Subspace of Finsler space and Riemannian metrics on its bundle

<table>
<thead>
<tr>
<th>著者</th>
<th>室蘭工業大学 学術資源アーカイブ</th>
<th>室蘭工業大学 学術資源アーカイブ</th>
<th>室蘭工業大学 学術資源アーカイブ</th>
</tr>
</thead>
<tbody>
<tr>
<td>場所</td>
<td>室蘭工業大学 学術資源アーカイブ</td>
<td>室蘭工業大学 学術資源アーカイブ</td>
<td>室蘭工業大学 学術資源アーカイブ</td>
</tr>
<tr>
<td>年度</td>
<td>1995-11-10</td>
<td>1995-11-10</td>
<td>1995-11-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10258/609</td>
<td>http://hdl.handle.net/10258/609</td>
<td>http://hdl.handle.net/10258/609</td>
</tr>
</tbody>
</table>
Subspace of Finsler space and Riemannian metrics on its bundle

Nobuo Mizoguchi

S.Sasaki introduced a Riemannian metric on tangent bundle of Riemannian space. Instead of Riemannian space, we treat subspace of Finsler space. Then, we can construct three Riemannian metrics which are related with E.Cartan's symmetric connection coefficients. We shall investigate relations between them and get conditions of these coincidences.

Let N be an n-dimensional Finsler space with fundamental function F. Hereafter, indices h, i, j, k, l run the range $\{1, 2, \cdots, n\}$ and we adopt summation convention for repeated index. At point with local coordinate (x^i), we consider a tangent vector $x^* \frac{\partial}{\partial x^h}$. Then, $(x^*)=(x^i, x^*)$ yields local coordinate system on tangent bundle TN of N, where indices H, I, J run the range $\{1, 2, \cdots, n, *1, *2, \cdots, *n\}$. Fundamental function F is continuous on TN and differentiable on $U_N=TN\setminus F^{-1}(0)$. Moreover, $F=F(x, x^*)$ is positive on U_N and positively homogeneous of degree 1 in x^*. We put

$$g_{ii} = \frac{1}{2} \frac{\partial^2 F}{\partial x^i \partial x^i}$$

at point (x, x^*) on U_N. Then F satisfies that the matrix (g_{ii}) is positive definite. We denote its inverse matrix by $(g^{ii})=(g_{ii})^{-1}$. The quantities g_{ii} are components of metric tensor on Finsler space N. Now we employ the following notations:

$$C_{ij} = \frac{1}{2} \frac{\partial g_{ii}}{\partial x^j} \; , \; r_{ij} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{ki}}{\partial x^l} + \frac{\partial g_{jl}}{\partial x^l} - \frac{\partial g_{lj}}{\partial x^k} - \frac{\partial g_{lk}}{\partial x^k} \right) \; ,$$

$$\Gamma^i_{ij} = \frac{1}{2} \frac{\partial}{\partial x^i} (r_{ij} x^i x^j).$$
Subspace of Finsler space and Riemannian metrics on its bundle

\[\Gamma^{\mu}_{\nu} = r^{\mu}_{\nu} - g^{\mu \nu} (C_{\mu \kappa}^{\nu} \Gamma^{\kappa}_{\nu} + C_{\kappa \nu}^{\mu} \Gamma^{\kappa}_{\nu} - C_{\mu \nu}^{\kappa} \Gamma^{\kappa}_{\nu}) . \]

The quantities \(\Gamma^{\mu}_{\nu} \) are E.Cartan's symmetric connection coefficients. We shall often use the well known identities

\[C_{\nu} x^{\nu} = 0 , \quad \Gamma^{\nu}_{\mu} x^{\nu} = 0 , \quad \frac{\partial \Gamma^{\nu}_{\mu}}{\partial x^{\nu}} x^{\nu} = 0 \]

and others.

Let us consider an \(m \)-dimensional subspace \(M \) of \(N \). Space \(M \) with restricted function \(F \) is also a Finsler space. We assume that indices \(\alpha, \beta, \gamma, \delta, \epsilon \) run the range \(\{1, 2, \cdots, m\} \) and that indices \(A, B \) run the range \(\{1, 2, \cdots, m, *1, *2, \cdots, *m\} \).

