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Let A be a finite group, and let p be a prime. Suppose that ps is the highest
power of p dividing |A/A′|, where A′ is the commutator subgroup of A, and
that the type λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · of a Sylow p-subgroup of
A/A′ satisfies either λ2 ≤ 1 or λ2 = 2 and λ3 = 0. Let mA(d) denote the
number of subgroups of index d in A. If 1 ≤ i ≤ [(s+ 1)/2] and q is a positive
integer such that gcd(p, q) = 1, then mA(qp

i−1) −mA(qp
i) is a multiple of pi

and mA(qp
[(s+1)/2])−mA(qp

[(s+1)/2]+1) is a multiple of p[s/2].

1. Introduction

For a finite group A, mA(d) denotes the number of subgroups of index d in A.
For a real number x, [x] denotes the largest integer not exceeding x. Let p be a
prime. A finite group A is said to admit C(ps), where s is a nonnegative integer, if
the following conditions hold for any positive integer q such that gcd(p, q) = 1:

(C1) mA(qp
i−1) ≡ mA(qp

i) mod pi with i = 1, 2, . . . , [(s+ 1)/2].

(C2) mA(qp
[(s+1)/2]) ≡ mA(qp

[(s+1)/2]+1) mod p[s/2].

A finite group A is said to admit CP(ps) if these conditions hold for q = 1.
Any finite abelian p-group P admits CP(|P |) (cf. [4, Note], [7, Theorem 2.1]).

Hence we obtain the half p-adic property of an arbitrary finite abelian group:

Theorem 1.1 Any finite abelian group A admits C(|A|p), where |A|p is the highest
power of p dividing |A|.

The following theorem is due to P. Hall [6, Theorem 1.61] and is also a conse-
quence of [8, Lemma 2.2].

Theorem 1.2 Let P be a finite p-group such that ps = |P : Φ(P )|, where Φ(P )
denotes the Frattini subgroup of P . Then for any integer i with 0 ≤ i ≤ s+ 1,

mP (p
i) ≡ mP/Φ(P )(p

i) mod ps−i+1.
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Combining this theorem with Theorem 1.1, we know that any finite p-group P
admits CP(|P/Φ(P )|). A generalization of this fact is [8, Theorem 1.1]:

Theorem 1.3 Let A be a finite group. Then A admits C(|A/A′ : Φ(A/A′)|p), where
A′ denotes the commutator subgroup of A.

Another generalization of a property of finite abelian groups is [8, Theorem 1.2]:

Theorem 1.4 Let A be a finite group, and let pr be the exponent of a Sylow p-
subgroup of A/A′. If i is a positive integer less than or equal to r, then

mA(qp
i−1) ≡ mA(qp

i) mod pi

for any positive integer q such that gcd(p, q) = 1.

Corollary 1.5 Under the assumptions of Theorem 1.4, if r ≥ [(s+1)/2]+1, then
A admits C(ps).

A sequence λ = (λ1, λ2, . . .) of nonnegative integers in weakly decreasing order
which contains only finitely many non-zero terms is called the type of a finite abelian
p-group isomorphic to the direct product of cyclic p-groups of order pλ1 , pλ2 , . . ..

The purpose of this paper is to establish a refinement of Theorem 1.3:

Theorem 1.6 Let A be a finite group, and let λ = (λ1, λ2, . . .) be the type of a
Sylow p-subgroup of A/A′. If either λ2 ≤ 1 or λ2 = 2 and λ3 = 0, then A admits
C(|A/A′|p). If λ2 = 2, λ3 = 1, and λ1 ≥ λ2+λ3+ · · ·, then A admits CP(|A/A′|p).

For a finite group C and for a finite group H on which C acts, let Z(C,H) be
the set of complements of H in the semidirect product CH of H by C.

While the following theorem is of little use in our argument, certain methods for
its proof adapt successfully to the proof of Theorem 1.6.

Theorem 1.7 ([1, 2, 3]) Let C be a finite abelian p-group of type λ = (λ1, λ2, . . .),
and suppose that either λ2 ≤ 1 or p > 2, λ2 = 2, and λ3 = 0. Then for any finite
p-group H on which C acts, ♯Z(C,H) is a multiple of gcd(|C|, |H|).

