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We report the structure and magnetic properties of Co-doped TmMnO3 polycrystals for Co 

doping levels of 0≤x≤0.9. TmMnO3 (x=0) prepared at ambient pressure was hexagonal. 

Hexagonal and orthorhombic phases coexisted in TmMn1-xCoxO3 for 0≤x<0.5. We obtained 

almost single-phase orthorhombic samples with 0.5≤x≤0.9 using complex polymerization.  

Ferromagnetic orthorhombic TmMn1-xCoxO3 formed upon Co doping. The ionic states of Tm, 

Mn, and Co were determined through magnetization measurements. The rapid decrease in 

magnetization for 0.5≤x≤0.7 below about 25 K was explained using a model consisting of a 

combination of ferromagnetic Mn-Co and paramagnetic Tm sublattices. 
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1.  Introduction 

 The manganese rare-earth oxide RMnO3 has been investigated extensively because of its 

diverse physical properties and potential applications.1-4) Moreover, detailed studies on R-site 

and Mn-site substitutions have been carried out.5-8) Upon the substitution of R with divalent 

elements such as Sr and Ca, and of Mn with other transition metals such as Co, Ni, and Cr, the 

valence of Mn partially changes from Mn3+ to Mn4+, and the system undergoes various 

exchange interactions. In particular, during Co substitutions involving multiple valence states, 

exchange interactions among Mn3+, Mn4+, Co2+, and Co3+ can be expected depending on the 

amount of Co substitution, and the physical properties generated by the various interactions are 

very interesting. 

It has been reported that in hexagonal TmMnO3, an antiferromagnetic spin ordering (TN  

82-86 K) and a ferroelectric ordering of charges (ferroelectric Curie temperature TEC  570-593 

K) may coexist.9-11) On the other hand, TmMnO3 synthesized under high pressure is 

orthorhombic and antiferromagnetic with a Neel temperature of 41 K and a dielectric Curie 

temperature of about 32 K.12,13) The antiferromagnetic state of this system is due to the exchange 

interaction between Mn3+ ions. By realizing a mixed-valence state of Mn by replacing the Tm 

and/or Mn of TmMnO3, it is possible to introduce a new factor into the magnetic behavior of 

the system. To investigate the effects of Co doping on the physical properties of TmMnO3, we 

substituted Mn with Co and studied the structure and magnetic properties of TmMn1-xCoxO3. In 

TmMn1-xCoxO3 prepared by a solid-phase reaction, the substitution of Mn with Co induced a 

hexagonal-to-orthorhombic transformation for 0≤x≤0.5, and the samples with x≥0.4 became 

almost single-phase orthorhombic.14) In the Co-substituted system, the magnetization increased 

ferromagnetically at about 60 K with decreasing temperature, and had a maximum at around 

30 K. The maximum magnetization increased with x for 0≤x≤0.5. For x≥0.5, the amount of 

Tm2O3 impurity increased with x. The presence of this impurity made the quantitative analysis 

of the data difficult. In this paper, we present a new synthesis method for TmMn1-xCoxO3 and 

describe its structure and magnetic properties. 

 

2. Experimental Procedure 

Polycrystalline TmMn1-xCoxO3 (0≤x≤0.9) compounds were prepared by a conventional 

solid-state reaction (SSR) and complex polymerization (CP).15,16) All processes were performed 

at ambient pressure except for the pelletization of the mixture. In the SSR method, appropriate 

amounts of Tm2O3, Mn2O3, and Co3O4, all of which were of 99.9% purity, were dried at 473 K. 
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These powders were ground, thoroughly mixed, and sintered at 1423 K under an O2 atmosphere. 

Then, the mixtures were ground again and pelletized at 500 kgf/cm2. These pellets were sintered 

at 1423 K under O2. The starting materials used in the CP method were the metal nitrate hydrates 

Tm(NO3)2·4H2O, Mn(NO3)2·6H2O, and Co(NO3)2·4H2O, which were of 99.9% purity. These 

nitrates were dissolved in water and mixed with a citric acid solution. After sufficient stirring, 

the solution was polymerized using ethylene glycol to form a transparent polymeric gel. The 

temperature range for gel formation was 463 to 493 K. The gel, which was dried at 623‐673 

K on a hot plate, became a resin. This resin was easily pulverized in an agate mortar. The powder 

was pelletized and sintered below 1273 K under an O2 atmosphere. The pelletization and 

sintering processes were repeated several times. For x<0.5, both the conventional SSR and CP 

methods were used. Quantitative differences due to sample preparation were minimal, and 

similar results have been reported previously.14) For 0.5≤x≤0.9, the CP method was used. 

