
DeepNFV: A Lightweight Framework for
Intelligent Edge Network Functions Virtualization

言語: eng

出版者: IEEE

公開日: 2019-07-16

キーワード (Ja):

キーワード (En): Network Functions Virtualization

(NFV), edge computing, deep learning, packet

classification

作成者: 李, 良知, 太田, 香, 董, 冕雄

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009960URL

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 1

DeepNFV: A Light-weight Framework for
Intelligent Edge Network Functions Virtualization

Liangzhi Li, Student Member, IEEE, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE

Abstract—Traditional Network functions virtualization (NFV)
implementations are somehow too heavy and do not have
enough functionality to conduct complex tasks. In this work,
we propose a light-weight NFV framework named DeepNFV,
which is based on the Docker container running on the network
edge, and integrate the state-of-the-art deep learning models
with the NFV containers to address some complicated problems,
such as traffic classification, link analysis, etc. We compare the
DeepNFV framework with several existing works, and detail
its structures and functions in the paper. The most significant
advantage of DeepNFV is its light-weight design, resulted from
the virtualization and low-cost nature of the container technology.
Also, we design this framework to be compatible with edge
devices, in order to decrease the computational overhead of
the central servers. Another merit is its strong analysis ability
brought by the deep learning models, which make it suitable
for much more scenarios than the traditional NFV approaches.
In addition, we also describe some typical application scenarios,
regarding how the NFV container works and how to utilize its
learning ability. Simulations demonstrate its high efficiency, as
well as the outstanding recognition performance in a typical use
case.

Index Terms—Network Functions Virtualization (NFV), edge
computing, deep learning, packet classification.

I. INTRODUCTION

With the rapidly developing network needs, the telecom-
munications service providers (TSPs) pick up their pace to
introduce new network features and functions. Innovations in
theories and implementations help a lot to improve the quality
and functionality of the network services, however, at the
same time, they also bring a huge cost to the TSPs when
upgrading their hardware and infrastructure for the deployment
of these new network functions. Several TSPs express some
early interests to build the network functions with software
implementations, which can significantly decrease the capital
expenditures (capex) and operating expenditures (opex) when
introducing new network functions [1], and collaborate on
a white paper in 2012 [2], where the concept of network
functions virtualization (NFV) is presented, as well as its
benefits and enablers. NFV decouples the implementation
of network functions from the underlying hardware, and for
proposing or modifying new functions, the TSPs can simply
modify the software installed in network devices, rather than
totally replace the deployed hardware.

Liangzhi Li, Kaoru Ota and Mianxiong Dong are with the Department
of Information and Electronic Engineering, Muroran Institute of Technology,
Japan.
E-mail:{16096502, ota, mxdong}@mmm.muroran-it.ac.jp

Manuscript received xx xx, 20xx; revised xx xx, 20xx.

Combining NFV with the state-of-the-art deep learning
technologies can empower the network devices with more
intelligence to deal with complicated network traffic. Due to
their superior abilities of automatic feature extraction, deep
learning models can find the hidden patterns in the raw data,
and based on that, infer the possible relationships between the
input and the pre-defined labels [3], i.e., the classification. In
this paper, we employ the deep models for the NFV scenarios,
and successfully implement a series of NFV instances with
outstanding analysis ability to conduct various tasks, such as
traffic classification, link analysis, quality of service (QoS)
control, firewall, routing table, etc.

However, the traditional NFV approaches are somehow too
heavy, because they usually adopt some general-purposed full-
featured virtual machines (VMs), resulting in non-negligible
resource costs to the underlying hardware. This might not be
a serious problem when running in central servers, because
the traditional NFV functions are usually not very powerful
and cost few resources, and the central servers are pow-
erful hardware with strong computing abilities, as well as
huge storage space. But when the deep learning is adopted,
which is extremely compute-intensive, the central servers will
face serious performance problems due to the super large
computation burden. One obvious solution is to offload the
computation to the network edge, and use the edge computing
approaches for the NFV functions with deep learning abilities.
It is exactly the edge environment where the traditional VM-
based NFV frameworks struggle, because the VM instances
account for too much resource, which is limited in edge
devices. Therefore, a light-weight NFV framework is essential
to implement NFV in the edge devices. Our solution is the
docker container, which is very efficient and cost-saving due
to its virtualization and low-cost nature.

