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Abstract7

Vehicle-to-Grid (V2G) systems promoted by the federated Internet of Things (IoT) technology will be
ubiquitous in the future; therefore, it is crucial to provide trusted, flexible and efficient operations for V2G
services using high-quality measures for security and privacy. These can be achieved by access and authority
authentication. This paper presents a lightweight protocol for capacity-based security access authentication
named AccessAuth. Considering the overload probability and system capacity constraints of the V2G
network domain, as well as the mobility of electric vehicles, the ideal number of admissible access requests is
first calculated adaptively for each V2G network domain to actively achieve capacity-based access admission
control. Subsequently, to provide mutual authentication and maintain the data privacy of admitted sessions,
by considering whether there is prior knowledge of the trust relationship between the relevant V2G network
domains, a high-level authentication model with specific authentication procedures is presented to enforce
strict access authentication such that the sessions are conducted only by authorized requesters. Additionally,
efficient session revocation with forward security and session recovery with no extra authentication delay
are also discussed. Finally, analytical and evaluation results are presented to demonstrate the performance
of AccessAuth.

Keywords: V2G, authentication, capacity, security.8

1. Introduction9

Vehicle-to-Grid (V2G) is a critical network service in the “Smart Grid” (the next-generation power grid)10

and is considered as one of the most powerful approaches for enabling renewable energy sources to provide11

ancillary electrical services and for managing and monitoring power usage [1–4]. A typical V2G network12

includes four main entities, electric vehicles (EV s), local aggregators (LAGs), certification authorities (CAs)13

and a control center (CC). Without loss of generality, EV s can be either power consumers or providers;14

they may belong to a specific group and have corresponding group attributes. The LAGs are the service15

access points for power and wireless communications for EV s. The CAs are trusted entities that belong16

to different independent institutions. They maintain secure databases containing detailed power and other17

information about various certified EV s and LAGs. Specifically, the components Profiles Repository,18

Policies Repository and Access List are included in a CA. The Profiles Repository is composed of19

the certified EV s and LAGs as well as their profiles (e.g., their attributes and personal information).20

The Policies Repository is a collection of various policies for available access resources. The Access List21

maintains information about authorized EV s. Finally, the CC acts as the only entity trusted by all the22

other entities in the entire V2G network environment.23
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To implement the exchange of power and data, the V2G network employs a two-way communication24

infrastructure. The power links are deployed to charge the batteries of EV s by consuming power from the25

smart grid. They are also able to discharge stored power back to the smart grid. A variety of wireless/wired26

communication technologies are integrated to support communications between the entities involved in27

exchanging power-related data. Using this network architecture, an EV not only can replenish its power28

from or discharge unused stored power back to the connected LAG but also apply for data services via the29

LAG. Moreover, in a V2G network domain, a number of LAGs can be connected to a CA based on the30

capacity of the CA to handle the EV s’ access requests. Due to the inherent mobility of EV s, when an EV31

is connected to a LAG serving as its default access point for power and wireless communication, we say32

that the EV is working in its “home mode.” in contrast, when an EV is temporarily connected to a LAG33

managed by a different independent institution, we say that the EV is working in “visiting mode” [5].34

Note that, given these characteristics (e.g., vehicle location and mobility, charging and discharging op-35

tions, driving patterns and preferences, limited communication range, etc.), V2G networks are different from36

other broadly applied communications systems. Although V2G technology is considered a critical part of37

the future “Internet of Energy” [6, 7], to the best of our knowledge, it is still a very young research field.38

Fortunately, promoted by advances in emerging IoT technology, V2G systems in the smart grid that fit into39

the broader concept of federated IoT promise a future in which a multitude of physical objects and devices40

within the V2G networks will be connected to the Internet to create smart environments. These objects and41

devices are expected to carry embedded computer intelligence that will allow them to connect, cooperate,42

and communicate within social, environmental and user contexts to achieve better power-load manage-43

ment and improved power efficiency and reliability. Hence, V2G is also a special type of cyber-enabled44

application [8, 9].45

Although the IoT paradigm is a valuable addition for controlling and managing energy appliances in V2G46

networks, the adopted network infrastructure suffers from a variety of serious security challenges [10–14],47

and the range of possible security attacks has still not been well investigated; consequently, security and48

privacy issues remain particularly problematic. Specifically, mutual authentication mechanisms between the49

EV s and the associated LAGs are imperative and must be provided to ensure legitimate communications.50

Moreover, data exchanged between the EV s and other entities involved in V2G networks must be secured,51

data privacy must be preserved throughout the network, and the LAGs must be prevented from recognizing52

and tracing the identities and behavior preferences of the EV s they serve. Therefore, to address these53

security and privacy concerns, this paper proposes AccessAuth and offers the following main contributions.54

1. On the basis of a thorough discussion of the issues of efficiently maintaining security and privacy,55

which must be achieved in the access authentication mechanisms used by federated-IoT-enabled V2G net-56

works, AccessAuth, a lightweight protocol for capacity-based security access authentication with conditional57

privacy, is proposed.58

2. In AccessAuth, by considering the overload probability and system capacity constraints of the V2G59

network domain as well as the mobility and session characteristics of EV s, a capacity-based active access60

admission control scheme is developed to reduce the session-dropping probability (SDP) and the session-61

blocking probability (SBP) for access requests. Concretely, the ideal number of admissible access requests62

is adaptively calculated for the V2G network domain using a Markov model. This ideal number can be used63

to determine whether the V2G network domain will admit a new access request.64

3. Subsequently, when an access request is admissible for a V2G network domain, by considering whether65

prior knowledge of the trust relationship exists between the relevant V2G network domains, a high-level au-66

thentication model with specific authentication procedures is presented that provides mutual authentication67

while maintaining the data privacy of admitted sessions by ensuring that only authorized sessions can be68

conducted.69

4. Within the framework of AccessAuth, efficient session revocation with forward security and session70

recovery that involve no extra authentication delay are also discussed.71

The remainder of this paper is organized as follows. Section 2 discusses security and privacy issues72

and provides a review of current research achievements. Section 3 presents a concrete implementation and73

discussion of AccessAuth. Section 4 demonstrates the performance of AccessAuth through both analysis74

and evaluation results. Finally, we summarize and conclude this paper in Section 5.75
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2. Security & Privacy Issues and Related Works76