We introduce local coordinate \((u') \) on subspace \(M \) and attendant local coordinate \((u'^*) \) on tangent bundle \(TM \). Now, subspace \(M \) of \(N \) is locally expressed by \(x^i = x^i(u) \). We denote the components of projection tensor on \(M \) by

\[B^{\nu}_{\lambda} = \frac{\partial x^{\nu}}{\partial u^{\lambda}} . \]

Matrix \((B^{\nu}_{\lambda}) \) has maximal rank \(m \). Therefore, we can define \(C_{\nu}^{\lambda} \) such that

\[C_{\nu}^{\lambda} B^{\lambda}_{\mu} = 0 \]

and matrix \((C_{\nu}^{\lambda}) \) has rank \(n - m \), where indices \(\lambda, \mu \) run the range \(\{m + 1, m + 2, \cdots, n\} \). Metric tensor on subspace \(M \) is defined from fundamental function \(F \) and coincides with induced metric tensor, that is, its components are given by

\[g_{\nu \mu} = \frac{1}{2} \frac{\partial^2 F}{\partial u^{\nu} \partial u^{\mu}} = g_{\nu}, B^{\nu}_{\lambda} B^{\lambda}_{\mu} . \]

Now, intrinsically, we define \(g^{\nu \mu}, C_{\nu \mu}, \Gamma^{\nu}_{\mu} \) and E.Cartan's symmetric connection coefficients \(\Gamma^{\nu}_{\mu \rho} \) of subspace \(M \). At point \((u, u^*) \) on \(UM = TM \setminus F^{-1}(0) \), we put

\[g^{\nu \mu} = g^{\nu \mu} C_{\nu \mu} , \quad (g_{\nu \mu}) = (g^{\nu \mu})^t , \quad C_{\nu}^{\lambda} = g_{\nu \mu} C_{\nu \mu} g^{\lambda \mu} . \]

\[B^{\nu}_{\lambda} = g_{\nu \mu} B^{\lambda}_{\mu} g^{\nu \mu} . \]

Subspace \(TM \) of \(TN \) is locally expressed by \(x' = x'(u, u^*) \) i.e.
\[
\begin{align*}
\{ x^\alpha &= x^\alpha(u) \\
\xi^* &\equiv B_\xi u^* = B_\xi^* u^*
\end{align*}
\]

and components
\[
D_x^\nu = \frac{\partial x^\nu}{\partial u^i}
\]
of projection tensor on the subspace \(TM\) are represented as
\[
D_x = B_x^\nu, \quad D_x^\nu = 0, \\
D_x^\nu = \frac{\partial B_x^\nu}{\partial u^i} u^*^i, \quad D_x^\nu = B_x^\nu.
\]

Its restriction on \(UM\) constructs projection tensor on subspace \(UM\) of \(UN\).

From E. Cartan's symmetric connection coefficients of \(N\), we shall induce another connection coefficients of \(M\). We define these by
\[
\bar{\Gamma}^*^*^\nu = B_\alpha^\nu \left(\frac{\partial B_\xi^\alpha}{\partial u^i} + \Gamma^\nu^\mu^\alpha B_i^\mu B_j^\nu \right).
\]

Using \(\Gamma^\nu^\mu^\alpha\) and \(\bar{\Gamma}^*^\nu^\mu^\alpha\), mixed type covariant differentiation of \(B_x^\nu\) is given by
\[
H_\nu^\alpha = \frac{\partial B_x^\nu}{\partial u^i} + \Gamma^\nu^\mu^\alpha B_i^\mu B_j^\nu - \bar{\Gamma}^*^\nu^\mu^\alpha B_i^\mu B_j^\nu.
\]