As mentioned above, we adopt NFV with edge-computing-
based deep learning models, in order to implement a powerful
yet light-weight framework, which can be suitable for general
edge devices, such as routers, gateways, etc. As shown in
Fig. 1, the NFV containers, each of which represents a virtual
network function (vNF), are located among the central servers
and the edge devices. When one user calls a specific network
function, the related NFV containers will be organized as a
chain. The containers on the chain can be all deployed in the
edge devices, or part of them can be put in the central servers.
Each container has the ability of learning and interfering with
some pre-trained deep models, and its output result can be
used by other containers in the chain for further process. For
example, the results of protocol analysis are very useful for
the following QoS and firewall functions, so the relevant NFV

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 2

vNF

vNF

vNF

vNF

vNF

Base
Station

Server

vNF

vNF

vNF

vNF

Gateway

Access
Point

Fig. 1. The application scenario of the proposed edge NFV framework.

containers will share their results.
The main contributions of our work include:
• We present a deep-learning-enabled NFV framework.

This framework is light-weight and resource-efficient,
while keeping the strong analysis abilities brought by
the deployed deep models. We adopt this framework for
the edge-centric scenarios, and the results show its high
efficiency and relatively low costs.

• We introduce a typical use case to demonstrate the
feasibility of the proposed framework, and to show how
the NFV containers work and how to use them. The sim-
ulations prove the deep model works well in the proposed
framework and shows a good recognition performance.

II. RECENT ADVANCES IN NFV AND EFFICIENT DEEP
LEARNING SYSTEMS

As the paper mainly consists of two subtopics, i.e. NFV
and edge-computing-based deep learning, some related works
regarding these areas will be reviewed in this chapter.

A. NFV Methods and Platforms

Currently, there are mainly three kinds of NFV frameworks,
which are differentiated in the underlying platform. The first
kind is based on the full-featured VMs, which can be deployed
on general hardware; the second kind is for the specialized
VMs, which require specific operating systems (OSs); the last
one is used with the container, which can also be installed
on general hardware while consuming much less resource. In
the following paragraphs, we will respectively introduce their
basic ideas and some existing implementations.

General-purposed VM The general-purposed-VM based
NFV frameworks, such as the Cloud4NFV platform [4], nor-
mally follow the NFV standard guidelines, which can run on
general-purposed hardware. Generally, NFVs are supposed to
offer control functions and user/data module functions. Some
NFV approaches, called full virtualization, move all control
and user/data module functions to the virtual resource, while
other NFV approaches, called partial virtualization, only move
control functions or user/data module functions to the virtual
resource. According to the reference architecture guideline of
an NFV framework, three functionalities are necessary for
realizing virtualization. The first one is NFV Infrastructure

(NFVI), consisting of the hardware and software resource that
are needed to build the environment for deployment and man-
agement. vNF is the second one, which obtains the resources
from NFVI. And the VNF instances are managed by a VNF
Manager. The last one is Operation Support System / Business
Support System (OSS/BSS), as well as the description of
Service, VNF and Infrastructure. In addition, a service layer
is provided as an additional block to indicate the location of
services offered to the users. The disadvantages of this kind
of VNF frameworks include high resource consuming, slow
deployment and running speed, etc., compared to the light-
weight solutions, which is demonstrated by the results in the
performance evaluation section.

Specialized VM As we know, middleboxes based on the
custom hardware suffer from various issues with high opex and
low scalability. That is the reason why specialized VMs, such
as the ClickOS [5], are desirable. ClickOS supports a variety
of middlebox functions based on the Click software, and is
essentially a VM platform combining MiniOS, which is a Xen-
based OS with Click modular router. MiniOS provides all the
functions that are required for running Click, removing any
other functions in a traditional Linux kernel. Therefore, both
the CPU cycles and memory resources can be significantly
saved. Many instances of ClickOS can be operated on the
same physical machine, and ClickOS VMs can be created
and destroyed by command-line interface (CLI) command or
control threads of MiniOS according to the requirement of
users. Thus, ClickeOS can achieve high scalability with mul-
tiple VMs. However, this kind of VMs, which are also called
unikernels, requires some specific software environments. For
example, ClickOS needs the Click software, which is a serious
restriction for wide deployment.