In V2G networks, security attacks and vulnerabilities suffered during power and data interactions can be77

categorized into three main types: data capture, data deception and data blocking [5]. Successful breaches78

will result in cascade effects with disastrous results. Therefore, designed access authentication protocols79

for V2G networks must address the following critical requirements to maintain security and privacy and to80

ensure authorized and reliable interactions among legal entities:81

1) Mutual authentication, verification and their defense against attacks. Before initializing communica-82

tions, EV s and LAGs should authenticate with each other to prevent redirection, impersonation, and other83

types of attacks. Verifying that LAGs offering access services are authorized by the CAs is critical to prevent84

a disguised LAG from disclosing private information acquired from carelessly connected EV s. Additionally,85

the designed access authentication protocols must be able to overcome various types of well-known, feasible86

security attacks.87

2) Session key establishment. Data transmitted over V2G networks should be protected against illegal88

entities to ensure data confidentiality and against unauthorized manipulation and destruction to ensure data89

integrity. Adversaries should not be given opportunities to intrude on established communication sessions90

and perform a variety of malicious activities such as eavesdropping, data tampering, disseminating harmful91

data, and so forth.92

3) Strong anonymity and untraceability of EV s. Private information concerning EV s, such as their93

battery status, behavior preferences, and so on, should not be disclosed during the authentication process94

to help protect against misuse of this information by insider attacks.95

4) Conditional privacy preservation. As part of the strong anonymity and untraceability of EV s, their96

location information should not be associated with their identities as they roam between different V2G97

networks. However, in emergency situations, the CAs and the CC are responsible for interrogating the98

related private information of EV s (e.g., their identities and locations).99

5) Anonymity for CAs and the CC. The identities of CAs and the CC must also be hidden from100

unauthorized entities; otherwise, domino effects may occur. For example, eavesdroppers or adversaries101

could conduct traffic analyses to reveal private information about EV s.102

6) Low computational load and communication overhead. Because huge numbers of entities will partici-103

pate in these future V2G networks, the overhead generated during access authentication (e.g., computation104

and communication) must be minimized, and the delay due to authentication should be small enough so105

that the system can respond quickly to EV s’ access requests.106

Currently, an extensive body of research exists that focuses on security and privacy issues in V2G107

networks. Based on discussions of V2G network architectures and the state-of-the-art security challenges108

faced during power and communication interactions, Zhang et al. [5] proposed a context-aware authentication109

solution that considers battery statuses and their roles. EV batteries may exist in different states (e.g.,110

charging, fully charged and discharging) during communication interactions. Zhang et al. [15] proposed a111

battery-status-aware authentication scheme (BASA) by identifying unique security challenges relevant to an112

EV ’s various battery states and considering that an EV may have a variety of roles (e.g., energy demand,113

energy storage or energy supply). Zhang et al. [16] also proposed a role-dependent privacy preservation114

scheme (ROPS) by demonstrating that dissimilar security and privacy concerns exist. By exploiting a fuzzy115

identity-based encryption method with lattice-based access control and dedicated error-correction coding,116

Wu et al. [17] proposed a dedicated data access authentication scheme able to enforce fine-grained access117

authentication that resists corruption from noisy channels and environmental interference. To address the118

issue that most current identity authentication (IA) schemes and technologies face various kinds of attacks119

and large-scale certification problems, Xu et al. [18] proposed the HyCPK, which is an improved CPK120

algorithm based on a single-double hybrid matrix.121

Because mobility is an important characteristic of V2G networks, an EV may work in different modes122

(e.g., home mode and visiting mode), causing security and privacy issues to become even more challenging123

due to the untrusted entities in visiting mode. By employing a bilinear pairing technique with an accu-124

mulator and performing batch verification, Saxena et al. [19] proposed a mutual authentication scheme to125

preserve the privacy of EV s working in different modes. Considering that EV s present different security126
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challenges in different modes, Liu et al. [20] proposed an aggregated-proofs based privacy-preserving authen-127

tication scheme (AP3A) to achieve simultaneous identification and secure identification. In mobile networks128

that employ smart grids, it is widely accepted that Demand-Response (DR) techniques help in improving129

efficiency, reliability and security. However, the security requirements of different DR events (e.g., security130

access service, security communication service and security analysis service) are dynamic for various prac-131

tical demands. To address this issue, Guo et al. [21] proposed an event-oriented dynamic security service132

mechanism for DR that dynamically composites the above three types of security services into fine-grained133

subservices. Also, considering the communications characteristics among EV s, Guo et al. [22] proposed a134

unique batch authentication protocol named UBAPV2G, in which, rather than verifying each message for135

each individual EV , the aggregator checks the responses from a batch of EV s using only one signature136

verification and then broadcasts a signed confirmation message to inform the batch of EV s using only one137

signature.138

Similarly, based on previously identified emerging privacy issues in V2G networks, Yang et al. [23]139

considered the trade-off between the rewards obtained by the EV s and the financial benefits obtained by140

the power grid and proposed a privacy-preserving communication and precise reward architecture for V2G141

networks. In this approach, an ID-based blind signature is introduced to enhance anonymity. Wang et142

al. [24] enhanced Yang et al.’s framework with formal definitions of unforgeability and restrictiveness and143

proposed a new traceable privacy-preserving communication and precise reward scheme using available144

cryptographic primitives. Generally, in V2G networks, multiple levels of charging services must be provided145

for EV s; therefore, some private information of EV s may be disclosed to determine the charging service146

quality. He et al. [25] proposed a privacy-preserving multi-quality charging (PMQC) scheme, in which147

both authentication and an evaluation that determines the charging service level that can be offered to148

EV s are efficiently achieved without revealing private information. Considering several security concerns149

such as identity-irrelevant location privacy, frequent authentication for EV s, and the confidentiality and150

integrity of the exchanged electricity trade data, Abdallah et al. [26] proposed a lightweight, secure and151

privacy-preserving V2G connection scheme. However, the maintained traces for accountability and electricity152

exchange operations also result in a large risk of exposing the private information of EV s to eavesdroppers153

and adversaries.154

To establish a session key built on an elliptic curve cryptography-based restrictive partially blind signa-155

ture, a security and privacy-preserving mechanism for aggregator-based V2G networks was proposed in [27];156

however, in this scheme, the EV s must open their accounts at the LAGs, which increases the risk of insider157

attacks. Additionally, by utilizing a restrictive partially blind signature to protect EV ’s identities and cer-158

tificateless public key cryptography to simplify the certificate management required by traditional public key159

infrastructure (PKI) and to overcome the key escrow problem in identity-based public key cryptography, T-160

seng [28] proposed a secure and privacy-preserving communication protocol for V2G networks. In contrast,161

