3250 アキシアルピストンポンプの斜板温度に及ぼす油圧作動油の影響
Effects of Hydraulic Oils on Swash Plate Temperature of An Axial Piston Pump

○正 風間俊治（室蘭工大） 正 藤本 滉（室蘭工大）
三本信一（新日本石油）
Toshiharu KAZAMA, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido
Mitsuru FUJIWARA, Muroran Institute of Technology
Shin'ichi MITSUMOTO, Nippon Oil Corporation

Temperature of a swash plate of an axial piston pump was measured and seven kinds of hydraulic oils were assessed. Five thermo-couples were embedded in the swash plate and one thermistor was placed in the suction conduit of the pump. The test oils were mineral and synthetic type oils with the viscosity grade of 32 to 46, adding friction modifiers. The maximum discharge pressure was 20 MPa, discharge flow rate was 16 l/min, and the inlet oil temperature was 30 ℃. At the atmospheric to maximum discharge pressures, the temperatures, flow rates and the torque were measured, and then the swash plate temperature rises and the pump performance curve were obtained. In conclusion, i) A low viscous oil with the friction modifier gave a lower temperature rise; ii) As the discharge pressure increased, the temperature rises became larger, and iii) The types of the oils tested less influenced the performance curves.

Keywords: Tribology, Fluid power systems, Hydraulic oils, Temperature, Piston pump, Swash plate

1. はじめに

近年、環境負荷低減の観点から、省エネルギー対策への関心が高まっている。高压作動油を用いたフォールドバー（油圧）システムにおいては、システムの要となるポンプ・モータの高効率化。特にしじゅう動部における損失力の低減化、に対する要請が強まり、しじゅう動部における損失は、潤滑と摩擦に基づく損失に大別される。とりわけ、后者は、しじゅう動面の温度を上昇させる。本研究では、ピストンポンプの主要なしじゅう動部のひとつであるスリップスリー斜板間の熱的挙動に焦点を当てる。斜板の5箇所に熱電対を埋め込んだ実験ピストンポンプを供試ポンプとして、粘度および動粘度の異なる7種類の油圧作動油にによって、主に斜板の温度を測定することにより、作動油ならびにポンプ性能を評価する。

2. 実験装置ならびに方法

本実験装置は、供試ポンプとその駆動機械、計測機器（トルク計、流量計、圧力計、温度計）ならびに油圧補機（バルブ、クラーク、タンク等）で構成された（装置全体の油圧回路図は文献1参照）、これらを油圧スタンドとしてコンパクトに組み立てた。供試ポンプには、市販の斜板式アキシアルピストンポンプ（最高使用圧力21 MPa、理論押し出し容積10 ml/rev）を用いた。ポンプは、入口軸トルクを計測するためのひずみゲージ式トルク変換器（定格20 N.m）を介して、3相電動機（7.5 kW）により一定回転速度（24 500rpm）で駆動される。ポンプ吸込み口にサーモスタ温度計を、吐出し管路およびドレン管路にオーバール流量計（最大流量は、それぞれ、4000, 2000 l/h）を設置し、ポンプ入口部油温Tm, 吐出し流量Qeおよび潤滑油量Qoを測定した。

Fig.1 Location of thermo-couples on swash-plate

【Na04-1】日本機械学会 2004年度年次大会講演論文集（4）（2004-9.5〜9,札幌）

-283-
実験は、吐出し圧力p_dを大気圧から20 MPaまで1 MPaずつ上昇させ、さらに逆方向に下降させ、それぞれのp_dの設定条件下において、温度T_r、トルクT_t、流量Q_o、Q_i等を測定した。なお、各設定条件下での測定には、斜板各点の温度が安定するまで十分な時間を掛けた。

3. 実験結果ならびに考察

供試油No.6を用いた場合の斜板A-E点の温度Tを図2に、ポンプ性能曲線を図3に示す（ここに、M_r:軸動力=$2\pi N T_r$, n_r:全効率=$p_d Q_d / L_{rnc}$、容積効率=Q_d / Q_{bn}、吐出し圧力p_dの増加に伴い、Tは、ほぼ比例して上昇した。

一方で、ポンプ性能曲線に対して、供試油毎の顕著な差異は見られなかった。

供試油No.0-6に対する斜板温度Tを、点A-Eの平均値で図4に示す。吐出し圧力p_dは20 MPaであった。同図より、Tは、供試油No.2で最も低く、No.6で最も高かったことが分かる。その差は約4℃となった。

図5には、斜板の位置による温度Tの差を調べるため、7種類の供試油を用いて得られた測定点A-EのTの平均値を示す（$p_d=20$ MPa)。Tは、吸込みポート（測定点B）および斜板先端（測定点C）で低く、閉じ込み部（測定点A, D）で高かった。

4. むすび

小型斜板式アキシアルピストンポンプの斜板の5箇所に熱電対を埋め込み、合成系および極性油系の計7種類の圧力動力で用いて実験を行った。最高吐出し圧力20 MPa、ポンプ入口油温30℃のもとで、斜板温度、軸トルク、流量などを測定し、作動油の差異が斜板温度ならびにポンプ性能に及ぼす影響を調べた。

主な結果として、吐出し圧力の上昇に伴って斜板温度も上昇したこと、その温度上昇は油圧作動油の種類によって大きな差が見られたこと、特に、摩擦調整剤を添加した低粘度作動油において温度上昇が小さかったこと、今回準備した供試油では、その粘度や添加剤の差異はポンプ性能にほとんど影響を及ぼさなかったことなどを得た。

本実験の改修には、株式会社トーテー関係各位のご尽力を賜った。本実験には、当時の学卒研究中田さやいさん、西田龍史君の助力を得た。記して謝意を表す。

参考文献
1) 風間・藤原・野澤・三本：ピストンポンプを用いた生分解性作動油の評価、機械学会年次大会講演(II), No.03-1(2003), 369/370.