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Analysis of Multiple Waveguide Discontinuities
Using Propagation Operator Method

and Beam Propagation Method
Keita Morimoto and Yasuhide Tsuji, Member, IEEE, Member, OSA

Abstract—We apply an analysis scheme combining propagation
operator method (POM) and beam propagation method (BPM)
to waveguide discontinuity problems. In this approach, finite
element method (FEM) with higher adaptability to waveguide
geometry is utilized for discretizing waveguide cross section.
While BPM based on FEM (FE-BPM) can efficiently analyze
waveguides with long propagation distance, it encounters serious
degradation of accuracy when waveguides with discontinuous
structure has to be analyzed. The presented method overcomes
this defect by applying POM which can analyze discontinuous
facets and sufficiently cover various mode coupling.

Index Terms—Waveguide discontinuities, propagation opera-
tor method, beam propagation method, finite element method,
Denman-Beavers iterative scheme.

I. INTRODUCTION

Recently, a lot of high-performance optical waveguide de-
vices have been developed to realize high speed and large
capacity optical communication systems. Among them, since
splicing loss caused by the butt-coupling between different
kind of optical waveguides greatly affects the deterioration
of the device performance, it is necessary to evaluate the
characteristics of the reflection and transmission at the con-
nection facets properly. On the other hand, the discontinuous
structures cause a problem even in the design of optical
devices. Topology optimization techniques, for example, can
design high performance optical devices with unpredictable
waveguide structures automatically and have been actively
developed in recent years [1]–[3]. However, they require
enormous computational cost in particular for designing long-
length devices because it is necessary to repeat the iterative
calculation of analyzing the propagation characteristics until
convergence condition is satisfied or the maximum iteration
number is reached. Efficient topology optimization methods
using beam propagation method (BPM) for propagation analy-
sis has also been proposed [4], [5]. However there is a problem
that ordinary BPM can not handle reflected waves caused by
discontinuous structures. In order to solve these problems,
efficient analysis of discontinuous structure is indispensable.

Direct numerical approach such as finite element method
(FEM) [6], [7] and finite difference time domain (FDTD)
method [8] have been widely used for calculation of various
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optical waveguides, including discontinuity problems. How-
ever, these techniques are not desired for efficient analysis
because a large number of discrete meshes are required. On
the other hand, bidirectional eigenmode propagation (BEP)
method [9]–[11] can evaluate reflection and transmission char-
acteristics by discretizing only the waveguide cross-section.
However it is not so readily to analyze the problems with com-
plicated structures because a lot of radiation and evanescent
modes must be taken into account and large computational
cost is required for mode expansion. Therefore, it has been
known that propagation operator method (POM) [12]–[15] is
one of the best effective approaches for evaluating the propa-
gation characteristics at optical waveguide discontinuity. POM
can calculate both reflected and transmitted field including
radiation mode at the discontinuous facets just analyzing the
waveguide cross-section boundary without mode expansion.
In the past studies of POM, finite difference method (FDM)
is usually employed to discretize the waveguide cross-section,
and these recent works in [14], [15] show that they are compe-
tent to analyze including evanescent modes in a full-vectorial
analysis. More recently, we investigated that POM based on
FEM which is employed as alternative discretization scheme
to make the discrete meshes more flexible, and demonstrated
its highly accurate analysis in two- and three-dimensional
waveguide problems [16], [17]. In POM analysis, it is assumed
that all the structures in the propagation direction excluding
the discontinuous boundary are uniform. This fact suggests
that analysis of multiple discontinuities is difficult in ordinary
POM.