For a finite group A, let Hom(A,G) be the set of homomorphisms from A to
a group G, and set hn(A) = ♯Hom(A,Sn), where Sn is the symmetric group of
degree n. If a finite group A admits C(ps), then by [7, Theorem 1.2], hn(A) is a
multiple of gcd(ps, n!). This fact, together with Theorem 1.1, means that, if A is a
finite abelian group, then hn(A) is a multiple of gcd(|A|, n!). In general, Yoshida [9]
proved that, if A is a finite abelian group, then for any finite group G, ♯Hom(A,G)
is a multiple of gcd(|A|, |G|). If A is cyclic, then this fact is due to Frobenius [5]. By
an argument analogous to the proof of [2, Theorem D], Theorem 1.7 implies that,
if a Sylow p-subgroup of the abelianization A/A′ of a finite group A is isomorphic
to C given in Theorem 1.7, then for any finite group G, ♯Hom(A,G) is a multiple
of gcd(|A/A′|p, |G|). In this context, we state a corollary to Theorem 1.6:
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Corollary 1.8 Let A be a finite group such that the type of a Sylow p-subgroup of
A/A′ is λ = (λ1, λ2, . . .). If either λ2 ≤ 1 or λ2 = 2 and λ3 = 0, then hn(A) is a
multiple of gcd(|A/A′|p, n!).

Notation The notation is standard. Let G be a finite group. We denote by |G|
the order of G, and denote by expG the exponent of G, that is, the least common
multiple of the orders of the elements of G. The center of G is denoted by Z(G). For
x1, . . . , xn ∈ G, ⟨x1, . . . , xn⟩ denotes the subgroup generated by x1, . . . , xn. Given
x, y ∈ G, we set xy = y−1xy and [x, y] = x−1y−1xy. Let H and K be subgroups of
G. We denote by H×K the direct product of H and K. The commutator subgroup
of H and K is denoted by [H,K]. We denote by NG(K) and CG(K) the normalizer
and the centralizer of K in G, respectively, and set NH(K) = NG(K) ∩ H and
CH(K) = CG(K) ∩ H. Suppose that K ⊆ H. We write K ≤ H, and denote by
H/K the set of left cosets. The index of K in H is denoted by |H : K|.

2. Preliminaries

Let A be a finite group and B a normal subgroup such that A/B is a finite
abelian p-group of order ps. We denote by M a normal subgroup of A containing B
such that A/B = ⟨σ⟩B/B ×M/B with σ ∈ A. Let i be a positive integer.

Definition 2.1 For any R ≤ N ≤ A, we define MA(N,R; pi) to be the set of all
subgroups C of index pi in A such that C ∩N = R.

Lemma 2.2 Let R be a subgroup of index p in B. Assume that A = NA(R) and
M/R is abelian. If |A/M | = p[(s+1)/2], then

♯MA(B,R; p[(s+1)/2]) ≡ ♯MA(B,R; p[(s+1)/2]+1) mod p[s/2].

Proof. Suppose that |A/M | = p[(s+1)/2]. By the assumption, A/M is cyclic. Hence
it follows from [3, Proposition 3.3] that for any subgroup C of A with A = CM
and C ∩B = R, ♯Z(C/(C ∩M),M/(C ∩M)) is a multiple of gcd(p[(s+1)/2], |A/C|),
where C/(C ∩M) acts on M/(C ∩M) by conjugation. In particular, the number of
subgroups C of index p[(s+1)/2] or p[(s+1)/2]+1 in A with A = CM and C ∩ B = R
is a multiple of p[(s+1)/2]. Given a proper subgroup C of index pi in A, A ̸= CM if
and only if CM ≤ ⟨σp⟩M and |⟨σp⟩M : C| = pi−1, because A/B = ⟨σ⟩B/B×M/B.
Hence it suffices to verify that

♯M⟨σp⟩M (B,R; p[(s+1)/2]−1) ≡ ♯M⟨σp⟩M (B,R; p[(s+1)/2]) mod p[s/2]. (1)

Clearly, for any nonnegative integer i,

♯M⟨σp⟩M (B,R; pi) = m⟨σp⟩M/R(p
i)−m⟨σp⟩M/B(p

i).
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By the assumption, ⟨σp⟩M/B is a finite abelian group of order ps−1. Obviously,
[(s+1)/2] = [s/2] if s is even, and [(s+1)/2] = [s/2]+1 if s is odd. This, combined
with Theorem 1.1, yields

m⟨σp⟩M/B(p
[(s+1)/2]−1) ≡ m⟨σp⟩M/B(p

[(s+1)/2]) mod p[s/2].

