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Summary

A theoretical expansion of mathematical models of the cardiovascular system are developed. We established a
distributed parameter model of the arterial system. In this paper we have deduced the blood flow velocities in
the longitudinal and radical direction based mainly on the Womersley theory. Neglecting the non-linear terms
(the convective acceleration terms) in the Navier-Stokes equation and setting linear cyclic solutions, the N-S
equations were reduced to the Bessel type ordinary differential equations. By utilyzing the Stokes stream func-
tion, the equation which input pressure satisfy was proved to be a Bessel type differrential equation. Applying
the Bessel type pressure function to the linearlyzed N-S equation, a strict form of the solution of the blood flow
velocities were obtained. these solutions were confirmed to ‘satisfy the conservative law of mass.

To ensure whether these solution satisfy the Stokes stream function another process was used to obtain the
blood flow velocities. Turning to the stream function and differentiating directly of these functions also induced
a series of solutions which are identical with the solution that were obtained by solving the Bessel type N-S
equation. By these strict mathematical process, linear solutions of the blood flow velocities were obtained. To
simplyfy the system and problems we made some assumptions and we have discussed the validity of these

assumptions within the range we concern.

Introduction

It is important to correlate the biological phenomenone and their interactions quantitatively. In

such a stand point, the cardiovascular system is one of the most suitable subject for such analysis.

Especially to represent the pulse wave transmission phenomenone in human arterial system gives

much advantages for understanding the control mechanisms of the circulatory system. Furth-

ermore in the pathophysiological state especially for the congestive heart failure or the trans-

plantation of the heart, it should be analyzed that the interaction and feed back control mechan-

isms of pulse wave conduction which should appear dynamically between the heart and the

peripheral circulation.

To satisfy such requirement, mathematical or physical models of the circulatory system have
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been presented. For the arterial system, beginning with Witzig (1914), the essential and pioneer-
ing work of the elastic tube theory have been expanded by Womersley (1958) [1]. On the other
hand the physical electrical model also have been constructed elaborously. at the same time and the
basic model was completed by the group of Westerhoff and Nordergraaf (1967) [2].

The mathematical model can be classified into 3 categories on the basic of common feautuers of
assumptions. The first group is the thin walled model which is based on the membrane theory.
Morgan (1954), Womersley (1954) [3], Klip (1962), Atabeck (1968), and Chow (1967) partici- -
pated in this type of model.

The second group is the thick walled model. Klipp (1967), Mirsky (1967), Cox (1969), Jager
(1966) [4], Whirlow (1965), concerned this field of model. The last group is the longitudinal
tethering model and is consequently indentical with the rigid tube model. Witizg (1914), Womers-
ley (1958), Taylor (1959), Jones (1969) dealed with this model.

Althought precise and complicated models have been presented by these researchers, they con-
cerned only with the pulse wave velocity or the transmission efficiency. What we should make
clear is how transmission phenomenone can be represented or revealed realistically. Yet these
problems are solved.

About for the physical models, kind of electrical or hydrodynamical analog have been con-
structed. By connecting many condencers or registances, the blood flow waves can be simulated in
the arbitrary precision. To increase the approximation, one can reinforce the elements of the cir-
cuit and further complex circuit can be easily constructed. However the biophysical significances
of each elements embeded in the circuit would become obscure [5].

Because of the histhero mentioned grounds, there exists a reasonable necessity to establish a
comprehensive and easier recongnizible mathematical model. It is a vital necessity for the purpose
of analyzing the effects of changes of the arterial wall and blood properties on the arterial blood
flow. -

In the series of these papers, we have constructed 3 basic models about the cardiovascular sys-
tem, the distributed parameter model of the arterial system, the exponential paramerter model of
the aortic arch, the lumped circuit model of the total systemic circulation.

In these three models we firétly show the theoretical expansion about the distributed parameter
model of the peripheral arterial system which is based mainly on the transmission line theory in 4
steps.

Then we reveal how it does express the pulse wave transmission phenomenone in time and

space domain realistically and the effects of changes in the biophysical parameters of the arterial
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wall and blood on the blood flow parameters. In this paper as the first step for the mathematical
expansion, we have deduced the strikt form of the blood flow velocities from the linearlyzed

Navier-Stokes equations by two different solution process.