These are components of Euler - Schouten's tensor. Because of \(B_\nu^\alpha, B_\nu^\alpha + C_\nu^\alpha C^\alpha = \delta^\alpha\), we obtain another expression:
\[
H_\nu^\alpha = C_\nu^\alpha \left(\frac{\partial B_x^\nu}{\partial u^i} + \Gamma^\nu^\mu^\alpha B_i^\mu B_j^\nu \right).
\]

To describe the difference between two connections, we put
\[
H^\nu = H_\nu^\alpha u^\alpha u^\alpha, \quad P_\nu^\nu = C_\nu^\alpha \left(B_\nu^\alpha B_i^\nu H_\alpha^\nu u^\nu - B_\nu^\alpha H^\nu B_i^\nu g^\beta C_{\beta\gamma} \right).
\]

Then, after somewhat long calculations, we shall find
Subspace of Finsler space and Riemannian metrics on its bundle

\[\Gamma^{s}_{ij} - \Gamma^{*}_{ij} = g^n(P_{sij} + P_{sji} - P_{sij}). \]

When we put

\[P_{sij} = P_{sji} u^*; \quad \Gamma^{*}_{ij} = \Gamma^{s}_{ij} u^* , \]

we have

\[P_{sij} = C_{ij} H^i B_j^j B_s^i, \quad \Gamma^{*}_{ij} = g^{ij} P_{sij} . \]

We consider a curve on \(N \) which is given by \(x^i = x^i(s) \) where we suppose parameter \(s \) to satisfy \(F(x(s), x'(s)) = 1 \), that is, parameter \(s \) is an arc length. If the curve satisfies a system of equations

\[x'''' + \Gamma''_{i}(x, x') x'' x''' = 0 , \]

it is called geodesic on \(N \). Let us consider a geodesic on subspace \(M \) which is given by \(u^i = u^i(s) \) with arc length parameter \(s \). According to the identity \(\Gamma^{*}_{ij} u^i u^j = \Gamma^{s}_{ij} u^i u^j \), it satisfies a system of equations

\[u^i'''' + \Gamma''_{i}(u, u') u'' u''' = 0 . \]

For our geodesic \(x^i = x^i(u(s)) \) on subspace \(M \), we have

\[x'''' + \Gamma''_{i}(x, x') x'' x''' \]

\[= B_s^i u^i'''' + \left(\frac{\partial B_s^i}{\partial u^j} + \Gamma''_{i}(x, x') B_j^i B_s^j \right) u'' u'' \]

\[= B_s^i (u^i'''' + \Gamma''_{i}(u, u') u'' u''' + H_s^i(u, u') u'' u''' \]

\[= H'(u, u). \]

It is geodesic on \(N \) if and only if system of equations \(H'(u, u') = 0 \) is established for
each s. If all geodesics on M are also geodesics on N, M is said to be totally geodesic. Our considerations show that the necessary and sufficient condition for M to be totally geodesic is $H'(u, u^*)=0$ for $F(u, u^*)=1$. But, according to homogeneity of H' in u^*, presupposed condition $F(u, u^*)=1$ can be removed. Now, we know that M is totally geodesic if and only if $H'=0$ for each point on UM.

We shall attempt to describe this property in another way. From $H''=0$, we get $C_s H''=0$, that is,

$$C_s \left(\frac{\partial B_{x_s}}{\partial u^*} + \Gamma_{s}^{x_s} B_i B_s^i \right) u^* u^{**}=0.$$

Because of $B_{s}^i=B_{s}^i(u)$ and $C_s=C_s(u)$, partial differentiation with respect to u^* turns to

$$C_s \left(\frac{\partial B_{x_s}}{\partial u^*} + \Gamma_{s}^{x_s} B_i B_s^i \right) u^{**}=0.$$

By contraction with C_s^i, we obtain $H_s u^{**}=0$. Once more, partially differentiating with respect to u^* and contracting with C_s^i, we get

$$H_s u^{**}=0.$$

and then, evidently, system of above equations gives $H''=0$.

THEOREM. Following (1), (2) and (3) are equivalent each other.