A simple approach for analyzing the multiple discontinuous
structures using POM can deal with only a structure uniform
in the propagation direction between discontinuous bound-
aries. This method is categorized into a bidirectional-BPM
(Bi-BPM) in a broad sense. As Bi-BPMs, several iterative
and non-iterative techniques have been proposed in the past
studies [18]–[24]. In terms of the iterative approaches for the
multiple discontinuities problems, BPM is applied alternately
to forward and backward waves between discontinuous facets,
and the electromagnetic fields at the end of the facets are
updated by appropriately adding up the contributions [24].
This process has to be repeated until a certain convergence
criterion is satisfied, in addition, it is usually difficult to
deal with interference of light and significant accuracy de-
terioration may occur in the analysis of strongly guiding
waveguides. On the other hand, in non-iterative approaches, by
creating transfer matrices, it is possible to efficiently analyze
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multiple discontinuities problems including interference of
light between the discontinuous structures without iterative
beam propagation analysis. In this case, in order to obtain
the transfer matrices, the exponential matrix operator has to
be approximated by some polynomial form of the matrix.
Although, in the BEP, the transfer matrices can be constructed
without using such an approximation, all or a sufficiently large
number of the eigenmodes at each waveguide cross-section has
to be evaluated. Moreover, methods based on mode expansion
such as BEP, unlike field-based techniques such as POM and
BPM, require reconstruction of the transfer matrix, which is
usually expensive, if the structure continuously varies between
discontinuities.

Although the BPM based on slowly varying envelope ap-
proximation [25]–[28] can not consider the reflected wave, it is
very useful for propagation analysis where the structure con-
tinuously varies in the propagation direction. The combined
method with BEP and BPM has been also proposed, however,
the BPM is independently applied to the incident, reflected and
transmitted wave before and after BPM calculation [29]. Non-
iterative bidirectional BPM based on FEM, which does not re-
quire mode expansion, has been reported [19], however, in this
approach, although fundamental and radiated backward waves
are considered, the radiated transmitted fields are ignored and
its applicability is limited to simple grating structures.

In this paper, an analysis scheme combining POM and BPM
to multiple waveguide discontinuity problems is demonstrated
in two-dimensional problems. In our method, discontinuous
facets are analyzed by POM and the interval region where
structure continuously varies are efficiently calculated by
BPM. Once the discontinuous structures are analyzed by POM,
it is possible to efficiently calculate the propagating field in
several waveguide devices with different structure between the
discontinuities because reconstruction of the operator matrix
is not required. In addition, FEM with higher adaptability
to waveguide geometry is utilized for discretizing waveguide
cross-section. We investigate the validity of the proposed
method by some numerical analysis examples.

II. COMBINED METHOD OF POM AND BPM
A. Basic Equation

We consider a two-dimensional (2-D) optical waveguide
connected to a discontinuity cross-section which is shown in
Fig. 1, where x and y are the transverse directions, and z
is the propagation direction. In order to suppress spurious
reflections of radiated waves toward y direction from the
artificial boundaries, perfect matched layer (PML) [30] is
placed at the ends of the computational domain. Assuming
that there is no variation in the x direction (∂/∂x), we obtain
the following basic equation:

∂

∂y

(
p

sy

∂Φ

∂y

)
+

∂

∂z

(
syp

∂Φ

∂z

)
+ k20syqΦ = 0 (1)

where k0 is the free space wavenumber, and Φ, p and q are
given by

Φ = Ex, p = 1, q = n2 for TE modes (2)

Φ = Hx, p = 1/n2, q = 1 for TM modes (3)

where Ex and Hx are x component of electric and magnetic
fields, respectively, and n is the refractive index. sy is the PML
parameter and is given by

sy = 1− j
(ρ
d

)2

tanδ (4)

where d is the thickness of PML, ρ is the distance from the
beginning of PML (PML surface), and δ is the loss angle at
the end of PML (ρ = d).