Since [A/R,A/R] ≤ B/R ≤ Z(A/R) and |B/R| = p, it follows that for any x ∈ M ,

[σp, x]R = [σp−1, x]σ · [σ, x]R = [σp−1, x] · [σ, x]R = · · · = [σ, x]pR = R.

Thus σpR ∈ Z(A/R), and hence ⟨σp⟩M/R is a finite abelian group of order ps.
From Theorem 1.1, we know that

m⟨σp⟩M/R(p
[(s+1)/2]−1) ≡ m⟨σp⟩M/R(p

[(s+1)/2]) mod p[(s+1)/2].

Consequently, Eq. (1) holds. This completes the proof. 2

Let Ip(M) denote the set of all subgroups of M whose indices are powers of p.

Lemma 2.3 Let K0 ∈ Ip(M), and suppose that the following conditions are satisfied.

(i) pi+1 ≤ pi · |NB(K0) : K0 ∩B| ≤ |A : K0|.

(ii) Either pi · |NM (K0) : K0| ≤ |A : K0| or pi expNB(K0)/(K0 ∩B) < |A : K0|.

(iii) pi expNM (K0)/K0 ≤ |A : K0|.

Then ∑
K∼AK0

{
♯MA(M,K; pi−1)− ♯MA(M,K; pi)

}
≡ 0 mod pi, (2)

where the summation runs over all conjugates K of K0 in A.

Proof. We may assume that MA(M,K0; p
i) ̸= ∅. Let C ∈ MA(M,K0; p

i). Then
|C/K0| = p−i · |A : K0|. Set L = NA(K0) and H = NM (K0). Since L/H is
cyclic, it follows that C/K0 is a cyclic subgroup of L/K0 which acts on H/K0 by
conjugation. Note that |C/K0| ≥ p, NB(K0)/(K0 ∩ B) ≃ K0NB(K0)/K0 ≤ H/K0,
and |H/K0| ≥ p. Set G = CH/K0 and C2(G) = [G,G]. Since L/NB(K0) is abelian,
it follows that C2(G) ≤ K0NB(K0)/K0. Hence (i) yields |C2(G)| ≤ |C/K0|. We
define inductively Cj(G) = [Cj−1(G), G] for each integer j ≥ 3, so that |Cj(G)| <
|Cj−1(G)| if |Cj−1(G)| > 1. Set pu = |C/K0|. For each integer j with 3 ≤ j ≤ u+2,
expCj(G) ≤ |Cj(G)| ≤ pu+2−j , because |C2(G)| ≤ pu. By [2, Lemma 2.5], C2(G) is
a proper subgroup of H/K0. Thus (ii) yields expC2(G) < pu. Since expH/K0 ≤ pu

by (iii), it follows from [2, Lemma 2.7] that

♯MA(M,K0; p
i) = ♯Z(C/K0,H/K0) = |H/K0|.
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Likewise, if MA(M,K0; p
i−1) ̸= ∅, then ♯MA(M,K; pi−1) = |H/K0|. On the other

hand, if MA(M,K0; p
i−1) = ∅, then L = CH by [8, Proposition 2.2], which yields∑

K∼AK0

♯MA(M,K; pi) = |A : L| · |H : K0| = |A : CH| · |CH : C| = pi.

In either case, Eq. (2) holds. This completes the proof. 2

Lemma 2.4 Let K ∈ Ip(M), and set R = K ∩B. Let C ∈ MA(M,K; pi). Suppose
that either expM/B ≤ |C/K| or M/B = KB/B × N/B for some subgroup N
of M with expN/B ≤ |C/K|. Then there exists a subgroup F of C such that
C/R = F/R×K/R and F/R is cyclic.