Vaidya et al. [29] analyzed the shortcomings of using traditional PKI for V2G networks and proposed a162

multi-domain PKI model built on elliptic curve cryptography along with a self-certified public key technique163

that uses implicit certificates.164

While acknowledging the proposals in the literature that have been found to be efficient, each still has165

some limitations. For example, some generate additional overhead [19–22], and some present practical166

solutions to only some of the well-known security concerns [5, 15–18, 23–29]. To the best of our knowledge,167

the challenges of security and privacy in V2G networks must still be investigated to a much greater extent168

to achieve an optimal balance of performance and security.169

3. AccessAuth: The Proposed Protocol170

3.1. Capacity-based Active Access Admission Control171

In a typical federated-IoT-enabled V2G network domain, the LAG needs to communicate with the172

external network on behalf of active sessions triggered by authorized EV s. The logical positions of LAGs173

will determine whether they are potential forwarding efficiency bottlenecks in network communications.174

Additionally, objects (e.g., EV s) served within a V2G network domain also need to communicate with each175
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other; consequently, the scarcity of available spectrum bandwidth will be another communication bottleneck.176

To guarantee the Quality of Service(QoS) of active sessions and provide adequate services for new access177

requests—including both migrated sessions and newly initiated access requests triggered by the EV s—we178

propose a capacity-based active access admission control scheme in which each LAG in the V2G network179

domain will periodically analyze the arrival rate of new access requests, the probability of migration, and the180

probability of active session termination and, finally, obtain the ideal number of admissible access requests181

during the current period. The results of these calculations will be used to determine whether new access182

requests should be admitted. The pseudocode for the proposed capacity-based active access admission183

control scheme is shown in Algorithm 1.184

Algorithm 1 Capacity-based active access admission control

Input: for the i-th V2G network domain, Nnew
i : the number of admitted newly initiated access request-

s; Naccessed
i : the number of accessed sessions; N capacity

i : the capacity limitation of served sessions;
Nadmissible
i : the ideal number of admissible newly initiated access requests.

Output: The admissible new access requests.
/* at time t */
/* admission for a migrated session */

1: if (Naccessed
i + 1 ≤ N capacity

i ) then
2: admissible;
3: Naccessed

i ++;
4: else
5: reject;
6: end if

/* admission for a newly initiated access request */
7: if ((Nnew

i + 1 ≤ Nadmissible
i ) & (Naccessed

i + 1 ≤ N capacity
i )) then

8: admissible;
9: Nnew

i ++;
10: Naccessed

i ++;
11: else
12: reject;
13: end if

From Algorithm 1, to enhance the systemic benefit of a V2G network domain, we assume the processing185

capacity of the V2G network domain as a constraint and enable as many admissible new access requests as186

possible to reduce the SDP for migrating sessions while maintaining a low SBP for newly initiated sessions.187

To this end, Algorithm 1 is intended to obtain the defined Nadmissible
i and is solved as follows. Note that188

the performance loss resulting from dropping an ongoing session is more serious than that from blocking an189

attempt to initiate a new session; therefore, we assign higher admission priorities to migrating sessions than190

to newly initiated sessions.191

Before stating specifically how Algorithm 1 calculates Nadmissible
i , we must provide some definitions.192

First, we assume that ~S = {S1(t), S2(t), ..., Sn(t)} is the systemic state vector of all V2G network do-193

mains, where Si(t) is the number of sessions being served in the i-th V2G network domain at time t, and194

Si(t) ≥ 0 (i = 1, 2, ..., n, n is the number of V2G network domains in a federated-IoT-enabled V2G net-195

work environment, t = 0, 1, 2, ...). Here, MS = {msij(t)}n×n
is a matrix of migrated sessions, and msij(t)196

(0 ≤ msij(t) ≤ 1, i, j = 1, 2, ..., n, t = 0, 1, 2, ...) is the probability of a session migrating from the i-th197

V2G network domain to the j-th one, which can be calculated by the ratio of the number of migrated198

sessions to the total number of sessions served by the i-th V2G network domain. Note that data about199

migrated sessions, including their mobility and session characteristics, will be periodically collected by the200

CA deployed in each V2G network domain and used to generate the matrix MS at the current moment.201

The vector of terminated sessions is ~TS = {ts1(t), ts2(t), ..., tsn(t)} in all V2G network domains at time202

t, where tsi(t) (0 ≤ tsi(t) ≤ 1, i = 1, 2, ..., n, t = 0, 1, 2, ...) denotes the probability of a session being203
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terminated in the i-th V2G network domain. That value can also be calculated using the ratio of the num-204

ber of terminated sessions to the total number of sessions served by the i-th V2G network domain. The205

vector ~Nadmissible = {N1(t), N2(t), ..., Nn(t)} represents the ideal number of newly initiated access requests206

admissible by all the V2G network domains at time t, and Ni(t) (Ni(t) ≥ 0) is the factor that determines207

whether new access requests are admitted.208

Based on the above definitions, at time t+ε, the number of sessions being served in the i-th V2G network209

domain can be deduced using the Markov model as shown in Eq. (1):210

Si(t+ ε) = Si(t)− Si(t) · tsi(t)−
n∑
j=1
j 6=i

msij(t) · Si(t) +Ni(t) +

n∑
j=1
j 6=i

msji(t) · Sj(t). (1)

211

For convenience, we assume that
n∑
j=1
j 6=i

msij(t) + tsi(t) = 1; therefore, Eq.(1) can be simplified to Eq. (2):212

Si(t+ ε) =

n∑
j=1
j 6=i

msji(t) · Sj(t) +Ni(t). (2)

Given the system’s state ~S at time t, if an ~Nadmissible obtained according to MS could enable the213

systemic state at time t + ε to approach the near-ideal one represented by ~S∗, that is the final ~Nadmissible214

we expect. When the near-ideal state ~S∗ is obtained, the left side of Eq. (2) can be replaced by ~S∗, and215

sequentially, ~Nadmissible could be obtained as in Eq. (3).216

~Nadmissible = ~S∗ − ~S ·MS. (3)

Because the number of served sessions has a positive impact on the overall benefit of a V2G network217

domain, in the near-ideal state ~S∗, the number of admissible sessions must be maximized within the afore-218

mentioned capacity limit. Accordingly, as shown in (4), we can deduce a formula to solve ~S∗. Where219

~S∗ ≥ ~S ·MS is configured in terms of Eq. (3) to ensure ~Nadmissible ≥ 0 in the near-ideal system state,220

0 ≤ Si∗ ≤ N capacity
i is introduced to constrain the number of served sessions to fewer than the capacity lim-221

it, and p(Si
∗) ≤ poverloadi is introduced to constrain the current overload probability represented by p(Si

∗)222

to a value no greater than the threshold poverloadi .223

max

n∑
i=1

Si
∗

s.t. 0 ≤ Si∗ ≤ N capacity
i

~S∗ ≥ ~S ·MS

p(Si
∗) ≤ poverloadi .

