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A note on R. DeMarr’s conjecture concerning the order
isomorphism of an ordered linear space and its order dual

Ka;1 Honda

Abstract

R. DeMarr had a conjectur : if an ordered linear space X is order isomorphic to its order dual X', then X
becomes a real Hilbert space with an inner product which is compatible with the order. And, in his paper, he
proved the conjecture under an assumption. In this note, we prove the conjecture under a simple assumption
which is equivalent to DeMarr’s assumption.

The conjecture of R. DeMarr is the following.

If a partially ordered linear space X 1s ovder isomorphic to its order dual X', them it is
possible to define an inner product ( -+, + Jon XXX in such a way that X becomes a real Hilbert
space with this inner product. Furthermore, the inner product can be defined so that it has the
Jollowing properties :

(@) if xe Xand x = 0, then [x, - ) is a positive linear functional on X,
(b) if feX' and [ = 0, then there exists x€ Xwith x = 0 such that (x, - ) =f

Let T be the order isomorphism of X and X', namely T is a positive linear transforma-
tion of X onto X" and the inverse 77! of T exists. DeMarr showed in his paper that X is
Dedekind complete, 1. e., for a down-directed set E of positive elements in X, inf E exists.
Furthermore, he proved his conjecture under the assumption :

)] (x, Ty)=0% whenever xNy=0 and x%y€ X.

In this note, although we can not to be prove that the conjecture is true or not, we shall
consider the another assumption to be equivalent to (D), because we are thinking to give
something to get a grip of whether the conjecture is true or not.

Let X be a Dedekind complete vector lattice and X’ be its order dual, i. e., the totality of
positive linear functionals on X, in this nate.

A subset M of X is said to be a normal manifold, if for each x e X, there exist two elements
x, and x, such that

() x=x,+2%,, x:€M and x,eM*
where M*= {y ; v is orthogonal to every element in M} and M* is called the orthognal
complement of M.

When M is a normal manifold, the above decomposition (#) for each x€X is uniquely
determined. Therefore, a normal manifold M defines a projection operator (M) of X on'M
by (M) x=x,. Specially, for an element p in X, if {p}*++ is a normal manifold, then the
projection operator [ {p{t+ ) is called the projector and denoted by () . In the Dedekind
complete vector lattice X, each element p in X defines always a projector( p)and it is known
in (2) that [p] has the property : (p) x=sup {#n |p| Nx} for each positive element x in X.

*) Ty means an element in X’ corresponding to an element y in X and (x, 7%) means the value of Ty at x.
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The detailed properties on projection operator and the projector are found in Nakano (2 ;
§4~ §6)

The aim of this note is to prove the following theorem.

Theorem. Let X be a Dedekind complete vector lattice and X' be its order dual. If there
exists an order isomorphism T from X onto X' such that

(H) (%, Tx) = 0 for every non-zero element x in X,
then X becomes a real Hilbert space with an inner product { -, ) on XXX having the above
mentioned properties (a) and (b).

If it is proved that (H) implies (D), our theorem comes to be true by DeMarr’s result.
However, we shall give another proof

Let A be an index set. For a set {a;} (A€ A)in X, we make use of the notation a; 1 rea
if for any indices A,u € Athere exists an index v€ Asuch that a:<a, and e¢.=a,, and if
SUp @, =« exists, then we write a; 1 icx @ Similary, we make use of the notation a; | iea
and dilaend

Lemma 1. T is order continuous, 1. e., if a,dena in X, then Tay  en Ta n X',

Proof. This is evident from the fact that T is the order isomorphism of X onto X'

For xe X, we define x*=xU0, x =(—x)U0 and | x| =x*+x~ so that x=x*—x"
holds. Then, we can easily see that for each xe X, we have | Tx| =7| x| in X".