Proof. Set pu = p−i · |A : K|. Then C/K is a cyclic group of order pu. Choose
c ∈ C so that C/K = ⟨c⟩K/K, and recall that A/B = ⟨σ⟩B/B × M/B. We may
assume that c ∈ σpeM for some nonnegative integer e. Hence c = σpex for some
x ∈ M . Observe that cp

u
B = σpe+u

xp
u
B and cp

u
x−puB = σpe+u

B ≤ ⟨σ⟩B∩M = B.
Thus, if expM/B ≤ pu, then cp

u ∈ B, and hence C/R = ⟨c⟩R/R × K/R. Now
let N be a subgroup of M containing B with expN/B ≤ pu, and suppose that
M/B = KB/B×N/B. Since cp

u
x−pu ∈ B, it follows that cp

u
B = xp

u
B = yp

u
B for

some y ∈ K. Consequently, C/R = ⟨cy−1⟩R/R ×K/R. This completes the proof.
2

Definition 2.5 For any K ∈ Ip(M), we define MA(M,B,K; pi) to be the set of
all subgroups C of index pi in A such that C ∩B = K ∩B, NM (C ∩M) = NM (K),
and (C∩M)NB(C∩M) = KNB(K). Given K ∈ Ip(M) and C ∈ MA(M,B,K; pi),
we define MA(M,B,K,C; pi) to be the set consisting of all D ∈ MA(M,B,K; pi)
such that DNB(K) = CNB(K).

Remark 2.6 For any K ∈ Ip(M), there exist Cj ∈ MA(M,B,K; pi), j = 1, 2, . . .,
such that MA(M,B,K; pi) is a disjoint union of MA(M,B,Cj ∩ M,Cj ; p

i), j =
1, 2, . . ..

Lemma 2.7 Let K ∈ Ip(M), and set R = K ∩ B. Let C ∈ MA(M,K; pi), and
suppose that there exists a subgroup F of C such that C/R = F/R×K/R and F/R
is cyclic. If NB(K) ̸= R, then

♯MA(M,B,K,C; pi) ≡ 0 mod gcd(p−i · |A : K|, |NB(K) : R|) · |K/R : Φ(K/R)|.

Proof. Suppose that NB(K) ̸= R. Set G = CNB(K)/R, C1(G) = NB(K)/R, and
C2(G) = [G,G]. We define inductively Cj(G) = [Cj−1(G), G] for each integer j ≥ 3.
Set pu = p−i · |A : K|, and observe that pu = |F/R|. If u ≥ 1, then we define a
subgroup Q of NB(K) containing R to be

Q/R =

{
NB(K)/R if |NB(K) : R| ≤ pu−1,

Ωu(Cj(G)) if pu−1 < |Cj(G)| and |Cj+1(G)| ≤ pu−1,
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where Ωu(Cj(G)) is the subgroup of Cj(G) generated by all elements of order at
most pu. (In [2, Definition 2.6], Q/R is denoted by Qu(CNB(K)/R).) If u = 0,
then we set Q = R. By [2, Proposition 2.8], |Q/R| ≥ gcd(pu, |NB(K) : R|) and
|⟨x0g⟩R/R| = pu for any g ∈ Q and x0R ∈ CNB(K)/R with |⟨x0⟩R/R| = pu and
⟨x0⟩R∩NB(K) = R. We have [Q/R, (D∩M)/R] = 1 for eachD ∈ MA(M,B,K; pi),
because

Q/R ≤ NB(K)/R = NB(D ∩M)/R = CB/R((D ∩M)/R).

There exists an element z of NB(K) such that zR ∈ Z(NA(R)/R) ∩NB(K)/R
and |⟨z⟩R/R| = p. Now let S be the direct product of Q/R and an elementary
abelian p-group ⟨g1⟩ × ⟨g2⟩ × · · · × ⟨gk⟩, where pk = |K/R : Φ(K/R)|, and define a
monomorphism φ from S to the symmetric group on the set MA(M,B,K,C; pi) by

(⟨x0, x1, . . . , xk⟩R)φ(gR,g
e1
1 ,...,g

ek
k ) = ⟨x0g, x1ze1 , . . . , xkzek⟩R

where ⟨x0, x1, . . . , xk⟩R ∈ MA(M,B,K,C; pi) such that FNB(K) = ⟨x0⟩NB(K)
and ⟨x1, . . . , xk⟩NB(K) = KNB(K). Then S acts on MA(M,B,K,C; pi) via the
action φ. Since this action is semiregular (see [2, Lemma 3.1]), we conclude that

♯MA(M,B,K,C; pi) ≡ 0 mod |Q/R| · |K/R : Φ(K/R)|.

This completes the proof. 2

Remark 2.8 Let K ∈ Ip(M), and set R = K ∩ B. If NB(K) ̸= R, then by an
argument analogous to the proof of Lemma 2.7, we have

♯MA(M,B,K; pi) ≡ 0 mod |K/R : Φ(K/R)|. (3)

We need one more lemma.