(4)

As shown in (4), to solve ~S∗, p(Si
∗) must first be determined. Here, we partially refer to the method224

proposed in [30]. For the i-th V2G network domain, we assume that there are Si
∗ served sessions at time225

t and that the arrival rate of newly initiated access requests follows a Poisson distribution with parameter226

λi and is represented by p(Narrival
i = k) = (λki /k!) · e−λi . Additionally, at the end of time t, for each V2G227

network domain, the served sessions attached to the original V2G network domain but migrating to another228

V2G network domain all are independent events, and their properties correspond to a binomial distribution.229

Therefore, we assume that, following a binomial distribution, as shown in Eq. (5), the probability of served230
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sessions attached to the i-th V2G network domain is represented by B(di, Si
∗,msii(t)), where di = Si

∗ ·231

msii(t) is the number of attached served sessions. Similarly, the probability of sessions served by the i-th V2G232

network domain migrating to the j-th (j 6= i) V2G network domain is represented by B(mi, Si
∗,msij(t)),233

where mi = Si
∗ ·msij(t), and the probability of sessions served by the j-th V2G network domain migrating to234

the i-th V2G network domain is represented by B(mj , Sj
∗,msji(t)), where mj = Sj

∗ ·msji(t). Accordingly,235

at the end of time t, there will be Nserved
i = di + k+

∑n
j=1,j 6=i mj sessions served by the i-th V2G network236

domain, and the probability distribution of the number of served sessions, denoted as p(Nserved
i ), can be237

represented by the convolution summation of B(di, Si
∗,msii(t)), p(N

arrival
i = k) and all B(mj , Sj

∗,msji(t)).238

According to the central− limit theorem, it is acceptable that p(Nserved
i ) can be further approximated by239

the normal distribution as shown in (6).240

B(di, Si
∗,msii(t)) = CdiSi

∗ ·msii(t)di · (1−msii(t))Si
∗−di (5)

p(Nserved
i ) ∼ N

di + k +

n∑
j=1,j 6=i

mj ,

√√√√di · (1−msii(t)) + k +

n∑
j=1,j 6=i

mj · (1−msji(t))

 (6)

p(Si
∗) =

∞∏
Nserved

i =N
capacity
i +1

P (Nserved
i ) = 1−

N
capacity
i ∏

Nserved
i =0

P (Nserved
i )

= 1− Φ


(
Ncapacity
i − (di + k +

∑n
j=1,j 6=imj)

)
√
di · (1−msii(t)) + k +

∑n
j=1,j 6=imj · (1−msji(t))


(7)

p(Si
∗) ≤ poverloadi ⇔ p(Si

∗)− poverloadi ≤ 0

⇔ 1− Φ


(
Ncapacity
i − (di + k +

∑n
j=1,j 6=imj)

)
√
di · (1−msii(t)) + k +

∑n
j=1,j 6=imj · (1−msji(t))

− (1− Φ(βi))

⇔ Φ(βi)− Φ


(
Ncapacity
i − (di + k +

∑n
j=1,j 6=imj)

)
√
di · (1−msii(t)) + k +

∑n
j=1,j 6=imj · (1−msji(t))


⇔ βi ·

√√√√di · (1−msii(t)) + k +

n∑
j=1,j 6=i

mj · (1−msji(t)) +

(
di + k +

n∑
j=1,j 6=i

mj

)
−Ncapacity

i ≤ 0

(8)

Accordingly, the current overload probability of the i-th V2G network domain can be defined in Eq. (7),241

and it is further defined according to Laplace′s theorem, where Φ(x) =
∫ x
−∞

1√
2π
e−t

2/2dt. Note that,242

without loss of generality, for the i-th V2G network domain, there will be only one given threshold poverloadi243

and ∃βi, poverloadi = 1− Φ(βi). Hence, as shown in (8), the configured constraint of p(Si
∗) ≤ poverloadi can244

be represented in another way.245

Now, based on the finally defined p(Si
∗), we can further obtain ~S∗ by solving (4) and, finally, obtain246

the ~Nadmissible through Eq. (3). By introducing the Metropolis rule of simulated annealing algorithm into247

the particle swarm algorithm (SA-PSO), we can use the SA-PSO (which was developed in our previous248
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work [31]) to solve the optimization problem defined in (4). The specific implementation of the SA-PSO249

is available in [31]. For each V2G network domain, the elements in ~Nadmissible are used as the basis for250

determining whether to admit a newly initiated access request at the current moment. As a reminder, after251

updating the MS in the next moment, the corresponding ~Nadmissible must be recalculated to satisfy the252

new requirements of mobility and session triggered by the EV s and to maximize the entire systemic benefit253

under the constraints of capacity and overload probability.254

3.2. Authentication Model255

Based on this developed capacity-based active access admission control scheme, to maintain access se-256

curity and conditional privacy in V2G networks when a new access request is admissible, a high-level257

authentication model is developed as shown in Fig. 1. In practice, in a federated-IoT-enabled V2G network258

environment, the certified EV s may consist of multiple groups with corresponding group attributes [32].259

Specifically, the number of certified EV s in each group may be different, but these grouped EV s with dis-260

tinctive (or identical) session characteristics are likely to have correlated mobility. To collectively provide261

access authentication for EV s in the same group, the existing authentication mechanisms (e.g., one-to-one262

authentication) have been shown to not only fail to fully use the group characteristics but also to cause263

significant system overhead and large (even unacceptable) authentication delay. Therefore, a secure and264

efficient group-based authentication mechanism must be employed in the developed authentication model.265

V2G network domain-2

request

response

V2G network domain-1

Delegatee (EV)

CA

Delegator (LAG)
request

CC

Resource/Object

 migrated session 

(trust relationship)
newly initiated session

migrated session

(no trust relationship)

Internet

response
CA

Delegator

Resource/Object

Delegatee

Figure 1: A high-level authentication model in a federated-IoT-enabled V2G network environment.