Container Container is a software technology provided by
the company Docker, which puts applications into a virtual
environment and achieves the operating-system-level virtual-
ization. Specifically, the virtual container can be transplanted
into any devices running Linux or Windows system, which
guarantees the flexibility of Docker container. Therefore,
as a newly-emerged solution [6], network functions can be
packaged with light-weight Docker containers, in order to
obtain the high performance, such as high throughput and
platform independence. Actions are performed to the Docker
base image, and each file-system layer has the complete
information about recreating the actions. Hence, compared
with other full-featured VMs, it only needs to deliver the
updates of each layer, which results in light-weight images
for Docker container. Compared with other NFV frameworks,
the container-based framework has the following advantages:
first, it can decrease performance overhead to a large extent;
second, it can achieve the fast deployment; third, the resource,
such as the CPU cycles and memory, can be used with high
utilization.

The work in [6] gives a good approach regarding how to
deploy NFV with containers, and serves as a helpful example
for us to design our deep learning enabled NFV containers.
We build our framework on the basis of their edge structure,
and successfully combine it with the specially-designed deep
learning models.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 3

DeepNFV Framework

Container N

Traffic
Deep
Model

Conv, 3×3, 64

Input Data

Conv, 3×3, 128

Conv, 3×3, 256

Conv, 3×3, 512

Results

FC, 1000

OS Kernel

Hardware

Deep Model

vNF Chain

vNFN-1 vNFN+1vNFN

Fig. 2. The design and structure of the proposed DeepNFV framework.

B. Edge Computing and Efficient Deep Learning

In the recent years, human world is increasingly exposed to
a boom of various mobile applications, e.g., social network,
taxi booking, health care, crowdsensing [7], etc. As a result,
the network traffic and computing load are rapidly increas-
ing, and are predicted to double every year. To resolve this
problem, edge computing is proposed to move the computing
ability from the centralized servers to the devices near the user-
end [8]. Edge computing brings two major improvements to
the existing cloud network. The first one is that the edge nodes
and devices obtain the ability to pre-process the large data
before sending it to the central servers in the cloud. The other
one is that the cloud resources are optimized by enabling the
edge devices with computing ability [9]. Due to the potentiality
brought by the edge computing, the aforementioned problems
of the cloud infrastructure can be well addressed. Several
instructive examples have been presented. The authors in
[10] present an edge computing based scheme to support
crowdsensing applications. They formulate the model into a
mixed-integer nonlinear program and focus on cost-efficient
resource provisioning. As a result, they work out a method to
minimize the overall cost while satisfying the QoS require-
ment. Simulations prove the edge computing based approach
can outperform traditional cloud computing methods. There
are also several works focused on the network delay for the
edge computing environment [11]. The authors attempt to
decrease the service delay from two aspects, including the
computational delay and the transmission delay. In their work,
the former one is addressed with the VM migration and the
second one is improved using the transmission power control.

Because the calculation of the deep models is computation-
intensive, it is necessary to decrease the computing cost by
removing weights, decreasing model complexity or removing
redundant layers, in order to adapt the deep model into the
edge computing environment. Recently, Sze et al. [12] design
an energy-aware pruning method to decrease the energy cost

of convolutinal neural network (CNN) models. They model
the energy estimation methodology using the actual data
extrapolate from the hardware measurements. This method
successfully reduces the calculation cost by around 2 times.

Notably, the deep learning methods have been broadly used
in the network related areas. For example, the authors adopt
CNN model in [13], and design an intelligent traffic control
system.

Based on these results, we successfully design an cost-
efficient deep models for NFV containers, which are mainly
deployed in the edge environments, to conduct various network
tasks.

III. DEEP-LEARNING-ENABLED NFV FRAMEWORK:
DESIGN AND APPLICATIONS

The design of the proposed DeepNFV framework is shown
in Fig. 2. This framework mainly consists of two parts, i.e.,
the DeepNFV framework, and the adopted deep models.