MATHEMATICAL EXPANSION-1

To represent the pulsatile flow through a distensible tube mathematically,it is necessary to obtain
sets of equations which include not only the blood properties itsself but also the mechanical prop-
erties of arterial wall

For the purpose of such requirements. the equation about the blood flow dynamics and wall mo-
tion should be given independently. Then those equations must be associated by setting the adequ-
ate boundary conditions. In this chapter we reduce the blood flov velocities from the Navier-

Stokes fluid dynamic equations.

Before solving the equations, we have made following assumptions about the blood properties
and the geometric characters of the vessels.

1. The blood is Newtonian and incompressive.

2. The blood viscosity is independent of blood shear rate. haematcrit, body temperature, blood
flow velocity nor internal radius of the artery.

3. The blood flow contains only laminar flow. The tangential blood flow velocity is very small and
the secondary flow. nor turbulence exists.

4. The abnormal viscosity does not exists.

5. The effects of the entry zone are negligible.

6. The sllipage between the blood and the vessel wall at the innner surface of the wall does not
exists.

7. The vessel is straight, cylindrical, and axisymmetric.

8. The biophysical properties of the vessel wall are constant and independent of the distance from
the entry zone.

9. There exists no tapering of the vessel and no leakage flow.

10. The effect of the gravity is negligible.

1] The fluid dynamic equations of the blood flow.

The movements of the blood in the closed space especially in the cylindrical tube as a vessel are
expressed in the Navier Stokes equations. In the cylindrical coordinates, the blood flow velocities
satisfy following equations.

For the longitudinal direction
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+ Vr + Vz
at ar az

aVz aVz aVz — aP a®Vz 1 aVz a?Vy
4 [ + H [ - +

7z~ + 2] (1)

az ar ar az

For the radial direction

aVr aVr aVr aP
P[ + Vr + Vz JZ——+F‘[
at ar az

a?Vr
2

i aVr a2Vr Vr
ar r

+ ar + az? _7] 2

The variables and parameters are defind as followings
Vz : the instantaneous blood flow velocity parallel to the vessel axis. (the longitudinal blood flow -
velocity.)

Vr : the instantaneous blood flow velocity along the radial coordinates. (the radial blood flow
velocity.)

Z : the longitudinal space coordinates.

r : the radial space coordinates.

p : the internal pressure.

P : the blood density.

# : the blood viscosity.

The left sides of the equation 1,2 are in the form of unit mass(# ) multiplied by the acceleration
DV/Dt which mean the internal force in the longitudinal direction and the radial direction respec-
tively. To balance such forces, two forces are given in the right hand of these equations. these are
the pressure gradient along the axis ap/ az and along the radius ap/ ar.

Furthermore the viscous retardation force (the frictional force) contributes. In general, for the
case of dynamically moving fluid, the stress changes parallely with the velocity of the deformation
of the fluid, that is the shear rate of the biood flow.

Assuming there exists no leakage flow, the conservative law stands.

Then continuity equation is given as following.

a (PVrkr) +L a(pPVe) " a (pPVz) —0

1
+T ar r af az ©)

at

We also assume the incompressibillty of the blood, the blood density does not change with time.

Then the eq 3 is reduced as following.

aVr Vr aVz
+ —+

ar r az

—0 | (4)
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Since we concern only in the linear system, we seek the linear solutions for this system. There-
fore these above mentioned non linear partial differential equations should be linealized. Assuming
that the effects of the convective acceleration terms such as

aVz aVz aVr . aVr
Vr ,Vz ,Vr ,Vz

ar az ar az

on the flow velocity are negligible, we linealized the equ 1 2 to following form.

aVz 1 aP ¢ ( a%Vg b oavz aZVz] 5
at P az o az? r ar ar? ()
aVr 1 aP _fL{ a®Vr 1 aVr | a?Vr __VL] 6
at L ar P az?® r ar ar? r? (6)

A ] The induction of the equation which satisfy the input pressure P.
Before solving the linealized N-S equations, we should obtain the functional form of the input
pressure P.
Define the Stokess stream function ¢ which satisfy the continuity equation 3 as following. [6]
L ay 1 ay

Vi=—— = 7) Vr=-—- - (8)