As shown in Fig. 1, a Delegator(LAG) is a delegation decision-making entity and a Delegatee(EV ) is266

a delegation requestor entity. In the implementation of authority delegation for a newly initiated access267

request of EV , an access request from a Delegatee located in its default V2G network domain will be268

signed using a specific group-based signature scheme, e.g., a forward secure revocable group signature (FSR-269

GS), and forwarded directly to the default Delegator. Upon receiving the access request, the Delegator270

will validate the signature and evaluate the access request based on the combination of available rules and271

polices provided by the CA to determine whether to grant some or all of its authority to the Delegatee. If272

the verification result is positive, a corresponding response with the requested authority would be returned273

to the Delegatee; otherwise, an error message or a rejection decision would be returned.274

In contrast, in the implementation of authority delegation for a migrating EV session, we will consider two275

different scenarios based on whether a trust relationship between the two relevant V2G network domains276

has been established. When a trust relationship between two V2G network domains has already been277

established through some mutual authentication scheme, the Delegatee located in V2G network domain-278

1 would sign the access request using FSR-GS and forward it directly to the Delegator in V2G network279

domain-2. Subsequently, the operations for authority delegation in this scenario would be the same as those280

performed for a newly initiated access request. When no prior trust relationship between the two V2G281

network domains exists, unlike the approach used for the first scenario, the signed access request would be282

forwarded to the Delegator through the CC, which is the only entity trusted by all other entities. Detailed283

explanations for the implementations of considered authority delegation are provided below.284
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3.3. Authentication Procedures285

As stated above, FSR-GS will be employed as an important means for signing the access request in this286

work; therefore, we first review the definition of FSR-GS. As described in [33, 34], an FSR-GS is composed287

of several important probabilistic polynomial-time algorithms and an interactive mechanism, and it can be288

represented by a six-tuple (G.Kg,G.Enroll, G.Revoke,G.Sign,G.V er,G.Open). The concrete definitions289

and implementations of these tuples can be found in [33, 34]. Additionally, the entities participating in290

FSR-GS include a group manager, a group member and a verifier. For the considered scenarios of authority291

delegation in this work, the CC acts as the global group manager, and the CA in each V2G network292

domain acts as a local group manager; the former has a global master key pair (mPKCC ,mSKCC), and293

the latter has a local master key pair (mPKCA,mSKCA). The certified LAGs in each V2G network act as294

verifiers or Delegators. The two types of group mangers and each LAG have signing and verification key295

pairs, respectively, represented by (PKCC , SKCC), (PKCA, SKCA) and (PKLAG, SKLAG) and generated296

by a conventional digital signature scheme (e.g., the Elliptic Curve Digital Signature Algorithm (ECDSA)).297

Correspondingly, using G.Kg, the generated initial information of the group members (also called “signers”)298

managed by the global group manager and local group manager are represented by ΩCC = (cg, µg) and299

ΩCA = (cl, µl), respectively, where cg and cl are initialized to ‘g1’ and µg and µl are initialized to ‘1.’300

During the setup phase of the federated-IoT-enabled V2G network environment, the CC announces its301

global master public key mPKCC to all its group members, including the certified CAs, LAGs and EV s,302

and the CA in each V2G network domain announces its local master public key mPKCA to all its group303

members, including the certified LAGs and EV s. In each V2G network domain, the IDCA and PKCA of304

the CA and the IDLAG and PKLAG of each LAG are publicly known to all the authorized accessors and305

to the EV s and CA in the other V2G network domains using an already established trust relationship.306

Additionally, each LAG shares a session key Shared Key(sess.) with its managing CA.307

EV 

(Delegatee)

LAG

(Delegator)

CA

Delegation decision

CC
Profiles

Repository

Update

Validate Signature

Validate Signature

Policies

Repository
Access List

1. Sign(Acc_Req)

(If established trust relationship) 

2'. Error (If sign invalid)

5. Authority/Rejection

4. Returned policies

6. Normal session 

(If be delegated)

6. Report

2. Map Access_Req with profiles

(If sign valid) 3. Check related

policies

1'. Sign'(Acc_Req)

(If no trust relationship)

Error

(If sign invalid)

Sign'(Acc_Req)

(If sign valid)

Figure 2: The overall framework for implementing considered authority authentication.

During the authentication phase of a new access request, the three scenarios, namely, i) authentication308

for a newly initiated access request, ii) authentication for a migrated session with established trust relation-309

ship, and iii) authentication for a migrated session without established trust relationship, will be discussed310

separately. The overall framework for implementing considered authority authentication is shown in Fig. 2.311

i) When Delegatee(i) makes a new access request, it must authenticate itself to the default CA through312

a direct interaction. The default CA will execute G.Enroll to generate a signing key, Keyi(sig.), a (public)313

membership key, Keyi(mem.), and a revocation key, Keyi(rev.), for Delegatee(i). All these generated keys314

and PKCA are sent toDelegatee(i) using a secure transmission protocol. Upon receiving this required knowl-315

edge, Delegatee(i) first chooses a random number ξ and a temporary identity alias(V ID) and then generates316

a group signature σi as shown in Eq. (9), where T is a timestamp added to defend against replay attacks,317

V ID is defined as a tetrad (ID, Profile, Context, Policy), ID is the unique identifier of the Delegatee(i),318

Profile refers to the Delegatee(i)’s profile (e.g., attributes and personal information), Context refers to the319
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security contexts (e.g., trust level and authentication level) and other context considerations (e.g., battery320

status, working mode), and Policy is a set of policies associated with Delegatee(i)’s preferences or access321

permissions. Subsequently, by using the public key PKLAG of the default LAG, Delegatee(i) encrypts322

the message {alias(V ID), gξ, σi, T} to produce an access request ARi = (alias(V ID), gξ, σi, T )PKLAG
and323

sends ARi to the default LAG.324

ii) When Delegatee(i) needs to migrate a session and the trust relationship between the two relevant325

V2G network domains has already been established, Delegatee(i) generates a group signature σi, as shown326

in Eq. (9), using the necessary knowledge provided by the target CA from the other V2G network domain,327

and subsequently produces an access request ARi = (alias(V ID), gξ, σi, T )PKLAG
using the target LAG’s328

public key PKLAG. Then, it sends ARi to the target LAG.329

σi = G.Sign(mPKCA,Keyi(sig.),Keyi(mem.),Keyi(rev.),ΩCA, alias(V ID)‖gξ‖T ) (9)

iii) When Delegatee(i) needs to migrate a session and no trust relationship between the two relevant V2G330

network domains exists, Delegatee(i) must authenticate itself to the CC by a direct interaction. The CC will331

execute G.Enroll to generate Key′i(sig.), Key
′
i(mem.) and Key′i(rev.) for Delegatee(i). All these generated332

keys and PKCC are then sent to Delegatee(i) using a secure transmission protocol. Upon receiving this333

required knowledge, Delegatee(i) first chooses a random number ξ and a temporary identity, alias(V ID)334

and then generates a group signature, σi, as shown in Eq. (10). Subsequently, by using the CC’s master335

public key, mPKCC , Delegatee(i) encrypts the message {alias(V ID), gξ, σi, T} to produce an access request336

ARi = (alias(V ID), gξ, σi, T )mPKCC
and sends ARi to the CC. Upon receiving the request ARi, the CC337

uses its master private keymSKCC to decrypt the request to obtain the secret message {alias(V ID), gξσi, T}338

and executes G.V er to check the validity of the group signature σi. If the message is invalid, the CC rejects339

the access request; otherwise, the CC uses the target LAG’s public key PKLAG to re-encrypt the message340