The infrastructure layer in the framework deals with the
underlying network devices and network connections. It is
about the actual network hardware, including the base station,
router, gateway, central servers, etc. These devices may be in
the cloud, or in the network edge, in accordance with their dis-
tances to the end users. They are responsible for conducting the
actual computation tasks and making the control commands.

The vNF is built on the docker container, which can package
all the dependencies for one or some applications and run
independently on the Linux and Windows operating systems.
As shown in Fig. 2, the docker container can adopt several
interfaces to access the underlying system kernel, in order to
implement the virtualization functions and platforms for the
higher-level applications. With these features, we built a deep
learning subsystem in each vNF container. The deployed deep
models will first analyze the input network traffic, then analyze
the hidden patterns, and ultimately, output the recognition

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 4

or prediction results for various pre-designed network func-
tions. The deep models are pre-trained using manually-labeled
dataset, and can be fine-tuned using newly captured packets
in the vNF container. The adopted model is not limited. We
give an example in the right part of Fig. 2, which is a simple
CNN model with six layers.

We build our framework on the basis of the Glasgow
network funtions (GNF). GNF is proposed in [6] for container-
based vNF implementation, which can take the control of the
vNF containers and publishes the vNFs to the users.

In this section, we will introduce some use cases for the
proposed DeepNFV framework. There are a lot of scenarios
that deep learning methods can be used to implement some
useful network functions, such as intrusion detection, critical
link analysis, protocol classification, network firewall, routing
table, etc. Although the existing approaches work well in
traditional network environments, they have struggled in the
current network communications, where a lot of applications
exist and generate huge network traffic which need to be
classified for various objectives. In this section, we will look
at one typical use case, i.e., the traffic analysis, to illustrate
the application of the proposed NFV framework.

Traffic analysis is an important task in the field of network
security. How to accurately recognize the specific protocols in
a captured data packet has attracted lots of researchers. We
built our solution on top of several well-developed theories in
relevant areas [14], [15], and design an efficient model for the
traffic recognition. This CNN model consists of six layers,
including four convolutional layers and two full-connected
layers.

The illustration of the traffic analysis container is shown
in Fig.3a, and some typical images generated from the raw
network traffic are shown in Fig.3b. We can see that there are
some obvious patterns in this images which can be analyzed
by the deep learning models for detection or classification by
this container. This container belongs to an NFV chain that the
system selects for one specific user, therefore, its input may
be the user device or the output which is generated from some
other NFV containers. The first task to process the raw network
traffic is to split them into some discrete units, i.e., network
packets. These units are recorded as the packet capture (pcap)
file, which is the universal file format in traffic analysis and can
be used with the libpcap library in Unix-like systems. Second,
the packet headers should be modified in order to remove
unnecessary and interfering information. Data link layer is the
second layer of the open systems interconnection model (OSI
model), and there are some Ethernet related data in its header,
for example, the Media Access Control (MAC) address, which
is no use for the protocol judgments and, therefore, should be
removed. In addition, the transport layer, which is the fourth
layer of the OSI model, provides headers with different length
for Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) packets, and should also be modified to the
same length or simply removed for simplification. The last
step to clean the packets is to delete the duplicated or empty
pcap files, then the resulted files will be regularized to the
same size s. The files larger than s are trimmed to size s,
and the files smaller than s are enlarged by adding duplicate

Network
Traffic

Packet
Split

Layer 2
Header

Removal

Layer 4
Header

Modification

Packet
Check

Length
Regularization

Image
Generation

pcap Files

Raw
Features

Labeling

SGD

Model
Weights

Fine-tuned CNN

Model
Input

Results

NFV Container for

Traffic Analysis

(a)

Packet Visualization

Google Play HTTP Samba Twitter

Youtube FTP Gmail Instagram

(b)

Fig. 3. The NFV container for traffic analysis. (a) The preprocess and
recognition procedure. (b) Some image examples generated from network
packets of various protocols.

bits. After these preprocess, the pcap files can be transformed
into two-dimension data, 30 × 30 for example, which can be
regarded as gray-scale images if mapped to [0, 1].