Lemma 2.9 Let K and T be subgroups of M such that R := K∩B = T∩B ∈ Ip(M),
NM (K) = NM (T ), and KNB(K) = TNB(T ). Set pk = expNM (K)/K. Assume
that expM/B ≤ p2. Then either pk ≤ p expNB(T )/R or pk ≤ expNM (T )/T .

Proof. By the assumption,

KNB(K)/R = K/R×NB(K)/R = T/R×NB(T )/R = TNB(T )/R.

Choose x ∈ NM (K) so that |⟨x⟩K/K| = pk. If |⟨x⟩KNB(K)/KNB(K)| ≤ p, then
pk ≤ p expNB(T )/R. If |⟨x⟩KNB(K)/KNB(K)| = p2, then xp

2 ∈ NB(K) = NB(T )
and |⟨x⟩T/T | = pk. Hence we have pk ≤ expNM (T )/T . This completes the proof.
2



Yugen Takegahara / The number of subgroups of a finite group (II) 7

3. The proof of Theorem 1.6

Recall that |A/B| = ps. Let λ = (λ1, λ2, . . .) be the type of A/B. We show that,
if either λ2 ≤ 1 or λ2 = 2 and λ3 = 0, then A admits C(ps) and that, if λ2 = 2,
λ3 = 1, and λ1 ≥ λ2 + λ3 + · · ·, then A admits CP(ps).

The proof of the following proposition is analogous to that of [8, Theorem 1.1].

Proposition 3.1 Assume that every subgroup C of A admits CP(|C/(C ∩ B)|).
Then A admits C(ps).

Proof. Suppose that i ≤ [(s + 1)/2], and let q be a positive integer such that
gcd(p, q) = 1. In the statement of [8, Proposition 3.2], we may remove the assump-
tion that A/B is elementary abelian, if we assume that every subgroup C of A
admits CP(|C/(C ∩ B)|). Hence the statements (1) and (2) of [8, Proposition 3.2]
hold under the assumption of this proposition. In particular,

mA(qp
i−1)−mA(qp

i) ≡
∑

C∈MA(q)

νii(C) mod pi, (4)

where MA(q) is the set of all subgroups of index q in A and νii(C) are integers
determined by C ∈ MA(q) (see [8, Definition 3.1]). Let C ∈ MA(q). Then C/(C ∩
B) ≃ A/B. By the above congruence with A = C and q = 1, we have

mC(p
i−1)−mC(p

i) ≡ νii(C) mod pi.

Hence the assumption implies that νii(C) ≡ 0 mod pi. This, combined with Eq. (4),
yields (C1). Likewise, (C2) holds. We have thus proved the proposition. 2

By Proposition 3.1, it suffices to verify that, if either λ2 ≤ 1 or λ2 = 2 > λ3 and
λ1 ≥ λ2 + λ3 + · · ·, then A admits CP(ps) (see the end of this section). We owe the
first half of the proof to [8, Proposition 2.1]:

Proposition 3.2 Let R0 be a subgroup of B with NB(R0) = R0. If i ≤ [(s+1)/2],
then ∑

R∼AR0

{
♯MA(B,R; pi−1)− ♯MA(B,R; pi)

}
≡ 0 mod pi.

Moreover,∑
R∼AR0

{
♯MA(B,R; p[(s+1)/2])− ♯MA(B,R; p[(s+1)/2]+1)

}
≡ 0 mod p[s/2].

The following proposition completes the second half of the proof.
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Proposition 3.3 Assume that either λ2 ≤ 1 or λ1 = [(s+ 1)/2] and λ2 = 2 > λ3.

Let M̃A(B; pi) be the set of all subgroups C of index pi in A with NB(C∩B) ̸= C∩B.
Then

♯M̃A(B; p[(s+1)/2]) ≡ ♯M̃A(B; p[(s+1)/2]+1) mod p[s/2].

Moreover, if i ≤ [(s+ 1)/2] and λ2 ≤ 1, then

♯M̃A(B; pi−1) ≡ ♯M̃A(B; pi) mod pi.