 The crystal phases were analyzed using a MiniFlex 300 (Rigaku Co.) diffractometer with 

a Cu X-ray tube, a one-dimensional detector, and a Ni-K filter. Structural analysis was 

conducted by Rietveld refinement using the software RIETAN-FP.17) The magnetization 

measurements were performed with a superconducting quantum interference device (SQUID) 

magnetometer (Quantum Design).  

 

3.  Results and Discussion 

3.1 Structure 

Figure 1 shows typical X-ray diffraction (XRD) patterns for TmMn1-xCoxO3 prepared by CP, 

with the XRD pattern for Tm2O3 included as a reference. TmMnO3 (x=0), which was prepared 

at ambient pressure by the SSR, was hexagonal. These XRD patterns were refined by Rietveld 

analysis, and we obtained the lattice parameters a, b, c and the unit cell volume V in Fig. 2, 

along with the mass fraction of the hexagonal and orthorhombic phases shown in the inset, all 

as functions of x. The inset in Fig. 3 shows the mass fraction of the components of the SSR 

samples. Hexagonal and orthorhombic phases coexist for 0<x<0.5 in samples prepared by either 

the SSR or CP. For 0.5≤x≤0.9, the CP samples are almost single-phase orthorhombic, while the 

SSR samples contain a small amount of Tm2O3. The amount of this impurity in the SSR samples 

increases with increasing x. This indicates that the CP method is superior to the SSR method 

for the synthesis of samples with 0.5<x≤0.9. The space group for the hexagonal phase is P63cm, 

and the orthorhombic phase is a distorted perovskite with the space group Pnma. The lattice 

parameters ah, ch, and Vh in the hexagonal phase are nearly constant except for the case of x=0.4. 
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It is considered that the discrepancies for x=0.4 are caused by errors due to the small mass 

fraction of the hexagonal phase. The lattice parameters ao, bo, co, and Vo for the orthorhombic 

phase decrease with increasing x for 0.5≤x≤0.9. This is presumably related to the ionic radii in 

TmMn1-xCoxO3. Peña et al. suggested that for ErMexMn1-xO3, the general formula is RE3+Mn4+
1-

xCo2+
1-xCo3+

2x-1O
2-

3 (RE=rare-earth element) when the substitution at the manganese site 

exceeds 50%.18) If we assume this valence state formula for TmMn1-xCoxO3, then the average 

ionic radius of the 3d transition metal ions in TmMn1-xCoxO3 decreases. This would 

qualitatively account for the decrease in the lattice parameters and the unit cell volume.  

 

3.2 Magnetic properties 

Figures 3 and 4 plot, respectively, the temperature dependences of the field-cooled (MFC) 

and zero-field-cooled (MZFC) magnetization for the 0≤x≤0.4 SSR samples14) and the 0.5≤x≤0.9 

CP samples in a magnetic field of 250 Oe. The insets of Figs. 3 and 4 respectively show the 

mass fraction of the SSR samples and the temperature dependence of FC
-1 = H/MFC for the CP 

samples above 20 K. MFC increases ferromagnetically below 60 K with decreasing temperature 

for 0.1≤x≤0.7. From x=0.1 to 0.5, MFC increases, and then decreases from x=0.5 to 0.9. With 

increasing x, the mass fraction of the orthorhombic phase increases, as do MFC and MZFC. A 

discrepancy is observed between MFC and MZFC below about 160 K for 0.1≤x≤0.3, where the 

hexagonal and orthorhombic phases coexist, and MFC and MZFC exhibit different temperature 

dependences below about 60 K. MFC and MZFC for x≥0.5, where the main phase is orthorhombic, 

are also different below about 60 K. The appearance of the orthorhombic phase induces a rapid 

increase in magnetization below 60 K. For x=0.8 and 0.9, there is no ferromagnetic increase, 

but a separation between MFC and MZFC can be seen below about 60 K. We will discuss the 

temperature dependence of MFC for the orthorhombic phase at low temperatures in more detail 

below.  

The inverse susceptibility of TmMn1-xCoxO3 (0.5≤x≤0.9) above 130 K, shown in the inset 

of Fig. 4, can be fitted as a linear function of temperature, that is, by the Curie-Weiss law:  

χFC =
𝑀FC

𝐻
=

𝐶

𝑇−Θ
 ,     (1) 

where C is the Curie constant,  is the Weiss temperature, and H is the external magnetic field. 