In the training phase of the proposed deep model, the
generated images will first be marked with different labels,
according to the specific protocols of their raw packets. Then
the generated images, as well as the corresponding labels,
will be imported into the CNN model for fine-tuning. The
Stochastic Gradient Descent (SGD) method is adopted in
the training process, and can minimize the network loss by
optimizing the model weights. After several iterations of the
training process, we can get a fine-tuned CNN model for
the final classification. In the interfering phase, the image
generation module will directly transfer the generated images
to the well-trained CNN model, which can give deep insight
into the pattern details and output accurate recognition results.

Ultimately, this container transfers the results to other
NFV containers in the chain, and these containers can make
corresponding decisions to the raw network packets, according
to the recognition results generated in the traffic analysis
container. For example, there may be an NFV container for
quality of service (QoS) optimization in the following chain.
It can carry out different strategies for the network packets,
e.g., putting Voice over IP (VoIP) applications at a higher
tier of priority for network traffic and moving down the tier

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 5

0 5 10 15 20 25 30
Number of Instances

10-2

10-1

100

101

C
re

a
te

 T
im

e
 (

s
)

DeepNFV

FullVM

(a)

0 5 10 15 20 25 30
Number of Instances

10-1

100

101

S
ta

rt
u

p
 T

im
e

 (
s
)

DeepNFV

FullVM

(b)

0 5 10 15 20 25 30
Number of Instances

10-1

S
to

p
 T

im
e

 (
s
)

DeepNFV

FullVM

(c)

0 5 10 15 20 25 30
Number of Instances

101

102

103

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

DeepNFV

FullVM

(d)

Physical DeepNFV FullVM
NFV Approaches

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 C

o
s
t
(s

)
F-prop

B-prop

(e)

Physical DeepNFV FullVM
NFV Approaches

0

100

200

300

400

500

D
e

la
y
 (

µ
s
)

(f)

Fig. 4. The results of performance evaluation. (a∼d) The deployment performance and the scalability. (e) The computational ability. (f) The network
performance.

for BitTorrent downloading traffic in case that they take up
too much bandwidth. Another common scenario is that the
network manager desires to completely get rid of some specific
type of protocol, such as gaming or proxy connections, they
can set up the firewall NFV containers to ban these traffic,
also according to the recognition results.

IV. PERFORMANCE EVALUATION

In this section, we conduct a series of experiments to
demonstrate the proposed DeepNFV framework, mainly in-
cluding two aspects, i.e., the deployment performance and
scalability of the proposed framework, and the recognition
performance of the deep model installed in the DeepNFV
container.

A. Container Performances

First, we conduct a series of experiments to test the per-
formance of the proposed DeepNFV framework, as shown
in Fig. 4. In (a∼d), we present the results regarding the
deployment performance and the scalability. The x-axis is
the total number of instances, which could be our DeepNFV
framework based on container, or KVM-based VM. KVM is a
famous VM platform and has been widely used in commodity
servers. The y-axis is the measurement index, including the
time cost and the memory usage.

We create 30 instances in each test, and record their initial-
ization time, startup time, stop time, and the memory usages.
As we can see from Fig. 4a, our container-based DeepNFV

framework takes the shortest time for initialization. Thanks
to the light-weight nature of the docker container, DeepNFV
only needs one percent of the time of the traditional full
VMs, which make most infrastructure and functions visual-
ized, resulting in a big VM image and slow creation time.
Also, in both (b) and (c), our DeepNFV show a significant
advantage in startup and stopping time, compared with the
FullVM approach. In (d), we present the memory usage for
DeepNFV and FullVM. It can be seen that DeepNFV shows
an obvious advantage against the full VMs, due to their light-
weight design.

As out main objective is to adopt the deep learning models
for the NFV containers, we conduct another test to evaluate
the computing performance when running deep learning cal-
culations. The computational cost of the deep models mainly
consist of two parts, i.e., the forward propagation and the back
propagation. The former one can represent the model running
speed in the interfering phase, and the latter one is mainly
used in the training phase. We can see that the time costs in
DeepNFV are smaller than the ones of FullVM, and are very
close to the performances in the physical machines, which
demonstrate its efficiency in performing deep learning related
tasks.