For the sake of obtaining the relation between and P, we input equ 7 into equ 5, then

a (—1 a¢ ] a2 ( —1 a¢ 1 «a —1 a¢ a®? (-1 a¢
3 )= e J*var J+ = )
at r ar 4 az r ar r ar r ar ar r ar
_ 1 P

P az

# (1 a 2¢ 1 (1 a¢ 1 a?¢ a (1 a¢ 1 a%¢
T A IR E - e & PR U N

14 r ar az r r ar r ar ar r ar r ar
_ 1 ap

P az
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? (1 a a?¢ 1 a¢ 1 a?¢ 1 o3¢ 1 aP
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We also input equ 8 into equ 6, then,

a (1 a¢ #( a® (1 a¢ 1 a (1 a¢ a? (1 a¢ 1
e R
atl r az 14 az r az r ar\r az ar r az r
1

£ ar

# (1 a®¢ 1 1 a¢ 1 a?¢ a 1 a¢ a?¢
O

P r az r r az r araz ar r az r araz
_ 1 a$) 1 aP

3 az P ar
_L[Lﬂ_i op 1 @Y 2 ap 1 a9 1 oy
T e lr & P oaz r? araz r? az r? araz r? araz
1 d¢ 1 af
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2 (1 &3¢ 1 a%¢ 1 a3y 1 aP
=7 | 3T T2 +— Z | T T,

4 r az r° azar r azar P ar
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az az r ar ar?

It

then we get equ 9, equ 10,

2

1 a?¢ 21 a [a2¢ 1 a¢ a’y 1 aP
= -~ L = + = ]
r 14 az r ar ar

- o Tar (10)

Next step we eliminate P in equ 5, equ 6 by differentiating equ 5 with respect to r and diffren-

tiating equ 6 with respect to z. firstly we differentiate equ 5 from left side.

a aVz]__La aP]_i_i a3V2+a3VZ__1_a'VZ+La2VZ
ar at J P ar | az e\ azlar ard r?  ar r ar?
-1 a[aPJ_i_/l a? 1 «a a? 1] aVz
T e ar | az P [azz r ar + ar? r2 ar (11)
Differentiate equ 6 from lift side.
_a[aVrJ_—l a[aP] Y2 a[az\/r a[l aVr a[aZVr
az et ) P az | ar P | az az? ] az \r ar ]+ az ar? J
v [l&]
az | r?
—1 a aP yZ3 a? 1 a a? 1 aVr
- P az [ ar ] +—P_[ aZZ TTI’ arz ——I'T] ’ az (12)
Subtracting both sides of equations each other, we get
& _#(L 1 a a1 aVr _ aVa) _
at P [ az? r ar ar? rz] az ar )0 (13)

By equ 7 and equ 8, then second factor in equ 13 is
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aVr aVz 1
az ar r

2 2

az r ar ar

o2 2
¢ ia¢+a¢] (14)

Inputting equ 14 into equ 13, we obtain,

af® 1 a¢ a?¢ 3| _
aZ "t ar T a ”_0 (15)

at az® ar ar? r? r

a y2] a? l «a a? 1 1
N RN A S S | RS
P r

The second factor in equ 15 can be modified as following by recognizing the meaning of the dif-

ferential operator (this step of the mathematical treatment is refered in the appendix)

a © o a? 1 a a? 1 a? 1 «a a? 1| ¢
B il B e | e e B
at P az r ar ar r az? r ar ar r r
(16)
Define the spatial differential operator as
p=,pte @ 1 17
o r ar arZ T 2 (17)
Then we can get the simple operator equation.
a y23 ¢ _
(at_PD) D-=m=0 (18)

Here we assume that eq 18 can be given by summing two independent solutions ¢; and ¢, as,
Y=¢1+ ¢,

Then either ¢1 or $2 must satisfy either of those equations.
a “
(w0 (G- goh e

Operating these differentiations by eq 17, next equations are induced.
a?¢, 1 a¢, a®¢,
— —_ + rZ

azz _T ar a =0 (19)

a®¢, 1 a¢, a’¢, P ayy
az?  r  ar + ar? ¢ at =0 (20)
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Summing equ 19 and equ 20 abd utilizing the relation ¢ = ¢1+ ¢, , then

)