C is related to the effective paramagnetic magnetic moment Peff via 

𝑃eff
2 =

3𝐶𝑘B

𝑁𝜇B
2 ,     (2) 

where N is the number of magnetic atoms (Tm, Mn, Co) per gram, B is the Bohr magneton, 
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and kB is the Boltzmann constant. The values of Peff and  obtained from MFC, are plotted in 

Fig. 5 as functions of x. It can be seen that , which is about 15 K for x=0.5, decreases with 

increasing x and is negative for x0.8. It is found that ferromagnetic and antiferromagnetic 

interactions predominate for x≤0.7 and x>0.7, respectively. Peff also decreases with increasing 

x. Ghiasi et al. investigated the valence states of Mn and Co in LaMn1-xCoxO3 nanoperovskites 

by X-ray absorption spectroscopy.19) They found that LaMn0.75Co0.25O3 contained Mn3+, Mn4+, 

and Co2+, while LaMn0.25Co0.75O3 contained Mn4+, Co2+, and Co3+, and LaMn0.5Co0.5O3 

contained Mn3+, Mn4+, Co2+, and Co3+. To facilitate the discussion, we will again assume the 

following valence state formula for REMn1-xCoxO3 for x0.5: RE3+Mn4+
1-xCo2+

1-xCo3+
2x-1O

2-
3. 

Among these ions, Co2+ and Co3+ can have S=3/2 (high spin, HS) or S=1/2 (low spin, LS), and 

S=2 (HS) or S=0 (LS) states, respectively. Assuming that the theoretical paramagnetic moments 

of Tm3+, Mn4+, and Co2+ are 7.57 B, 3.87 B, and 3.87 B (HS), respectively, at x = 0.5, Peff 

equal to 6.01 B per atom is obtained for these magnetic atoms from Eq. (3):  

  𝑃𝑒ff = √
∑ 𝑝𝑖

2

2
 .      (3) 

The 2 in the dominator of Eq. (3) corresponds to the number of magnetic atoms in the formula 

TmMn1-xCoxO3. This calculated Peff is close to the experimental value. It is concluded from the 

Peff value for x=0.5 that Co2+ must be HS. In Fig. 5, the x dependence of Peff is also shown for 

Co3+(HS) and Co3+(LS). If the electronic state of Co3+ for x>0.5 is HS, Peff increases with x. 

This contradicts the experimental results shown in Fig. 5. The values of Peff agree qualitatively 

with calculations in which Co2+ and Co3+ are assumed to be in the HS and LS states, respectively.  

For 0.5≤x≤0.7, both MFC and MZFC increase ferromagnetically at TC  58 K with decreasing 

T. Since the ferromagnetic interaction is predominant for 0.5≤x≤0.7, this increase in 

magnetization is considered to be due to the canted magnetic transition of the Mn and Co ions, 

as reported for other rare-earth manganese oxides. The maximum values of MFC are observed 

between 25 and 35 K. MFC decreases with decreasing T and shows negative values below Tcomp 

 13 K for x=0.7. No ferromagnetic increase in magnetization is seen for x=0.8 and 0.9, 

although a small peak can be seen at about 44 K in MZFC for x=0.8. The discrepancy between 

MFC and MZFC for x=0.8 and 0.9 is considered to be due to antiferromagnetic ordering or 

competition between ferromagnetic and antiferromagnetic interactions.  

Another characteristic of the temperature dependence of MFC below 30 K for 0.5≤x≤0.7 

is the rapid decrease with decreasing T. A similar decrease in MFC is seen in other rare-earth 

manganese oxides.18,20-23) Such a rapid decrease in MFC indicates spin reversal phenomena 

related to rare-earth ions. The M-H curves for TmMn0.5Co0.5O3 prepared by the solid-state 
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reaction method showed a large high-field magnetic susceptibility even below 20 K, which 

suggests that Tm3+ (J=6) is paramagnetic even at low temperatures. According to Cooke et al.,21) 

the temperature dependence of MFC can be fitted using the equation  

𝑀FC = 𝑀Mn,Co +
𝐶Tm(𝐻+𝐻int)

𝑇−ΘW
 ,   (4) 

where MMn,Co and Hint are the saturated moment and the internal field at the Tm sites due to the 

canted Mn-Co moment, respectively. CTm is the Curie constant for paramagnetic Tm3+ ions, W 

is the Weiss temperature, and H is the applied field, which is 250 Oe. The solid lines in Fig. 6 

show that the temperature dependence of the magnetization below 25 K can be well 

approximated using Eq. (4); the fitting parameters are listed in Table I. This successful model, 

which is based on a ferromagnetically ordered Mn-Co sublattice and a paramagnetic Tm 

sublattice, suggests that the negative internal field induced by the Mn-Co sublattice affects the 

Tm sublattice. It is considered that at low temperatures (below 25 K), the Tm3+ spin is oriented 

in the direction opposite to H by Hint. Such spin inversion due to 3d transition metal elements 

and rare-earth elements seems to be common in perovskite-type oxides with the structure ABO3, 

although the crystallographic reasons why Hint acts antiferromagnetically on the rare-earth 

element A are unclear.  