{alias(V ID), gξ, σi, T}, producing a new access request AR′i = (alias(V ID), gξ, σi, T )PKLAG
. Finally, it341

sends AR′i to the target LAG.342

σi = G.Sign(mPKCC ,Key
′
i(sig.),Key

′
i(mem.),Key

′
i(rev.),ΩCC , alias(V ID)‖gξ‖T ) (10)

Upon receiving ARi or AR′i, the default/target LAG first decrypts the message using its private key343

SKLAG to obtain the secret message {alias(V ID), gξ, σi, T}. Then, it checks to ensure that the time-stamp344

T falls within the allowable time-scope by comparing it with the current time. When T is legitimate, it345

executes G.V er to check the validity of the group signature σi. If the validation fails, the LAG replies with346

an error message rejecting the access request, either directly to Delegatee(i) or through the CC; otherwise,347

upon validation success, the LAG sends the message {alias(V ID), gξ, σi, T}, encrypted by the defined348

shared session key Shared Key(sess.), to the managing CA. After receiving the message, the CA obtains349

the identity of ARi by executingG.Open, which indicates that the CA can provide conditional privacy. Then,350

it invokes the deployed Profiles Repository to map the profiles of Delegatee(i) with V ID. The mapped351

profiles of V ID, together with the Context, are then sent to the Policies Repository to obtain the relevant352

disclosed policies, which are, finally, sent back to the LAG. After receiving the relevant policies, the LAG will353

combine them and decide whether to approve the authority authentication. When the decision is positive,354

the LAG chooses another random number ξ′, generates λ′ = ECDSA.Sign(SKLAG, alias(V ID)‖gξ‖gξ′)355

and then sends a message {gξ′ , λ′} to Delegatee(i) while, in parallel, it computes a session key, Key(sess.) =356

(gξ)ξ
′
. Subsequently, it erases ξ′ from its memory; otherwise, the access request would be rejected.357

Upon receiving the message {gξ′ , λ′}, Delegatee(i) will execute ECDSA.V er(PKLAG, alias(V ID)‖gξ‖gξ′ , λ′)358

to verify the validity of λ′. If the result is ‘1’, Delegatee(i) generates another session key Key′(sess.) = (gξ
′
)ξ359
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corresponding to Key(sess.) and erases ξ from its memory. Subsequently, Delegatee(i) will produce a ses-360

sion Si = (alias(V ID)‖gξ‖gξ′)Key′(sess.) through symmetric encryption, which is then sent to the LAG.361

Upon receiving the message, the LAG will decrypt it using Key(sess.) and check its validity. If it is valid,362

the LAG concludes that Delegatee(i) has established a session key and proceeds with a normal session;363

otherwise, the access request is rejected. Finally, when the access request is accepted, a report is sen-364

t to the CA to update the Access List. The membership information of the CA should be updated as365

ΩCA = (c
Keyi(mem.)
l , µl ·Keyi(mem.)).366

ΩCA =

c(∏n
j=k Keyj(rev.))/Keyi(rev.)

l , µl ·
( n∏
j=k

Keyj(rev.)

)
/Keyi(rev.)

 (11)

3.4. Discussions of Session Revocation and Recovery367

In a real world application, within a period of time after the delegation, the sessions of some EV s may368

expire or some EV s may want to suspend their session services for some amount of time according to plans369

made in advance.370

For the former case, because the expiration time of the session for an accessed Delegatee(i) is registered371

in the Access List of the serving CA, after the registered expiration time of Delegatee(i) has elapsed, the372

assigned signing key Keyi(sig.) is invalidated from then on. The serving CA should remove Delegatee(i)373

and execute G.Revoke(mPKCA,Keyi(rev.),ΩCA) to update the membership information. The updated374

membership information is denoted as ΩCA = (c
Keyi(rev.)
l , µl · Keyi(rev.)). Note that in AccessAuth, to375

ensure forward security for session revocation, the anonymity of the revoked session’s protocol must be376

executed before the revocation such that eavesdroppers or adversaries cannot correlate the revoked session377

and derive previous or subsequent interrogations.378

For the latter case, when Delegatee(i) wishes to reactivate a suspended session, the registering CA is379

generally required to execute G.Enroll to generate new keys (e.g., Key′i(sig.), Key
′
i(mem.) and Key′i(rev.))380

for Delegatee(i) and then re-invoke the authentication procedure described above. Obviously, this approach381

imposes additional authentication overhead and greatly increases the authentication delay. To overcome382

the shortcomings of this inconvenient approach, AccessAuth still uses the previously assigned keys. We as-383

sume that, at the time when Delegatee(i) wishes to reactivate its session service, the session represented by384

{Sk, ...Sn} (the session for Delegatee(i), Si ∈ {Sk, ...Sn}) has been revoked, and the current membership in-385

formation is represented by ΩCA =

(
c
∏n

j=k Keyj(rev.)

l , µl ·
∏n
j=k Keyj(rev.)

)
. Therefore, when Delegatee(i)386

wishes to recover its session service, we need only update the membership information as shown in Eq. (11).387

In this way, Delegatee(i) can automatically reactivate its previous session.388

4. Performance-Security Trade-off389

4.1. Proofs of Security & Privacy Requirements390

This section analyzes AccessAuth with respect to the critical security and privacy preservation require-391

ments listed in Section 2.392

1) Mutual authentication, verification and their defense against attacks. Regardless of whether a trust393

relationship has been established between two relevant V2G networks, the authentication procedures in394

AccessAuth allow only a legitimate EV in the networks to generate a valid group signature based on the395

keys generated by G.Enroll and the membership information Ω. Subsequently, authentication of the target396

LAG is achieved by responding with the message {gξ′ , ECDSA.Sign(SKLAG, V ID‖gξ‖gξ
′
)}. Using that397

message, the EV can determine the identity of the target LAG and proceed with a normal session. Therefore,398

AccessAuth satisfies the requirement of mutual authentication.399
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Additionally, during the setup phase of the federated-IoT-enabled V2G network environment, only the400

CA can generate valid certificates—including IDLAG and PKLAG—for the target LAG. Consequently,401

other LAGs or illegal entities cannot eavesdrop using different IDs and public keys. Therefore, we can402

conclude that AccessAuth also satisfies the verification requirement.403

Moreover, AccessAuth can prevent various types of well-known security attacks. For example, the404

temporary identity alias introduced for EV and the generated shared secret authentication and session keys405

efficiently defeat impersonation and repudiation attacks. Similarly, because adversaries cannot decrypt406

encrypted messages with the private key owned only by the certified entity in the communication, Man −407

