<table>
<thead>
<tr>
<th>著者</th>
<th>緒方 隆憲</th>
</tr>
</thead>
<tbody>
<tr>
<td>原タイトル</td>
<td>ON AREAL SPACES BASED ON THE FUNDAMENTAL FUNCTION F = (\frac{1}{f})</td>
</tr>
<tr>
<td>雑誌名</td>
<td>Memoirs of the Muroran Institute of Technology. Science and engineering</td>
</tr>
<tr>
<td>巻</td>
<td>35</td>
</tr>
<tr>
<td>頁</td>
<td>121-124</td>
</tr>
<tr>
<td>年</td>
<td>1985-11-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10258/1082</td>
</tr>
</tbody>
</table>
ON AREAL SPACES BASED ON THE FUNDAMENTAL FUNCTION $F = \alpha^2 / \beta$ (I)

by

Takanori IGARASHI

Abstract

We consider the necessary and sufficient condition for a sufficient for a special areal space $A_{m}^{(0)}$ to belong to the semi-metric class.

§ 0. INTRODUCTION. In the Finsler geometry, a Finsler space with (α, β)-metric is, as well known, a space of which fundamental function is given in the form

$$(0.1) \quad F(x, p) = f(\alpha, \beta), \quad \alpha = [\det (a_{ij}(x)y^{i}y^{j})]^{1/2}, \quad \beta = b_{i}(x)y^{i}$$

where $a_{ij}(x)$ is a Riemannian metric and $b_{i}(x)$ is non-zero covariant vector.

We know, as typical (α, β)-metrics, so-called Randers' metric $F = \alpha + \beta$

$[1]^{(*)}$, and Kropina's metric $F = \alpha^{2} / \beta[2]$. On areal spaces $A_{n}^{(m)}$, G. T. Bollis [3] gave metric $F = \alpha + \beta, \quad \alpha = [\det (g_{ij}(x)y^{i}y^{j})]^{1/2}, \quad \beta = b_{i}(x)y^{i}$, where $g_{ij}(x)$ is a Riemannian metric and $b_{i}(x)$ is a skew-symmetric tensor.

Recently, the author [4] treated an areal space $A_{m}^{(n)}$ equipped a fundamental function in the form

$$(0.2) \quad F = \alpha^{2} / \beta, \quad \alpha = [\det (a_{ij}(x))]^{1/2}, \quad a_{\lambda \mu} = a_{ij}(x)y^{i}y^{j}p_{\lambda}p_{\mu}, \quad a_{0i} = a_{i0}, \quad \beta = \epsilon \lambda \mu b_{\lambda \mu} / 2, \quad b_{\lambda \mu} = b_{ij}(x)y^{i}y^{j}p_{\lambda}p_{\mu}, \quad b_{ij} = -b_{ji}$$. In that paper, the main result which we obtained is such that

THEOREM. When a fundamental function of an area space $A_{m}^{(n)}$ is given by (0.2), then the following two conditions are equivalent:

(i). $A_{m}^{(n)}$ is of semi-metric class.

(ii). The relation $(\rho_{i}^{(a)} - \sigma_{i}^{(a)}) (\rho_{j}^{(b)} - \sigma_{j}^{(b)}) = 0$ holds good.

However, it was found that the above theorem holds good, even if we rewrite β as $\beta = [\det (b_{\lambda \mu})]^{1/2}$, what we give from now on.

§ 1. PRELIMINARY. We consider an n-dimensional areal space $A_{m}^{(n)}$ based on the notion of the m-dimensional surface-element p.

Let (x') be local coordinates and (p') be local representations of p. In this paper, Latin indices

\ast) Number in brackets refer to the references at the end of the paper.
run over 1, 2, ..., n; Greek indices over 1, 2, ..., \(m \); where \(1 < m < n \), and we adopt the Einstein’s summation convention. Other notations and terminologies are employed as same as those of the work of A. Kawaguchi [5].

We put a fundamental function of \(A^{(m)} \) as

\[
F(x, p) = \frac{a^2}{\beta}
\]

(1.1)

Next, we define a Legendre’s form of a function \(\varphi (x, p) \) as follows;

\[
L_{i}^\alpha (\varphi) = (\ln \varphi)_i^\alpha - (\ln \varphi)_i^\alpha + (\ln \varphi)_i^\alpha
\]

(1.3)

where the notation \(;^\alpha \) means the partial differentiation with respect to \(p^\alpha \).