Proof. For each K ∈ Ip(M) with NB(K ∩B) ̸= K ∩B, we have

KNB(K)/(K ∩B) = NKNB(K∩B)/(K∩B)(K/(K ∩B)) ̸= K/(K ∩B),

whence NB(K) ̸= K ∩ B. Suppose that 1 ≤ i ≤ [(s + 1)/2] + 1. Let X be the set
of all K ∈ Ip(M) with NB(K ∩B) ̸= K ∩B and Y the set consisting of all K ∈ X
which satisfy the following conditions.

(i) pi · |NB(K) : K ∩B| ≤ |A : K|.

(ii) Either pi · |NM (K) : K| ≤ |A : K| or pi expNB(K)/(K ∩B) < |A : K|.

(iii) pi expNM (K)/K ≤ |A : K|.

Obviously, both X and Y are closed under conjugation. Given K0 ∈ Y, it follows
from Lemma 2.3 that∑

K∼AK0

{
♯MA(M,K; pi−1)− ♯MA(M,K; pi)

}
≡ 0 mod pi.

Assume that M/B is of type (λ2, λ3, . . .). If λ1 = [(s+ 1)/2], then by Lemma 2.2,

♯MA(B,R; p[(s+1)/2]) ≡ ♯MA(B,R; p[(s+1)/2]+1) mod p[s/2]

for any subgroup R of index p in B such that A = NA(R) and M/R is abelian. For
each K ∈ X − Y with |A : K| ≥ pi−1, we consider the two conditions

♯MA(M,B,K; pi−1) ≡ ♯MA(M,B,K; pi) ≡ 0 mod ps−i+1 (5)

and ∑
aNA(R)∈A/NA(R)

{
♯MA(M,B, aK; p[(s+1)/2])− ♯MA(M,B, aK; p[(s+1)/2]+1)

}
≡ 0 mod p[s/2],

(6)

where R = K ∩ B. (Note that s = [s/2] + [(s + 1)/2].) Given K ∈ X and C ∈
MA(M,B,K; pi), it follows from Lemma 2.9 that K ∈ Y if and only if C ∩M ∈ Y.
Hence it suffices to verify that for any K ∈ X − Y with |A : K| ≥ pi−1, Eq. (5)
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holds if λ2 ≤ 1, and either Eq. (5) or Eq. (6) holds if λ1 = [(s+1)/2], λ2 = 2 > λ3,
i = [(s+1)/2]+1, and R(= K ∩B) does not satisfy the assumptions of Lemma 2.2.

Suppose that K ∈ X −Y with |A : K| ≥ pi−1, and set R = K ∩B. We complete
the proof by three steps.

Step 1. We first assume that |A : K| = pi−1. Obviously, MA(M,B,K; pi) = ∅.
By the assumption, we have |NB(K) : R| ≥ p > p−i+1|A : K|. Moreover,

|A : K| · |K/R : Φ(K/R)| ≥ p−1 · |A : R| ≥ ps.

Hence it follows from Lemma 2.7 that ♯MA(M,B,K; pi−1) ≡ 0 mod ps−i+1.

Step 2. We next assume that pi · |NB(K) : R| ≥ |A : K| ≥ pi and one of the
following conditions are satisfied.

(i) |B : R| ≥ p2.

(ii) Either |A : K| = pi and expK/R ≤ p or |A : K| = pi+1 and expM/B ≤ p.

By the assumption, |A : K| · |K/R : Φ(K/R)| ≥ ps+1. Hence, if |A : K| = pi, then
Eq. (5) follows from Eq. (3). Suppose now that |A : K| ≥ pi+1. If |B : R| ≥ p2,
expK/R ≤ p, and |A : K| = pi+1, then

pi+1 · |K/R : Φ(K/R)| = |A : K| · |K/R : Φ(K/R)| = |A : R| ≥ ps+2,

and hence Eq. (5) follows from Eq. (3). Excepting the case where |B : R| ≥ p2,
expK/R ≤ p, and |A : K| = pi+1, Eq. (5) follows from Lemmas 2.4 and 2.7. Thus
Eq. (5) holds in any case.

Step 3. In the situation apart from the assumptions for Steps 1 and 2, the
remaining cases are as follows.

(a) pi = pi−1 · |B : R| = |A : K| and expK/R = p2.

(b) pi+1 = pi · |B : R| = |A : K| ≤ pi−1 · |NM (K) : K| and expM/B = p2.

(c) pi+1 · |NB(K) : R| ≤ |A : K| ≤ pi−1 expNM (K)/K.