B. POM Analysis

Considering light wave propagates along the z direction
with propagation constant β, and substituting a solution of
the form

Φ(y, z) = ϕ(y)exp(−jβz) (5)

into (1), we obtain the following equation:

∂

∂y

(
p

sy

∂ϕ

∂y

)
+

(
k20syq − sypβ

2
)
ϕ = 0. (6)

Then, applying FEM based on Galerkin method to the waveg-
uide cross-section, we obtain the following matrix equation:

([K]− β2[M ]){ϕ} = {0} (7)

where {0} is a null vector, and {ϕ} is the transverse field
components, the finite element matrices [K] and [M ], are given
by

[K] =
∑
e

∫
e

[
k20syq{N}{N}T

− p

sy

d{N}
dy

d{N}T

dy

]
dy (8)

[M ] =
∑
e

∫
e

syp{N}{N}T dy (9)

where {N} is the shape function vector and
∑

e extends over
all the different elements.

When the electromagnetic field ϕ is regarded as an arbitrary
field which is not certain eigenmode, z-dependence of light
propagation cannot be expressed as exp(−jβz). Thus, β in
(6) is replaced by jd/dz considering z direction dependence,
and we obtain the following matrix form second-order ordinary
differential equation:

d2{Φ}
dz2

+ [Q]2{Φ} = 0 (10)

where [Q] is the propagation operator matrix which is defined
by

√
[M ]−1[K], and this square root matrix is efficiently

calculated by Denman-Beavers iterative method [15] in which
not combersome mode expansion is not required.

As a solution of this differential equation, the electromag-
netic field can be formally expressed as

{Φ} =
{
ϕ(+)

}
e−j[Q]z +

{
ϕ(−)

}
ej[Q]z (11)

where
{
ϕ(+)

}
and

{
ϕ(−)

}
represent column vectors standing

for eigenmode amplitude of forward and backward waves,
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respectively. Defining Ψ as a pair of the electromagnetic field
for Φ in (11), it is given by

{Ψ} = j[P ]
c

ω

∂Φ

∂z

=
c

ω

{
[P ][Q]

{
ϕ(+)

}
e−j[Q]z (12)

−[P ][Q]
{
ϕ(−)

}
ej[Q]z

}
with

[P ] = [M0]
−1[M ] (13)

[M0] =
∑
e

∫
{N}{N}T dy. (14)

The boundary condition of a certain electromagnetic field at
the discontinuity boundary can be expressed as follows in a
matrix form:[

[I] [I]
[ZL] −[ZL]

] [
{ϕ(+)

L }
{ϕ(−)

L }

]
=

[
[I] [I]
[ZR] −[ZR]

][
{ϕ(+)

R }
{ϕ(−)

R }

]
(15)

where [Zi](i = L,R) is defined by [Pi][Qi] and the sub-
scripts L and R indicate the input waveguide side and the
output waveguide side, respectively. From (15), if there is
no backward wave in the output side waveguide, namely
{ϕ(−)

R } = {0}, we can derive the reflection amplitude as
follows: {

ϕ
(−)
L

}
=

[ZL]− [ZR]

[ZL] + [ZR]

{
ϕ
(+)
L

}
(16){

ϕ
(+)
R

}
=

{
ϕ
(+)
L

}
+
{
ϕ
(−)
L

}
(17)

where [Zi](i = L,R) can be regarded as an impedance
operator or an admittance operator depending on whether ϕ is
an electric field or magnetic field.

C. BPM Analysis

Substituting a solution of the form

Φ(y, z) = ϕ(y, z)exp(−jk0n0) (18)

into (1), we obtain the following equation for the slowly
varying complex amplitude ϕ:

∂

∂y

(
p

sy

∂ϕ

∂y

)
+sy

∂2ϕ

∂z2
−j2k0n0syp

∂ϕ

∂z
+k20(syq−n2

0p)ϕ = 0

(19)
where n0 is the reference refractive index. Then, dividing the
waveguide cross-section into the line elements, applying the
FEM to (18), and using Padé approximation, we obtain

− j2k0n0[M̃ ]
d{ϕ}
dz
+ ([K]− k20n

2
0[M ]){ϕ} = {0} (20)

[M̃ ] = [M ] +
1

4k20n
2
0

([K]− k20n
2
0[M ]). (21)

Applying the θ-scheme for the propagation direction z to (19)
yields

[A]i{ϕ}i+1 = [B]i{ϕ}i (22)

