衝撃波を伴う超音速内部流動に関する研究
(マッハ4 擬似衝撃波の実験)

Investigation on Supersonic Internal Flows with Shock Waves
(Experiments of the Mach 4 Pseudo-Shock Waves)

O 学 東條 啓（室蘭工大・院） 正 杉山 弘（室蘭工大）
正 深端一秀（室蘭工大） 正 福田浩一（室蘭工大・院）
学 孫 立群（室蘭工大・院） 学 広島敏之（室蘭工大・院）

Akira TOJO, Muroran Institute of Technology, 27-1, Mizumo, Muroran 050-8585
Hiromu SUGIYAMA, Muroran Institute of Technology
Kazuhide MIZOBATA, Muroran Institute of Technology
Koichi FUKUDA, Muroran Institute of Technology
Liquin SUN, Muroran Institute of Technology
Takayuki HIROSHIMA, Muroran Institute of Technology

Key Words: Pseudo-Shock Wave, Shock Wave/Boundary Layer Interaction, Supersonic Internal Flow, Color Schlieren Photography, PIV Measurement

1. まえがき

流れ場内で流れが超音速から亜音速へ急激に発生する衝撃波は、流れ場表面境界層と干渉し、複雑な衝撃波システム、いわゆる擬似衝撃波（pseudo-shock wave）を形成する場合がある。擬似衝撃波を伴う流れは、超音速ディフューザやスクラムジャケットエンジンの分離部等で発生し、圧力変動を伴い、騒音を発生。流れの破壊破壊を引き起こす場合がある。擬似衝撃波の構造や特性に関して研究することは、これらの機器の設計・運転と関連し工学上重要である。

本研究では、吹出し吸入方式超音速水平を用いて、正方形断面の中流位置に擬似衝撃波を発生させ、マッハ4 擬似衝撃波を伴う流れ場の3次元的な構造を、カラーシーレン法による流れ場の可視化、壁面に沿った油膜流れの観察、粒子画像速度測定法（particle image velocimetry : PIV）による流速分布測定により調べた。

2. 実験とその結果

測定部位である正方形断面の中流位置に発生させたマッハ4 擬似衝撃波を伴う流れ場の構造を、シュリーレン法による流れ場の可視化、壁面近傍の油膜流れの観察、PIVによる流速測定を行ない流速分布測定を行るべき測定を行った。

Fig.1 に示すように、各断面における流速分布を、奥行き方向に4断面における流速分布測定を行わない測定をした。

Fig.1 のことわり。急激な方向に変化する方向、方向に変化する方向を示す。この図には、壁面近傍の油膜流れの可視化により得たデータを示す。

流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関しては、高速化方向（y軸方向）に近づかず、流路中央部の高速流は、流路中央断面に関