The last test is about the network performance. We use
the round-trip time (RTT) to show the network latency. Once
again, we see the delay value of DeepNFV is smaller than
the FullVM. Similarly, there is few difference between the
physical machine and the proposed container-based approach.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 6

TABLE I
THE ACCURACY OF TRAFFIC ANALYSIS.

Protocol DeepNFV CART
Precision Recall Precision Recall

Samba 1.00 1.00 1.00 1.00
Twitter 0.92 0.96 1.00 0.80
Google Play 0.84 0.99 0.49 1.00
Youtube 1.00 0.91 0.94 0.87
Gmail 0.97 0.85 0.61 0.51
FTP 0.94 1.00 1.00 0.73
HTTP 0.99 1.00 1.00 1.00
Instagram 0.96 0.88 0.91 0.62

Average 0.95 0.95 0.87 0.82

B. Classification Performance

In this paper, we introduce a DeepNFV application, which
can recognize the protocols of network traffic, as an user
case. In order to demonstrate its feasibility, we conduct a
traffic recognition experiment. We record a large number
of network packets, which mainly includes the following
protocols or applications, i.e., Samba, Twitter, Google Play,
Youtube, Gmail, FTP, HTTP, Instagram, etc.

We compare our DeepNFV framework, which can use the
state-of-the-art deep learning methods for automatic feature
extraction and classification, with the traditional classification
and regression trees (CART) algorithm, in order to show the
advantage to adopt the deep models for vNF implementa-
tions. CART is a statistical classifier, and can generate the
decision tree for classification. In Table. I, we present the
recognition results for these two methods. The classification
performance is usually measured in two aspects, i.e., precision
and recall. Precision represents the accuracy of the classifier’s
judgments, and recall represents its ability to find out as many
as possible packets in one specific category. As we can see,
the deep learning methods outperform the traditional CART
algorithm in most protocols and measurements, which proves
the necessity to enable the vNF with deep learning support.
More precisely, the deep model based method improves the
precision and recall by 8% and 13% respectively, compared
to the CART approach. Also, our method performs robustly in
all these scenarios, and as a comparison, the CART approach
has a poor performance in some tests, such as the Gmail test.

V. CONCLUSION

In the paper, we propose a deep-learning-enabled NFV
framework named DeepNFV, which can be deployed in the
network edge. In order to work out a light-weight imple-
mentation, we select a container-based design, i.e., build the
vNF in the containers rather than the full-featured VMs.
Docker container can be installed on general hardware while
consuming little resource, therefore, is a good solution for
the edge-centric scenarios. Based on that, we combine the
edge-computing-based NFV with the deep learning models,
empowering the DeepNFV framework with the abilities to
analyze complicated network traffic and conduct various tasks.
Simulations demonstrate its feasibility, efficiency, as well as
the high recognition precision in a typical use case.

Future work includes an optimization method to decrease
the computation cost of the adopted deep models on the edge
servers, in order to make DeepNFV framework more energy-
efficient and sustainable.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number JP16K00117, JP15K15976, and KDDI Foundation.

REFERENCES

[1] J. d. J. Gil Herrera and J. F. B. Vega, “Network functions virtualization:
A survey,” IEEE Latin America Transactions, vol. 14, no. 2, pp. 983–
997, Feb 2016.

[2] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network functions
virtualisation: An introduction, benefits, enablers, challenges and call
for action,” in SDN and OpenFlow World Congress, 2012, pp. 22–24.

[3] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455,
Fourthquarter 2017.

[4] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento,
“Cloud4nfv: A platform for virtual network functions,” in 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet), Oct 2014,
pp. 288–293.

[5] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast, dynamic
network processing with clickos,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 67–72.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491195

[6] R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv
to the network edge,” IEEE Communications Magazine, vol. 55, no. 6,
pp. 24–31, 2017.

[7] H. Li, K. Ota, M. Dong, and M. Guo, “Mobile crowdsensing in soft-
ware defined opportunistic networks,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 140–145, 2017.

