. We assume that A\; = [(s + 1)/2], Ao = 2 > A3, and
i=1[(s+1)/2]4+ 1. If K satisfies one of the conditions in the cases (a), (b), and (d),
then by an argument analogous to Step 2, we have

fMA(M, B, K;p™) = tMa(M, B, K;pM 1) = 0 mod pl¥/27L,

Moreover, if A # N4(R), then Eq. (6) holds in the cases (a), (b), and (d). Thus we
may assume that A = Na(R). If |B: R| = p and M/R is abelian, then R satisfies

the assumptions of Lemma 2.2. We conclude the proof with the assertion that M/R
is abelian in each of the cases (a), (b), and (d). Recall that |A : M| = p*.

(a) Assume that pM*! =pM . |B: R| = |A: K|. We have |M/K| = p = |B/R|,
whence M/R = KB/R. Since B/R < Z(A/R), it follows that M /R is abelian.

(b) Assume that pM*2 = |A: K| < pM - [Ny (K) : K| < pM - |M : K| = ph+2.
Then |M/K| = p* and M = Ny (K). Since M/B and M/K are abelian, it
turns out that

[M/R,M/R] < B/RNK/R=R/R.
Thus M/R is abelian.

(d) Assume that pM*3 = |4 : K| = pMexp Ny (K)/K < pM|M : K| = pMT3,
Then |[M/K| = p3, M = Ny(K), and M/K is a cyclic group of order p3.
Consequently, M/R is abelian.

This completes the proof. O

REMARK 3.4 Assume that \; > Ao + A3 + ---. Then \; > [(s + 1)/2]. If \y >
[(s+1)/2] + 1, then by Corollary 1.5, A admits C(p®). If A\; = [(s +1)/2] and 7 is
a positive integer less than or equal to [(s + 1)/2], then by Theorem 1.4,

ma(gp’™") = ma(gp’) mod p’
for any positive integer ¢ such that ged(p, q) = 1.

We are now in a position to prove an analogy of Theorem 1.6 stated at the
beginning of this section.

THEOREM 3.5 Let A be a finite group and B a normal subgroup such that A/B is
a finite abelian p-group of order p*. Let A = (A1, \a,...) be the type of A/B. If
either Ao <1 or Ay = 2 and A3 = 0, then A admits C(p®). If Ao =2, A3 =1, and
AL > Ao+ A3+ -+, then A admits CP(p®).
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Proof. Assume that either Ao < 1 or Ay =2 > A3 and A\ > Ao + A3+ ---. Then
by Propositions 3.2 and 3.3 and Remark 3.4, A admits CP(p®). Moreover, if either
Ao < 1or Ay =2 and A3 = 0, then A satisfies the assumption of Proposition 3.1,
whence A admits C(p®). This completes the proof. O

Proof of Theorem 1.6. The assertions follow from Theorem 3.5 with B = A’. O
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