Differentiating (1.2) by \(p^\beta \), we have

\[
\alpha_i^\beta = (1/2) a_a^\lambda b_{\lambda \mu} a_{\mu i}^\beta
\]

(1.4)

and analogously on \(\beta_i^\alpha \).

PROPOSITION 1.

\[
\rho_i^\alpha = a_{\alpha \beta} a_{ib} p^b_i, \quad \sigma_i^\alpha = b_{\alpha \beta} b_{ib} p^b_i.
\]

Proof. From (1.4), it follows

\[
\rho_i^\alpha = (1/2) a_a^\lambda b_{\lambda \mu} a_{\mu i}^\beta
\]

= (1/2) \(a_a^\lambda a_{hk} p^b_i p^b_k a_{\lambda i}^\beta \)

\[
= a_{\alpha \beta} a_{ib} p^b_i.
\]

PROPOSITION 2.

\[
\sigma_i^\alpha = -a_{\alpha \beta} a_{ib} p^b_i
\]

(1.6)

Proof. It is sufficient that we do with \(\rho_i^\alpha, \sigma_i^\alpha \). Differentiating \(\rho_i^\alpha \) by \(p^b_i \) partially, we have

\[
\rho_{ij}^\alpha = (a_{\eta \xi} a_{ib} p^b_j)_{\eta} = a_{\eta \xi} a_{ib} p^b_j + a_{\eta \xi} a_{ib} p^b_j a_{\xi p} \delta_{ij} + a_{\eta \xi} a_{ib} p^b_j = \delta a_{\eta \xi} a_{ib} p^b_j + a_{\eta \xi} a_{ib} p^b_j a_{\xi p} \delta_{ij}.
\]

substituting the relation

\[
a_{\eta \xi} a_{ib} p^b_j = (a_{\eta \xi} a_{ib} p^b_j)_{\eta}^{-1} a_{\eta \xi} a_{ib} p^b_j = (a_{\eta \xi} a_{ib} p^b_j)_{\eta}^{-1} a_{\eta \xi} a_{ib} p^b_j.
\]

into the above representation, we can rewrite as follows:

\[
\rho_{ij}^\alpha = -a_{\eta \xi} a_{ib} p^b_j a_{\xi p} \delta_{ij} = -a_{ib} p^b_j a_{\beta \gamma} \delta_{ij} = -a_{ib} p^b_j a_{\beta \gamma} \delta_{ij}.
\]

About \(\sigma_i^\alpha \), we can obtain the right hand analogously. Q.E.D.

Then, with use of Proposition 1 and 2, we can represent the Legendre’s forms of \(\alpha \) and \(\beta \) such that
ON AREAL SPACES BASED ON THE FUNDAMENTAL FUNCTION $F = a^2/\beta$ (II)

(1.7) $L_{ij}^{\alpha\beta} |\alpha| = (l_{ij})^{\alpha\beta} + (l_{ij})^{\alpha\beta} = \rho^{\alpha\beta} + \rho^{\alpha\beta} a$

If we define tensors $a_{ij}(x, p)$ and $b_{ij}(x, p)$ as

(1.9) $a_{ij} = a_{ii} - a_{i} a_{j} \sigma^{\gamma} \rho_{j} \hat{\sigma} \rho_{j}$, rank$(a_{ij}) = n - m$,

then we have:

PROPOSITION 3. Legendre's form of a and β are given in the form such that

$L_{ij}^{\alpha\beta} |\alpha| = a^{\alpha\beta} a_{ij}$, $L_{ij}^{\alpha\beta} |\beta| = b^{\alpha\beta} b_{ij}$.

§ 2. RESULTS. First of all, we show:

PROPOSITION 4. The Legendre's form of the fundamental fundamental function given by

(1.1) together with (1.2) is

$L_{ij}^{\alpha\beta} [F] = 2 L_{ij}^{\alpha\beta} [a] - L_{ij}^{\alpha\beta} [\beta] + 2 (\rho^{\alpha\beta} \sigma^{\gamma}) (\rho_{j}^{\gamma} - \rho_{j}^{\gamma})$.