2 2 a
@9 _1ap &Y _ o ay o)

az? r ar ar? T ¢ at

Inputting equ 21 into equ 9 and equ 10

_Lﬂ_iii[_iwz]__iap 09
r arat P r ar £ at )] P az (22)
iﬂ_LLL[L“¢2]__L aP 3
r azat P r az M at - P ar ’ (2)
Because of ¢1=¢ — ¢, , then equ 22 and equ 23 are
P a*$,  aP
r arat - az (24)
P a? aP
_ P e _ aP (25)
r azat ar

To eliminate ¢;, multiplying r both equations in each sides and differentiate equ 24 with re-

spect to r and defferentiate equ 25 with respect to z, then

S )=

az az ar ar

Therefore the partial defferential equation which include only function P is

=0 | (26)

B. The solution of the equation which satisfy P.

As P is the cyclic function which depends on the cardiac rhythm, we assume the linear cyclic solu-

tion as in the following form,
"P=P(r)*exp|in*(t—z/c)} (27)
n : the angular velocity n=2 7 f
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¢ : the pulse wave velocity

1: imaginary unit.

Which means one can separate the solution into time and space domaine and these quantities
should have no interaction. ‘ )

Inputting equ 27 into equ 26, equ 26 is reduced to the O order bessel type differential equation
of P (r).

d2P(r) 1 dP(r) n?
w2z vt &~ zPn=0 (28)

As the limitting case r-0, there exists a finite solution. So the second order solution should be

discarded. Then one can easily obtain the solution as
P(r)=1J(@%n*r/c)
" Therefore P can be given in the form as,
P=A, Jo(inc/r)*exp(i*n*(t—z/c)) (29)

cl Thev solutions of the linearlized Navier-Stokes equations
Assuming the linearity of the arterial system, then the frequency of the input and output must
be idential. Consequently the blood flow velocities Vz, Vr can be written in the form simmilary as

input pressure,

Vz=w (r)*%exp li%kn*({t—z/c) (30)
Vr=v (r)%exp li*kn*(t—z/c) (31)
P=P(r)%exp li*n*t—z/c)

Inputting equ 27, equ 30, equ 31 into equ 5, 6, then

inw = 10 +_/i[azv+iaw+[—in]z )
MW= T PO T e T C W (32)
Lo =Ll aP@) 4 (a*V 1 aV —in 2 v

V=g T+ [ e +[ C ] V—?] (33)

Which is the equations including variable r only.

The continuity equation 4 also should be modified into following form
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+—+W——=0 (34)

Rearranging equ 32, then

a’w 1 aW pin . —in \ 2 1 p ( —in
ar? T Tar —[ 7 —[ J ]W‘TT[ C ]P“) (35)

Which is the Oth order Bessel type differential equation. In general about for the Bessel type

equation as
Y'+Y/z—(B*+ v¥HY =0

The finite converging solution is Y=]J v (i 8 z)

Therefore in equation 35, putting

2 inp _Iiz_

Then the solution of the equ 31 is

Wi =ClJo(iBr)

C1 : integral coefficient

on the other hand the specific solution is

- B*W,=

(e

|-

Therefore utilizing equ 29,

in inD J, (inr/C) ‘
W2=—2—P<r)=’ﬁ+#c— (37)

"Then the general solution is

inD Jg (inr/C)

,W‘_‘ClJo(i:@r)"‘W (38)

As for the radial direction V, simillary rearranging the equ 33
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aP (r)

ar

a®v 1 aV £ in —iny2 1
+ - —[ ] + (39)

1 »p
P z]V“T#

ar r ar

Utilizing equ 36, equ 39 is-converted into 1st order bessel type differential equation. The solu-

tion of it is given as

Vi(r) =Cz2J1(iBr) (40)

C2 : integral coefficient.