[8] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed
computation offloading for mobile-edge cloud computing,” IEEE Wire-
less Communications Letters, vol. PP, no. 99, pp. 1–1, 2017.

[9] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenarios, and
challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61,
2017.

[10] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “Mist: Fog-based data
analytics scheme with cost-efficient resource provisioning for iot crowd-
sensing applications,” Journal of Network and Computer Applications,
vol. 82, pp. 152–165, 2017.

[11] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method
for minimizing service delay in edge cloud computing through vm
migration and transmission power control,” IEEE Transactions on Com-
puters, vol. 66, no. 5, pp. 810–819, May 2017.

[12] V. Sze, T.-J. Yang, and Y.-H. Chen, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[13] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “On removing routing protocol from future wireless
networks: A real-time deep learning approach for intelligent traffic
control,” IEEE Wireless Communications, vol. PP, no. 99, pp. 1–7, 2017.

[14] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI), July 2017, pp. 43–48.

[15] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using
deep learning,” CoRR, vol. abs/1709.02656, 2017. [Online]. Available:
http://arxiv.org/abs/1709.02656

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 7

vNF

vNF

vNF

vNF

vNF

Base
Station

Server

vNF

vNF

vNF

vNF

Gateway

Access
Point

Fig. 1. The application scenario of the proposed edge NFV framework.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 8

DeepNFV Framework

Container N

Traffic
Deep
Model

Conv, 3×3, 64

Input Data

Conv, 3×3, 128

Conv, 3×3, 256

Conv, 3×3, 512

Results

FC, 1000

OS Kernel

Hardware

Deep Model

vNF Chain

vNFN-1 vNFN+1vNFN

Fig. 2. The design and structure of the proposed DeepNFV framework.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 9

Network
Traffic

Packet
Split

Layer 2
Header

Removal

Layer 4
Header

Modification

Packet
Check

Length
Regularization

Image
Generation

pcap Files

Raw
Features

Labeling

SGD

Model
Weights

Fine-tuned CNN

Model
Input

Results

NFV Container for

Traffic Analysis

(a)

Packet Visualization

Google Play HTTP Samba Twitter

Youtube FTP Gmail Instagram

(b)

Fig. 3. The NFV container for traffic analysis. (a) The preprocess and recognition procedure. (b) Some image examples generated from network packets of
various protocols.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 10

0 5 10 15 20 25 30
Number of Instances

10-2

10-1

100

101

C
re

a
te

 T
im

e
 (

s
)

DeepNFV

FullVM

(a)

0 5 10 15 20 25 30
Number of Instances

10-1

100

101

S
ta

rt
u

p
 T

im
e

 (
s
)

DeepNFV

FullVM

(b)

0 5 10 15 20 25 30
Number of Instances

10-1

S
to

p
 T

im
e

 (
s
)

DeepNFV

FullVM

(c)

0 5 10 15 20 25 30
Number of Instances

101

102

103

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

DeepNFV

FullVM

(d)

Physical DeepNFV FullVM
NFV Approaches

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 C

o
s
t
(s

)

F-prop

B-prop

(e)

Physical DeepNFV FullVM
NFV Approaches

0

100

200

300

400

500
D

e
la

y
 (

µ
s
)

(f)

Fig. 4. The results of performance evaluation. (a∼d) The deployment performance and the scalability. (e) The computational ability. (f) The network
performance.

IEEE NETWORK, VOL. XX, NO. XX, XXX 2017 11

TABLE I
THE ACCURACY OF TRAFFIC ANALYSIS.

Protocol DeepNFV CART
Precision Recall Precision Recall

Samba 1.00 1.00 1.00 1.00
Twitter 0.92 0.96 1.00 0.80
Google Play 0.84 0.99 0.49 1.00
Youtube 1.00 0.91 0.94 0.87
Gmail 0.97 0.85 0.61 0.51
FTP 0.94 1.00 1.00 0.73
HTTP 0.99 1.00 1.00 1.00
Instagram 0.96 0.88 0.91 0.62

Average 0.95 0.95 0.87 0.82