1. M is a totally geodesic subspace of N.
2. $H''_{s} u^{**}=0$.
3. $H_s u^{**}=0$.

If $H_s u^{**}=0$, then $P_s=0$ and we obtain the following property.

THEOREM. If M is a totally geodesic subspace of N, intrinsic connection on M

coincides with induced one, that is, $\Gamma_{i}^{s}*=\Gamma_{i}^{s}$.

We shall constitute a Riemannian metric tensor on UN which was introduced by
S. Sasaki. For two tangent vectors \(X = X^\alpha \partial / \partial x^\alpha \) and \(Y = Y^\alpha \partial / \partial x^\alpha \) on \(UN \), we consider the following four tangent vectors on \(N \):

\[
X^\alpha \partial / \partial x^\alpha, (X^\alpha + \Gamma^\alpha_\beta X^\beta) \partial / \partial x^\alpha, \\
Y^\alpha \partial / \partial x^\alpha, (Y^\alpha + \Gamma^\alpha_\beta Y^\beta) \partial / \partial x^\alpha.
\]

Now, we can define an inner product of \(X \) and \(Y \) by

\[
G(X, Y) = g_{\alpha \beta} X^\alpha Y^\beta + g_{\alpha \beta}(X^\gamma + \Gamma^\gamma_\alpha X^\alpha)(Y^\gamma + \Gamma^\gamma_\beta Y^\beta).
\]

It gives a Riemannian metric tensor \(G \) on \(UN \) and its components \(G_{\alpha \beta} = G(\partial / \partial x^\alpha, \partial / \partial x^\beta) \) are given by

\[
G_{\alpha \beta} = g_{\alpha \beta} + g_{\alpha \gamma} \Gamma^\gamma_\beta + g_{\alpha \beta} \Gamma^\gamma_\alpha + g_{\alpha \beta} \Gamma^\gamma_\beta.
\]

Using \(\bar{T} \), we similarly define a Riemannian metric tensor \(\bar{G} \) on \(UM \). Then, components \(\bar{G}_{\alpha \beta} = \bar{G}(\partial / \partial u^\alpha, \partial / \partial u^\beta) \) of this tensor are given by

\[
\bar{G}_{\alpha \beta} = g_{\alpha \beta} + \bar{T} \gamma \bar{T} \gamma, \quad \bar{G}_{\alpha \beta} = \bar{G}_{\alpha \beta} = g_{\alpha \beta} \Gamma^\gamma_\beta.
\]

On the other hand, induced metric tensor \(\tilde{G} \) on subspace \(UM \) of \(UN \) may also be existing. Its components are defined by

\[
\tilde{G}_{\alpha \beta} = G(\partial / \partial u^\alpha, \partial / \partial u^\beta) = G_{\alpha \beta} \frac{\partial \gamma}{\partial u^\alpha}, \frac{\partial \gamma}{\partial u^\beta}.
\]

We shall search out the relation between \(G \) and \(\bar{G} \).

\[
\tilde{G}_{\alpha \beta} = G_{\alpha \beta} + G_{\alpha \gamma} \frac{\partial B^\gamma}{\partial u^\alpha} u^* + G_{\alpha \beta} B^\gamma \frac{\partial B^\gamma}{\partial u^\beta} u^* + \\
+ G_{\alpha \beta} \frac{\partial B^\gamma}{\partial u^\alpha} u^* \frac{\partial B^\gamma}{\partial u^\beta} u^* + G_{\alpha \beta} \frac{\partial B^\gamma}{\partial u^\alpha} u^* + G_{\alpha \beta} \frac{\partial B^\gamma}{\partial u^\beta} u^* + \\
= g_{\alpha \beta} + g_{\alpha \gamma}(\frac{\partial B^\gamma}{\partial u^\alpha} u^* + \Gamma^\gamma_\beta B^\beta) \frac{\partial B^\gamma}{\partial u^\beta} u^* + \Gamma^\gamma_\beta B^\beta \frac{\partial B^\gamma}{\partial u^\alpha} u^* + \\
= g_{\alpha \beta} + g_{\alpha \gamma}(H_{\alpha \beta} u^* + \bar{T} \gamma B^\beta)(H_{\alpha \beta} u^* + \bar{T} \gamma B^\beta)
\]
=\overline{G}_{x^i}+g_{x^i}(H^{x^i}u^{x^i})(H^{x^i}u^{x^i}) ,

G_{x^i x^j} = g_{x^i x^i} B_{x^i} + g_{x^i x^j} B_{x^j} \partial B_{x^j} / \partial u^{x^j} u^{x^i}.