As for the P (r) = D % Jo (i ¥ n % r/c), (here the integral coefficient is redifined as D instead of

Al). According to the formula about the differentiation of the Bessel function,

dZv(r) v ’ .
o -7 +1(r)
Then,
dP(r) in .
I —-D ?Jl (inr/C)

Therefore the specific solution is given as

_ . in J; (inr/C)
Vz=D C —/«lﬂz (41)

Then the general solution is

Din ], (inr/C)

V=Czh(iﬁr)+TWZ— (42)
Now we set.
i*a?n ]
IZOZ = Y = 13 dz Vv = 7 (43)
ina
Bo= < (44)

a : the Womersleys coefficient.
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a : the internal radius of the artery.

inP

since n?/C = 0 , then B2 = e (45)
Then
Din _ Dﬂo a
CHBZ = Hagl ‘ (46)
) i3 ne i3 nz 124 aoz ﬂoz 1
if= 7 * c? ] o [ az T a2

(the pulse wave velocity C is 13-18m/sec in human arterial system).

By utilizing the @g and B¢ , changing the intégral costants C1, C2, D into Al, A2, the solution

38, 42 are expressed in the following

v (ag® + Bo?)”* (ag” + Bo°) % r A1 Bea [ ﬂor]
W=Va=4z aglo(ay) a Hoay? *Jo | a
*explin(t—z/c)l| (48)

_ Bo [(0‘02+ Bo*) % r AP a [ L] n
Vr = Az “oJo(“o)h a Hag h /30a *explin(t—z/c)]

(49)
, r
P=A]p [ ﬁ:] *exp|in(t—z/c)}
Now the coefficients are normalized by « Jo ( ag).
Since n/c =0, so by equ 43 and equ 44, then @o®+ By’ ay?
Putting r/a=r/R=y and i%n%a/c=k, then we get the following form of solutions.

_ Jo (agy) ﬂ ina a
Vz = AZ JO(aO) P C i3 a2 JO (kY) (51)

_ 4 Bo Jilay) @ kA,

Vr = A, ay Jo(ag) 7 Bal J1 (ky) (52)
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If one redifines Ay B¢/ @g=Cy , this form is idential with what Womersley had induced.

D. The satisfactory condition for the conservative law.

As those solutions and equations are based on the Stokes stream function, as mentioned in eq 7,
8 which had been assumpted to satisfy the conservative law eq 4, eq 51 and 53 should be ex-
amined whether the continuity equation 4 satisfy. The continuity equation should be converted

into

d(Vry) inR

1
7 dy < Vz (53)

Utilizing the differentiation formula of the Bessel function for equ 52

dly(agy) Ji(agy)
—_— T = a —_—a
dy . JO( OY) agy 0
We now put
A
2 Po =C,
Q

Then the left side of the equ 53 becomes

Cy _ Ji(agy) )y RkA, _ Ji(ky) Ji(agy)
e [ @ (eoy) = 20— SR (ko ky) o R

RkA, J; (ky) ayJo(apy)  Rk?A .
T uPaly = (e~ aTar o) (54)

and the right side of equ 53 reduces to

inR =~ Jo(apgy) inR  inR?
C 2 JO(aO) - C #Ci3a2 AIJO (kY)

The equation 54 and and 55 should coincide. Therefore the coefficients of Jo (@ y), Jo (k*y) in
both side should be idential. Then
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&_ inR  inR __inR
A,  Cay  Cai?2: kK=7¢ (56)

This is exactly what we have put k=i%n % a/c. Therefore equ 51 and equ 52 satisfy.the con-
tinuity equation 4. ’

Assuming n/c — 0, the approximation formula for the Bessel function reduce the term Jo (i% n
*R/c) approaches to 1 and J; (n* R % y/c) reduces to n* R % y/2c.

Ultimately the blood flow velocities are given as followings

— 5 Jolagy) A

Va= A (57)
_ inR 2]1(010)’) A,

Vr= 20 A2 a5 (ay) T Y pC (58)

a : the Womersleys coefficient

E. Another solution of the blood flow velocity by the Stokes stream function.
In equ 19 and equ 20, assuming that the two stream function ¢ and ¢ is separable in time

and space domaine, one can express the solution in the linear form as

$1:F(r)*explikn*({t—z/c) (59)
$2:G(r)kexpliknk(t—z/c) (60)

Inserting equ 59 and equ 60 into equ 19 and equ 20,

e e A ©b
d2G 1 dG n? inp
a? " rdar 28T T 650 | (62)

Putting F=r*f (r) and G=r* g (r) and simple calculation brings us to the following Bessel type
differential equations.
daf 1 df n? 1

o il e A S (69)
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Here we newly defined @ as above and is different from the Womersley coefficient.