In − The − Middle(MITM) attacks can also be defeated. Because the shared secret keys for ongoing408

sessions are different and are regenerated for newly initiated sessions, the well-known key attacks can also409

be prevented. Finally, the timestamp T added to the generated group signature during the authentication410

procedure can defeat replay and injection attacks, and because the CA maintains conditional privacy, the411

identity and location of an EV can be verified to resist redirection attacks.412

2) Session key establishment. Session keys (e.g., Key(sess.) and Key′(sess.)) generated by challenge-413

response (gξ, gξ
′
) are used as shared secret keys for each authority between the EV and LAG within the414

whole expiry period. Thus, data confidentiality and integrity in the sessions can be ensured.415

3) Strong anonymity and untraceability of EV s. In the authentication procedures described forAccessAuth,416

the EV creates a temporary identity alias, and the FSR-GS is used to sign the access request with the alias.417

Thus, during an ongoing authentication and session, the EV s private information is effectively protected,418

even for revoked sessions. Because an EV will apply for the next session using a new alias(V ID), eavesdrop-419

pers or adversaries will be unable to correlate the sessions and derive previous or subsequent interrogations,420

as described in detail for FSR-GS in [33, 34].421

4) Conditional privacy preservation. In an emergency, the identities and locations of EV s must be able422

to be interrogated. In the authentication procedures described for AccessAuth, only the CA can obtain this423

private information by executing G.Open, indicating that conditional privacy can be preserved.424

5) Anonymity for CAs and the CC. In the authentication procedures described for AccessAuth, an425

access request triggered by an EV is encrypted by the PKLAG of the target LAG. Only the target LAG426

can use its SKLAG to decrypt and obtain either the secret message or the identity of the registering CA427

or CC; consequently, the identity of the registering CA or CC is hidden from all legal and illegal entities428

except the visited LAG. Thus, the anonymity of both the CAs and the CC can be guaranteed.429

4.2. Performance Analysis and Evaluation430

To numerically analyze and evaluate the performance ofAccessAuth, we consider a federated-IoT-enabled431

V2G network environment including four V2G network domains. First, to evaluate the capacity-based active432

access admission control scheme, we conducted a simulation using the MATLAB 2012a platform. The433

relevant performance characteristics of the executing host were as follows: a 64-bit Windows 7 operating434

system and an Intel(R) Core(TM) i5-3450 CPU running at 3.10 GHz with 4 GB of RAM. In the simulations,435

the initial number of served sessions in each V2G network domains was set to 100, the capacity limit of436

each V2G network domain was set to N capacity
i = 200 (i = 1, 2, 3, 4), the time period ε was set to ε = 60s,437

and the session migration probability matrix during the time period was assumed to consist of three cases:438

Case 1: MS =


0.6 0.15 0.05 0
0.15 0.6 0.15 0.05

0 0.15 0.65 0.15
0.05 0.15 0.6 0.15

 ; Case 2: MS =


0.8 0.05 0.1 0
0.05 0.75 0.05 0.05

0 0.05 0.8 0.1
0.05 0.05 0.7 0.1

 ; and Case 3:439

MS =


0.6 0.05 0.1 0
0.05 0.6 0.05 0.05
0.1 0.05 0.6 0.05
0 0.7 0.05 0.05

 . The corresponding vectors of session termination probability during440

the time period were ~TS = {0.2, 0.05, 0.05, 0.05}, ~TS = {0.05, 0.1, 0.05, 0.1} and ~TS = {0.25, 0.25, 0.2, 0.2},441

respectively. Note that the configurations for the three cases were chosen randomly, but the session migration442

probability and the session termination probability vary considerably across the different scenarios.443
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Fig. 3 shows the impact of overload probability on the average ideal number of admissible sessions in444

the V2G network environment. We can clearly see that the ideal number of admissible sessions gradually445

increases as the overload probability limit increases. Nevertheless, even when using the same overload prob-446

ability limit for different cases of MS, the ideal number of admissible sessions will be different. Concretely,447

in Case 1, the average probability of session migration is greater; therefore, the ideal number of admissible448

sessions must be reduced to avoid migrated and newly initiated sessions arriving in great numbers in the449

V2G network, causing the overload probability to increase beyond the given limit. In Case 3, the average450

probability of session termination is greater, which means those session durations are relatively short. There-451

fore, the ideal number of admissible sessions can be increased—without negatively impacting the overload452

probability. In Case 2, because the average probabilities of session migration and termination fall between453

the preceding two cases, the ideal number of admissible sessions at the same overload probability limit lies454

in the middle as well.455
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Figure 3: The impact of overload probability on the average ideal number of admissible sessions in the V2G network environ-
ment.
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Figure 4: The impact of overload probability on average SDP and SBP in the V2G network environment.

Using Case 2 (the intermediate-level performance case) as an example, but with a different average new456

access request arrival rate, Fig. 4 shows the impact of overload probability on the average migrated session-457

dropping probability (SDP) and average newly initiated session-blocking probability (SBP) by the averaged458

results over 500 time periods of ε. When the overload probability limit is fixed, when the average new459

access request arrival rate increases, both the average SDP and average SBP gradually increase because of460

the limited number of admissible new access requests. However, as the overload probability limit increases,461

the ideal number of admissible newly initiated access requests, Nadmissible
i , computed by Eq. (3) will also462

increase. Consequently, the number of admissible new access requests in the V2G network environment will463

increase as well. Thus, the average SDP and average SBP are gradually reduced. Note that the performance464
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penalty for dropping an ongoing session is more serious than that for blocking a newly initiated session;465

therefore, higher admission priorities are assigned to migrated sessions than to newly initiated sessions, and466

the reduction in average SDP is greater.467

Using Case 2 as an example with the same configuration as in the former experiment and a fixed overload468

probability p(overload) = 0.2, Fig. 5 shows the performance of system utilization in terms of the average469

number of sessions served in the created federated-IoT-enabled V2G network environment. The NOA-GM470

that we proposed in [35] and the method proposed in [36] were selected for comparison. The method in [36]471

was developed based on MIR (Mobile IP Reservation Protocol), in which, if the network load is lower472

than a pre-defined threshold, both migrated sessions and newly initiated access requests are admissible;473

otherwise, newly initiated access requests would be blocked. The NOA-GM first periodically evaluates the474

load status of the access networks using the proposed dynamic weighted load evaluation algorithm to identify475

candidate underloaded access networks. Then, it achieves the optimal results by evaluating the candidates476

using normalized models of objective and subjective metrics. From Fig. 5, in the proposed method, as the477

average new access request arrival rate increases, the average number of served sessions in the proposed work478

experiences a steady increase based on the previously demonstrated performance concerning the average ideal479

number of admissible sessions, the average SDP, and the average SBP. In the NOA-GM and the method480

in [36], when the average new access request arrival rate is relatively low, the average SBP and SDP in481

some time periods of ε may be low due to the fixed pre-defined threshold; therefore, the average number482

of served sessions gradually increases. However, as the average new access request arrival rate increases,483

the average SBP and SDP may be high due to the fixed pre-defined threshold, which adversely affects the484

average number of served sessions.485
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Figure 5: The performance of system utilization.