Now, for each x in X, we denote by N(x) the totality of elements y in X for which (]x],
T| 3])=0 hold We can see that N (x) is a normal manifold as follows. Obviously, N (x)
posses the property that yeN (x) and | z || y| implies zeN (x). Namely, N (x) is a semi-
normal manifold in Nakano (2] . Furthermore, if @i € N(x), @; T yea @ and a = 0, then by
Lemma 1 we have sup {(] x|, 7a); A€ Al =(] x|, Ta) and consequently (| x|, Ta)=0
so that we have @€ N(x). Therefore, N (x) is a normal manifold by Nakano’s theorem (2,
Theorem 4.9) .

Lemma 2. I X satisfies the assumption (H), then it follows that N(a)* - N (b)*= {0}
whenever 0=a,be X and a b=0.

Proof. Putting N(a)= {f X";(a, | f|)=0} and N(b)={feX"; (b, | /] )=0{ , we get
N(a)={Tx ;xeN(z)| and N(b)= |Tx ;xeN(b)} by |Tx| = T|x|. For any positive linear
funtional % on X, we can make two positive linear functionals 2, =4 (b) and h,=h (a) =
h({a}*)({b}+)*». Then, it follows that (/) +(xh)=( (0)x + (a)x + (1— (6) )x,h) for
every x in X, because ¢ b= 0 implies (a) (6)=0. And hence we have h=h,+4h, in X"
Furthermore, since (ah;)=( [(bla,h) = 0 and (0h)=( (a)bh) + [ {al ~)( {bt* ) bh)=
0, we have h, € N(a) and h, € N(b). By this fact, for any positive element z in X, the positive
linear functional #= Tz is represented such that s=#h,+k, where 0</h,eN (@), 0 h,eN ()
and consequently we have z=z,+2z, where 02, =7 ' 1, N(g)and0< z,= T 1h,eN(b). If
a positive element z is belong to the intersection N (a)* - N (&)*, then, z is orthogonal to both
z; and z, by the definition of the orthogonal complement so that z is orthogonal to z and

* For a linear functional f on X and a projection operator (M}, f(M) means a linear functional such that
(x, f (M) )=([M)x, f) for every x in X.
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hence we get z = 0. Since N (¢)* and N (b)* are semi-normal manifolds, the intersection
N (a)* - N (b)* is also a semi-normal manifold. Therefore, for any x in N (a)*+ N (b)* the
absolute | x| is also belong to N (@)* + N (b)* so that by the above mentioned fact, we have
x=0. This is complete the proof of the lemma.

Lemma 3. If X satisfies (H), then for every orthogonal elements x, y in X we have (x, Ty)=

Proof. Let x and y be positive elements and be mutually orthogonal. If (x, Ty) # 0, then
putting y,= (N (x))y and y,=(N (x)*)y, . is belong to N (x)* and y, > 0 by the definition
of N (x). On the other hand, we have N (x)*CN (y)*+*=N(y) from the result N(x)* « N(y)*=

{0} in Lemma 2. Therefore, we have v, € N(x)*CN(y) which contradicts to (H), because 0 <
(v2,Tv2) = (3 Ty,)= 0 and 0< y, - Thus, we get (x,7y)=0 for positive orthogonal elements
x,y in X. For any orthogonal elements x,v in X, we obtain ( | x| ,7 | ¥| )=0 so that the values
(x*, Ty")(x, Ty"), (x~,Ty") and (x~, Ty") are all zero by the positivity of 7. Consequently, we
get the disired result (x, 7y)=0 by the linearity of 7.

In the following, we shall give a proof of the theorem as aforesaid.

We define a functional [+, -] on XXX as

xy) =0 Ty)+(3,Tx) )2 for xyeX.

We can see first that the Schwarz's inequality

oy (x3)? = (xx) (1Y)
is satisfies. If X is one dimentional, then the equality holds in (1). Therefore, let X be at least
two dimentional. It is enough to prove for linearly independent x, y in X. Since x+ Ay # 0 for
every real A, by (H), we have (x+ Ay, T(x+Ay) ) + 0. Now, by a simple caluculation, it follows
that (x+ Ay, T(x+Ay)= (% x)°+2X (x, ¥) + (3, ¥)? and it holds a definite sign for A.
Consequently. we have (x, v)*—(x, 2)(v, ) < 0, because (x, x) and (¥, ») are both non-zero
by (H). Thus. the Schwarz's inequarity is proved.