(In the cases (a), (b), and (c), we assume that |A : K| = pi, |A : K| = pi+1, and
|A : K| ≥ pi+2, respectively. By the hypothesis, K ∈ X −Y, which is reflected in the
conditions.) Obviously, expNM (K)/K ≤ p2 expNB(K)/R. If either expM/B ≤ p
or expK/R = p2, then xp ∈ KNB(K) for any x ∈ NM (K), which implies that
expNM (K)/K ≤ p expNB(K)/R. Hence the case (c) is rewritten as

(c)′ pi+1 · |NB(K) : R| = |A : K| = pi−1 expNM (K)/K, expM/B = p2, and
expK/R ≤ p.

In this case, if |B : R| ≥ p2, then Lemmas 2.4 and 2.7 yield Eq. (5). Hence we may
restrict the case (c) to the following.
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(d) pi+2 = pi+1 · |B : R| = |A : K| = pi−1 expNM (K)/K, expM/B = p2, and
expK/R ≤ p.

Note that expM/B = p2 in the cases (a), (b), and (d). Hence Eq. (5) already
holds in any case if λ2 ≤ 1. We assume that λ1 = [(s + 1)/2], λ2 = 2 > λ3, and
i = [(s+1)/2]+ 1. If K satisfies one of the conditions in the cases (a), (b), and (d),
then by an argument analogous to Step 2, we have

♯MA(M,B,K; pλ1) ≡ ♯MA(M,B,K; pλ1+1) ≡ 0 mod p[s/2]−1.

Moreover, if A ̸= NA(R), then Eq. (6) holds in the cases (a), (b), and (d). Thus we
may assume that A = NA(R). If |B : R| = p and M/R is abelian, then R satisfies
the assumptions of Lemma 2.2. We conclude the proof with the assertion that M/R
is abelian in each of the cases (a), (b), and (d). Recall that |A : M | = pλ1 .

(a) Assume that pλ1+1 = pλ1 · |B : R| = |A : K|. We have |M/K| = p = |B/R|,
whenceM/R = KB/R. Since B/R ≤ Z(A/R), it follows thatM/R is abelian.

(b) Assume that pλ1+2 = |A : K| ≤ pλ1 · |NM (K) : K| ≤ pλ1 · |M : K| = pλ1+2.
Then |M/K| = p2 and M = NM (K). Since M/B and M/K are abelian, it
turns out that

[M/R,M/R] ≤ B/R ∩K/R = R/R.

Thus M/R is abelian.

(d) Assume that pλ1+3 = |A : K| = pλ1 expNM (K)/K ≤ pλ1 |M : K| = pλ1+3.
Then |M/K| = p3, M = NM (K), and M/K is a cyclic group of order p3.
Consequently, M/R is abelian.

This completes the proof. 2

Remark 3.4 Assume that λ1 ≥ λ2 + λ3 + · · ·. Then λ1 ≥ [(s + 1)/2]. If λ1 ≥
[(s+ 1)/2] + 1, then by Corollary 1.5, A admits C(ps). If λ1 = [(s+ 1)/2] and i is
a positive integer less than or equal to [(s+ 1)/2], then by Theorem 1.4,

mA(qp
i−1) ≡ mA(qp

i) mod pi

for any positive integer q such that gcd(p, q) = 1.

We are now in a position to prove an analogy of Theorem 1.6 stated at the
beginning of this section.

Theorem 3.5 Let A be a finite group and B a normal subgroup such that A/B is
a finite abelian p-group of order ps. Let λ = (λ1, λ2, . . .) be the type of A/B. If
either λ2 ≤ 1 or λ2 = 2 and λ3 = 0, then A admits C(ps). If λ2 = 2, λ3 = 1, and
λ1 ≥ λ2 + λ3 + · · ·, then A admits CP(ps).
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Proof. Assume that either λ2 ≤ 1 or λ2 = 2 > λ3 and λ1 ≥ λ2 + λ3 + · · ·. Then
by Propositions 3.2 and 3.3 and Remark 3.4, A admits CP(ps). Moreover, if either
λ2 ≤ 1 or λ2 = 2 and λ3 = 0, then A satisfies the assumption of Proposition 3.1,
whence A admits C(ps). This completes the proof. 2

Proof of Theorem 1.6. The assertions follow from Theorem 3.5 with B = A′. 2
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