 

4.  Conclusion 

From the plots of mass fraction vs x (insets of Figs. 2 and 3), the CP method was clearly 

demonstrated to be more suitable than the SSR method for 0.5<x≤0.9. Thus, we achieved the 

substitution of Mn through CP, and obtained almost a single orthorhombic phase for 0.5≤x≤0.9 

in TmMn1-xCoxO3. 

At T > TC  58 K, TmMn1-xCoxO3, in which the Tm3+, Mn4+, Co2+, and Co3+ ions are 

paramagnetic, is also paramagnetic. From the data on the unit cell volume and the effective 

moment, it is concluded that Co2+ has a high spin state (S=3/2) and that Co3+ in TmMn1-xCoxO3 

remains a low-spin-state ion (S=0). At T = TC, a canted magnetic transition occurs as a result of 

the interaction between Mn and Co, and the magnetization increases ferromagnetically with 

decreasing T. Below the temperature at which MFC is maximized, the interaction between Mn 

and Co ions induces a negative internal field Hint at the Tm sites. Hint reorients the Tm3+ spin in 

the direction opposite to the external field H. The total magnetization at low temperatures is 

explained on the basis of a two-sublattice model. 
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Figure Captions 

 

Table I Fitting parameters for MFC for x = 0.5, 0.6, and 0.7. 

 

Fig. 1. (Color online) X-ray diffraction patterns for various TmMn1-xCoxO3 samples. The XRD 

pattern for Tm2O3, which is considered an impurity, is shown at the top as a reference.  

 

Fig. 2. (Color online) Lattice parameters and unit cell volume as functions of x. The open 

symbols were obtained from Ref. 19. The inset plots mass fraction vs x. All these values, except 

for those for x=0, were obtained from samples prepared by complex polymerization.  

 

Fig. 3. (Color online) Temperature dependences of field-cooled (FC, filled symbols) and zero-

field-cooled (ZFC, open symbols) magnetizations for TmMn1-xCoxO3 for 0.0≤x≤0.4, which 

were prepared by the solid-state reaction. The inset plots mass fraction vs x for samples prepared 

by the solid-state reaction. 

 

Fig. 4. (Color online) Temperature dependences of field-cooled (FC, filled symbols) and zero-

field-cooled (ZFC, open symbols) magnetizations for TmMn1-xCoxO3 for 0.5≤x≤0.9. 

 

Fig. 5. (Color online) Effective paramagnetic moment Peff and Weiss temperature  as functions 

of x for TmMn1-xCoxO3. The filled (open) symbols are the experimental (calculated) Peff data 

for the two-spin states of Co3+.  

 

Fig. 6. (Color online) Temperature dependence of MFC for x = 0.5 to 0.7. The solid lines below 

25 K are fits using Eq. (4). 
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Table I Fitting parameters for MFC for x = 0.5, 0.6, and 0.7. 

 

Co concentration x MMn,Co / emu g-1 Hint / kOe W / K 

0.5 7.8 -4.0 -11 

0.6 4.0 -3.0 -14 

0.7 1.8 -2.1 -13 
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Fig. 1. (Color online) X-ray diffraction patterns for various TmMn1-xCoxO3 samples. The XRD 

pattern for Tm2O3, which is considered an impurity, is shown at the top as a reference.  
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Fig. 2. (Color online) Lattice parameters and unit cell volume as functions of x. The open 

symbols were obtained from Ref. 19. The inset plots mass fraction vs x. All these values, except 

for those for x=0, were obtained from samples prepared by complex polymerization.  
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Fig. 3. (Color online) Temperature dependences of field-cooled (FC, filled symbols) and zero-

field-cooled (ZFC, open symbols) magnetizations for TmMn1-xCoxO3 for 0.0≤x≤0.4 prepared 

by the solid-state reaction. The inset plots mass fraction vs x for samples prepared by the solid-

state reaction. 
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Fig. 4. (Color online) Temperature dependences of field-cooled (FC, filled symbols) and zero-

field-cooled (ZFC, open symbols) magnetizations for TmMn1-xCoxO3 for 0.5≤x≤0.9. 
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Fig. 5. (Color online) Effective paramagnetic moment Peff and Weiss temperature  as functions 

of x for TmMn1-xCoxO3. The filled (open) symbols are the experimental (calculated) Peff data 

for the two spin states of Co3+.  
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Fig. 6. (Color online) Temperature dependence of MFC for x = 0.5 to 0.7. The solid lines below 

25 K are fits obtained using Eq. (4). 
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