=g_{x^i} B_{x^j}(H^{x^i} u^{x^i} + \overline{\Gamma}_{x^i} B_{x^j}) = g_{x^i} \overline{\Gamma}_{x^i} = \overline{G}_{x^i}.

G_{x^i x^j} = g_{x^i x^i} B_{x^i} = g_{x^j} = \overline{G}_{x^i x^j}.

Remarking the fact that system of equations \(g_{x^i}(H^{x^i} u^{x^i})(H^{x^i} u^{x^i}) = 0 \) is equivalent to system of equations \(H^{x^i} u^{x^i} = 0 \), we know that the subspace \(M \) of \(N \) is totally geodesic if and only if \(G = \overline{G} \) on \(UM \).

Instead of \(\overline{\Gamma}_{x^i} \), we will make use of \(\Gamma_{x^i} \). Then, another Riemannian metric tensor \(\overline{G} \) on \(UM \) can be defined and its components \(\overline{G}_{x^i x^j} = \overline{G}(\partial/\partial u^{x^i}, \partial/\partial u^{x^j}) \) are given by

\[
\overline{G}_{x^i x^j} = g_{x^i x^i} + g_{x^i x^j} \Gamma_{x^i} \Gamma_{x^j}, \quad \overline{G}_{x^i} = \overline{G}_{x^i x^j}, \quad \overline{G}_{x^i x^j} = g_{x^j} \Gamma_{x^j}.
\]

Mentioning \(\overline{G}_{x^i x^j} - \overline{G}_{x^j x^i} = g_{x^i}(\Gamma_{x^i} - \overline{\Gamma}_{x^j}) \), we obtain the condition of \(\overline{G} = \overline{G} \).

THEOREM. Metric tensor \(\overline{G} \) on \(UM \) coincides with \(G \) if and only if \(\Gamma_{x^i} = \overline{\Gamma}_{x^i} \), that is, \(P_{x^i} = 0 \).

By straight forward calculations, we obtain the relation between \(\overline{G} \) and \(G \).

\[
\overline{G}_{x^i} = \overline{G}_{x^i} + \overline{\Gamma}_{x^i} P_{x^i} + \overline{\Gamma}_{x^i} P_{x^i} + g^{x^i} P_{x^i} P_{x^i} ,
\]

\[
\overline{G}_{x^i x^j} = \overline{G}_{x^i x^j} + \overline{P}_{x^i x^j} , \quad \overline{G}_{x^i x^j} = \overline{G}_{x^i x^j} .
\]

If \(\overline{G} = G \), equation \(\overline{G}_{x^i x^j} = g_{x^i x^j} + P_{x^i x^j} + P_{x^j x^i} \) gives \(P_{x^i x^j} = 0 \) and then we conclude \(G = \overline{G} = G \). Now, our investigations may be summarized as follows.

THEOREM. Following (1), (2) and (3) are equivalent each other.

(1) \(M \) is a totally geodesic subspace of \(N \).
(2) Metric tensor \bar{G} on UM coincides with G.

(3) Metric tensor \tilde{G} on UM coincides with G.

REFERENCES

[1] H.Rund : The Differential Geometry of Finsler Spaces,
 Die Grundlehren der Mathematischen Wissenschaften Band 101,
 Springer – Verlag.
 manifolds I ,
[3] M.Tani : Prolongations of hypersurfaces to tangent bundles,
 Kodai Mathematical Seminar Reports VOL.21, 85–96.
 manifolds,
 Rendiconti del Circolo Matematico di Palermo TOMO XII , 1–18.