Let x be a non-zero element in X. Taking a positive element v in X such that x, y are
linearly independent, the above ineqgality (x, ¥) 2< (%, x) [y, ¥v) and 0 < (y, ¥) yield 0 < [z,
x) . Namely, we have

@ (x, x) >0 forevery 0 = xeX.

The following properties (3) and (4) are evident from the definition of (+, -] .

(3) (x, ) = (3x) for every x, ye X.

4) (-, -+ isa bilinear form on X XX.

Therefore,[ -+, « Jdefines an inner product on X XX and hence X becomes a preHilbert
space.

By Lemma 3, it follows that for any xe X, (x*, Tx~) =(x~, Tx*)=0 so that (x, Tx)=(] x|
, T| x| ). Therefore, we have

() (v, 2) = (x|, {x]] for each xe X,
and the norm x| =[x, x)* has the property
(6) Nl =11 for each x X.

By this fact, X becomes a normed lattice in the sense of Nakano (2] .
Lemma 4. Each element | in the ovder dual X' is a norm bounded linear functional on X.
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Proof. Let f be a positive linear functional. Putting u= 7! f, u is a positive element in
X. Then, by (1), we have | (x, /)| = | (x, Tu) | (| x|, Tu)=( ] x|, u) £ | x|} «] for every
x in X. This shows that f is norm bounded. For any f in X’, the norm boundedness of f is
evident, since f 1s always represented as difference of two positive elements /™ and /7, 1. e,
f=/*—f"in X'. (Cf.see (3,p.27))

Lemma 5. The space X is complete with respect to the norm induced by the inner pro-
duct [+, -+

Proof. First, we shall show that the norm is continuous, i. e., @, € X (#=0, 1,+-) and a, | 0
implies lim]@,|=0. Under the assumption, we have, by Lemma 1, inf{(a,, Ta, ; n=1,
2.} =0and 0 £ (an, Tan) = (a1,Ta,) for every n. Therefore, we have lim|a,|=0 by the
definition of the norm. Next, we shall show that the norm is monotone complete, i.e., if 0 <
an?,a,€Xand sup {|a.] ; n=0, 1,..} < +oo, then there exists an element ¢ X such that
ant a. For each positive element x in X, {(x, Ta,} is a non-decreasing and bounded,
because 0= (x, Tan) <(x a,) < (x| |@.{)"2< +00 by (1). Therefore, there exists the limit (x,
f) such that lim (x, Ta,)=(x, f). For any x in X, putting (x, /)=(x*, /)—(x~, f) we get a
positive linear functional f on X by Nakano(2, Theorem 18.2). If we put #=T""' f we have
an = u for every n and hence there exists an element ¢ in X such that ¢, 1 a since X is
Dedekind complete. Thus, the norm is complete by Nakano's theorem (2, Theorem 30. 17)
on the normed lattice.

We have shown that X is the Hilbert space with the inner product( -, - ). Finally, we
shall show that the inner product ( -, - ) satisfies the properties (a) and (b). The property
(a) is shown from the definition of (-, - ). Let / = o be an element in X’. Since f is norm

bounded by Lemma 4, there exists an element « in X such that (x, /) =(a, x)for every x in
X by the Riesz’s representation theorem. From the positivity of f, we have 0 <(a, xJ=(a",
x) — (a~, x] for every positive x in X and hence 0 < (¢~, 27) < (¢*, a~) =0 by Lemma
3. Thus, it follows that ¢~ =0 from (2) and hence a=«* = 0. This shows that the property (b)
is satisfied. The proof of the theorem is completed.

(Recived May. 20, 1977)
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