Proof. Starting from $F_{ij}^{\alpha\beta} = (a^{2}/\beta)^{\alpha\beta}$, we rewrite the quantity $p_{i}^{\alpha\beta}$ defined by $p_{i}^{\alpha\beta} = (\ln F)^{\alpha\beta}$ as

(2.1) $p_{i}^{\alpha\beta} = p_{i}^{\alpha\beta} = 2 a^{\alpha\beta} a_{ij} - 2 a^{\alpha\beta} a_{ij} - 2 (\rho^{\alpha\beta} - \rho_{i}^{\alpha\beta})$.

by means of (2.3). Applying (2.6) to the fundamentenal fundamental function F, we have the Legendre's form of F such that $L_{ij}^{\alpha\beta} [F] = p_{ij}^{\alpha\beta} + p_{ij}^{\alpha\beta} p_{ij}^{\alpha\beta}$, to which we substitute (2.1), then it follows;

(2.2) $L_{ij}^{\alpha\beta} [F] = 2 \rho^{\alpha\beta} - 2 (\rho^{\alpha\beta} - \rho_{i}^{\alpha\beta}) + 2 (\rho^{\alpha\beta} - \rho_{j}^{\alpha\beta})$.

With use of (2.2) and Proposition 3, we can conclude this proposition. Q.E.D.

By means of the symmetry of $a^{\alpha\beta}$ and (1.7) (respectively by means of antisymmetry of $b^{\alpha\beta}$ and (1.8)), we obtain:

PROPOSITION 5. The symmetric part of a (resp. β) satisfies the relation

$L_{ij}^{\alpha\beta} [a] = a^{\alpha\beta} a_{ij}$, (resp. $L_{ij}^{\alpha\beta} [\beta] = 0$).

From this proposition, it yields:

PROPOSITION 6. The symmetric part of the Legendre's form of F satisfies the relation

$L_{ij}^{\alpha\beta} [F] = 2 a^{\alpha\beta} a_{ij} + 2 (\rho^{\alpha\beta} - \rho_{i}^{\alpha\beta}) (\rho_{j}^{\alpha\beta} - \rho_{j}^{\alpha\beta})$.

An areal space in which the relation $L^{\alpha\beta}_{ij} [F] = g^{\alpha\beta} g_{ij}$ holds good is said to be of "semi-metric class", where $g_{ij} = a_{ij} - a_{i} a_{j} \rho_{i}^{\alpha\beta} \rho_{j}^{\alpha\beta}$, rank$(g_{ij}) = n - m$, and $g^{\alpha\beta}$ is symmetric.

Now, in conclusion, we obtain the following theorem which is the same in appearence as the theorem in [4].

THEOREM. When the fundamental function of an areal space $A^{(m)}_{n}$ is given by (1.1) together with
then following two conditions are equivalent.

(i). \(A^{(m)} \) belongs to the semi-metric class.

(ii). The relation \((\rho_i^{\alpha} - \sigma_i^{\alpha})(\rho_j^\beta - \sigma_j^\beta) = 0 \) holds good.

Especially we have

COROLLARY. When the fundamental function of an areal space \(A^{(m)} \) is given by (1.1) together with (1.2), in addition, when the relation, when the relation \(\rho_i^{\alpha} = \sigma_i^{\alpha} \) holds good, then the space \(A^{(m)} \) belongs to the metric class and it is conformal to the Riemannian space whose metric is \(a_{ij}(x) \).

Proof. Substituting the relation \(\rho_i^{\alpha} = \sigma_i^{\alpha} \) into (2.2), we have \(L_i^\beta \ L^\alpha_j = 2 a^{\alpha\beta} \ a^{\nu\nu} \) what explains that \(A^{(m)} \) belongs metric class. Moreover, from \(\rho_i^{\alpha} - \sigma_i^{\alpha} = (\ln \alpha / \beta) \), \(\sigma_i^{\alpha} = 0 \), it yields \(\ln(\alpha / \beta) = c(x) \).

Putting \(c_0(x) = \exp(c(x)) \), we have \(F = a^{2/\beta} = c_0(x) \ a = c_0(x) \ \det(a_{ij}(x) \ p^i \ p^j)^{1/2} = \det(\tilde{a}_{ij}(x) \ p^i \ p^j)^{1/2} \), where \(\tilde{a}_{ij}(x) = \exp((2/m)c(x))a_{ij}(x) \), it shows the conformality.

REFERENCES