Then the solution can be easily attained as

. |
(0)=—=AnLfn =A% (o)

g = =Bhan =81 (i[5 + 20 %)

The J (i * x) is the pure imaginary number, then to have non trivial solution, the coefficiens

should redifined as
A=A %i B=B#*i
Then the Stokess stream function is given as following

$=9¢1+ ¢, =Fr)+G(r)*exp fi*kn*({t—z/c)
=r(A1J1(Br)+ B1]1(iar) *kexplin (t—z/c)

Because of the definition of the equ 7,

1 «a
Vo= — —— ri(AJl(iﬂr)+BJI(iar))] o

r ar

Utilizing the differential equation of the 1st order Bessel function

d,(ifr) _ dL,({Br) difr) _ JiGBr)

dr dign  dr ”[JO(iﬂr)_ iBr ]iﬂ

Then
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Vi= = [ALGAD + Blian + [AOO“M_JI_i(;ﬁ—r))m

+B [Jo(iar)—M] ia ]]

=—Ti[r-iﬁAJo(iﬁ'r) + riaBJO(iar)J

= ABl(fr)+ Baj, (i [ n P ] %r>

[CaR” (66)
As for the radial velocity only, the differentiation with respect to z reduces to
n n )
Vr=A?JI(iﬂr)+B?h(1ar) (67)

As C (pulse wave transmission velocity) is 13-18m/sec in human arterial system, then n/c—0,

and Jo (ifr)—1

iA .
Vz = ‘C" + Bi*f av]o(i¥%a %r)

At the innersurface of the arterial wall, the blood flow velocity attains the finite value

Vz(r=R)=V, Then

Ani
C

Vi = + Bi”* a¥ ] (i¥2a %R)

So the coefficient B is

f Vs — Ani/C
321 —

_ Vk —AniC
Biak =7 xR
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Therefore

Ani
C

Vg = Ani ] Jo (i¥2a %r)

+[vre -2 Jo 7 2 %R)

Here redefine the coefficient and parameter as following

Ain _ Al
< " pC [V*

Ani
C ]: !

R* ak=a y=r/R

Here the coefficient @ idential with womersleys coefficient.
Then the longitudinal blood flow velocity is obtained as
Ay Jo(ai¥?y)

Vz = pC+C1 To (@ 172 (68)

The same procedure bring us to the following equation with respect to the radial blood flow
velocity is
inR 2] (ai¥?y) A,

V=3¢ (O a2, (@7 TV pc

(69)
The eq 68 and 69 are idential with eq 57 and eq 58 respectively.
Therefore the solutions of the linearlyzed Navier-Stokes equation are obtained in the form as eq

57,58 or eq 68, 69.:

APPENDIX
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_L@y 1 ap 20 1 ep 1 at 1 g 29
T r az? r2 ar rd r? ar r ar?® 2 ar 3
_lay 1 1oy
T r o oaz? ar? r? ar

DISCUSSION

In the first chapter of the series of mathematical modeling of the cardiovascular system, we have
developed a distributed parameter model of human arterial system. This papre treated with the
mathematical expansion for the pure blood flow velocities which does not include the arterial wall
properties. To obtain the velocities (which are the solutions of the Navier-Stokes equations), we
made some assumptions about the blood and artery. We discuss firstly the significance of modeling
and the Navier-Stokes equation, then expand the discussion mainly about the blood properties.

I. The modeling of the biological system.

There are several candidates of the models which can express the cardiovascular system. To de-
scribe the effects of the cardiovascular elements on the blood flow two typical models exist.

First is the lumped circuit model in which many biophysical properties of the arterial wall and
blood are gathered together.

The classical but representative model is the windkessel type model as Frank had suggested.
Such model is composed of the reistance and compliance only. So each character of the element
which compose the arterial blood flow and the effects on the flow wave were made obscure. Furth-
ermore it can be seen which component (for example whether arterial wall thinkness or the blood
density) mainly contribute to the change of the total arterial resistance or the arterial compliance.
Of course such lumped circuit model cannt represent the transmission phenomenone even much
elements are incorporated, since this type of model never contains the variable x. However to look

the dynamical system macroscopically and analyze overall behaviour of the large system, the
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