In addition, the performance of the authentication procedure of AccessAuth is analyzed and evaluated486

using two performance metrics: computational load and communication overhead. The scheme proposed487

in [19], the scheme named P 2 in [23], and the scheme in [28] are selected for comparisons. To achieve fair488

comparisons, all the compared schemes use the same experiment configuration. Concretely, the relevant489

performance parameters of entities involved in the V2G network environment, e.g., EV , LAG, CA and490

CC, are shown in Table 1, and the time costs of the primitive cryptographic operations conducted on these491

entities (obtained by the OpenSSL library) are shown in Table 2. For the sake of convenience, the time492

costs of highly efficient operations such as hash functions, symmetric encryption/decryption, Auth.code493

(HMAC), and point addition are omitted because their contributions to the overall computational load are494

insignificant. In this comparison, n EV s simultaneously trigger access requests (in 40% of these triggered495

access requests, no prior trust relationship exists between the relevant V2G network domains). Comparisons496

of the computational loads and the communications overhead are shown in Table 3 and Table 4, respectively.497

In Table 3, TEV , TLAG, TCA and TCC represent the computational load on a EV , LAG, CA and498

the CC, respectively. As Table 3 shows, when using AccessAuth, if a trust relationship exists between the499
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Table 1: The relevant performance parameters of involved entities.

Entity CPU RAM OS
EV Qualcomm(R) Octa-core 1.5 GHz 2 GB Android 4.2.2
LAG Intel(R) Dual-core 3.1 GHz 4 GB 64-bit Win-7
CA Intel(R) Hexa-core 1.6 GHz 16 GB Win server 2012
CC Intel(R) Hexa-core 1.6 GHz 16 GB Win server 2012

Table 2: The time costs of the involved primitive cryptographic operations.
Entity TSM (ms) TIO (ms) TEO (ms) TPO (ms)
EV 0.54 0.33 0.5 16.6
LAG 0.36 0.33 0.38 11.5
CA 0.3 0.26 0.31 8.6
CC 0.3 0.26 0.31 8.6
TSM : the time for a scalar multiplication operation;
TIO: the time for an inverse operation;
TEO: the time for a exponentiation operation;
TPO: the time for a pairing operation;

relevant V2G network domains, the primitive cryptographic operations for a successful access authentication500

are conducted on the entities EV , LAG and CA; otherwise, a successful access authentication requires501

additional cryptographic operations on the CC. Overall, pairing operations are required in the compared502

schemes; however, AccessAuth instead takes greater advantage of scalar multiplication operations, which503

are much more efficient than pairing operations and result in much less computational load. Therefore,504

AccessAuth is more efficient than the compared schemes.505

With respect to the communication overhead, a CA deployed in a V2G network domain is generally506

remotely connected with various LAGs; thus, we treat the communication overhead for transmitting an507

authentication message between a LAG and the CA as one unit and use it as a reference and criterion. The508

communication overhead between an EV and a LAG is assumed to be η (0 < η < 1). Similarly, because509

the CC is often located in a remote location in a V2G network environment, the communication overhead510

between the CC and a EV or a LAG can also be treated as one unit. In AccessAuth, when no prior511

trust relationship exists between relevant V2G network domains, the signed access request will be forwarded512

through the CC, which causes the total communication overhead to be η+ 5 for a successful authentication;513

otherwise, the authentication request will be forwarded directly to the LAG, and a successful authentication514

requires a total communication overhead of 2η + 3. Overall, as shown in Table 4, AccessAuth outperforms515

the compared schemes with respect to communication overhead. Because it achieves both computation and516

communication efficiency, AccessAuth has a more acceptable authentication delay; therefore, it is more517

suitable for practical application requirements.518

Table 3: Comparisons of computational load.

Schemes Computational load (ms)
scheme in [19] n× (TEV + TLAG + TCA)=n× ((TPO + 3TEO) + (TPO + 5TEO + 6TSM ) + (3TEO + 2TSM ))=n× 35.19
P 2 in [23] n× (TEV + TLAG + TCA)=n× ((4TPO + 9TEO + 10TSM ) + (6TPO + 6TEO + TSM ) + (4TEO + 5TSM ))=n× 183.84

scheme in [28] n× (TEV + TLAG + TCA)=n× ((4TPO + 9TEO + 8TSM ) + (6TPO + 2TEO + TSM ) + (4TEO + 3TSM ))=n× 180.64

AccessAuth
0.4 × n× (TEV + TCC + TLAG + TCA) + 0.6 × n× (TEV + TLAG + TCA)=0.4 × n× ((3TSM + 8TEO + TIO)

+(TSM ) + (TIO + 18TSM ) + (3TEO))+0.6 × n× ((3TSM + 8TEO + TIO) + (TIO + 18TSM ) + (3TEO))=n× 13.81
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Table 4: Comparisons of communication overhead.

Schemes Communication overhead
scheme in [19] n× (6η + 4)
P 2 in [23] n× (3η + 4)

scheme in [28] n× (4η + 5)
AccessAuth 0.4 × n× (η + 5) + 0.6 × n× (2η + 3)

5. Conclusion519

This paper addresses the security and privacy requirements for access authentication in a federated-IoT-520

enabled V2G network environment and proposes AccessAuth as a lightweight protocol for capacity-based521

security access authentication. The implemented capacity-based active access admission control scheme in522

AccessAuth was demonstrated to efficiently reduce the SDP for migrated sessions while maintaining a low523

SBP for newly initiated access requests. Moreover, the designed authentication model, which includes specific524

authentication procedures that consider whether prior trust relationships exist between the relevant V2G525

network domains, was shown to efficiently satisfy the critical security and privacy preservation requirements.526

Finally, analytical and evaluation results were used to demonstrate the performance of AccessAuth with527

regard to computational load and communication overhead. The results indicate that AccessAuth is more528

suitable for practical applications requirements than are previous approaches.529

In the future, we plan to implement this protocol as middleware architecture in a federated-IoT-enabled530

V2G network environment to enhance its operating efficiency. Additionally, continuously improving this531

protocol to cope with emerging security and privacy concerns and some other open issues are directions we532

hope to explore further in future work.533
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