POM POM

{φ
(+)
IIR }

{φ
(−)
IR } BPM

BPM{φ
(+)
IL }

x z

y

{φ
(−)
IL }

{φ
(+)
IR }

{φ
(−)
IIL }

{φ
(+)
IIL }

Region 1 Region 3Region 2

PML

PML

{φ(+)}k

{φ(−)}k

{φ(+)}k−1

{φ(−)}k−1

{φ(+)}0 {φ(+)}1

{φ(−)}0 {φ(−)}1

∆z

Fig. 1. Combination of POM and BPM.

with

[A]i = −j2k0n0[M̃ ]i + θ∆z([K]i − k20n
2
0[M ]i) (23)

[B]i = −j2k0n0[M̃ ]i + (θ − 1)∆z([K]i − k20n
2
0[M ]i). (24)

From (22), when the electromagnetic field at the incident
position {ϕ}0 is given, the field amplitude at an arbitrary
position z = i∆z is obtained by sequential calculation.

D. Combining POM and BPM

Now, we consider a structure where two discontinuous
cross-sections are included in the waveguide as shown in Fig.
1. Dividing the region where it is assumed that the structure
gradually varies in the propagation direction into k subregions,
the relationship between the forward wave and the backward
wave at both ends of the region can be expressed by{

ϕ
(+)
IR

}
=

∏
i

[B]
−1
i [A]i

{
ϕ
(+)
IIL

}
(25){

ϕ
(−)
IR

}
=

∏
i

[A]
−1
i [B]i

{
ϕ
(−)
IIL

}
(26)

and combining these equations given by BPM and relationship
of POM like (15), we can obtain the final evaluation formula
as below[

{ϕ(+)
IL }

{ϕ(−)
IL }

]
= [PI][B][PII]

[
{ϕ(+)

IIR }
{0}

]
(27)

[PI] =

[
[I] [I]

[ZIL] −[ZIL]

]−1[
[I] [I]

[ZIR] −[ZIR]

]
[B] =

[∏
i[B]−1

i [A]i [0]
[0]

∏
i[A]−1

i [B]i

]
[PII] =

[
[I] [I]

[ZIIL] −[ZIIL]

]−1[
[I] [I]

[ZIILR] −[ZIIR]

]
where the subscripts I and II represent each boundaries with
different structures. If the waveguide structures of the input
side and the output side are the same, [PII] is the inverse matrix
of [PI]. Besides, when there are three or more discontinuous
cross-section, the transfer matrices obtained by BPM and POM
can be connected in multiple stages in the same way.
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Fig. 2. Problem setup of 2-D optical waveguide with an air-gap.

PML
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(a)

PML
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(b)

Fig. 3. Propagation field distribution obtained by FEM analysis when n1 =
3.54, n2 = 3.17 and L = 0.5 µm. Incident field: (a) fundamental TE mode
and (b) fundamental TM mode.

III. NUMERICAL SIMULATION RESULTS

A. Weakly guiding waveguides with an air-gap

In this section, in order to confirm the validity of the
proposed method described above, waveguides having two
discontinuous cross-sections as shown in Fig. 2 is analyzed
by the proposed method. We consider the problem that an
air-gap caused between the waveguides, and input and output
waveguides are assumed to have a same structure. First,
weakly guiding waveguides with core index n1 = 3.54,
cladding index n2 = 3.17, core width w = 1 µm is considered.
The computational window size is W = 5 µm and spurious
reflection from the end of the analysis region is suppressed by
imposing a perfectly matched layer (PML) [30] on the width
d = 0.5 µm from the end of the analysis region.

Figure 3 shows the propagation field distribution calculated
by FEM when the air-gap length L = 0.5 µm. In Fig. 3,
since the electric field is drawn for the TE mode and the
magnetic field for the TM mode, the amplitude of the field
propagating in the air-gap is smaller in the TM mode than in
the TE mode. Since there is no structure to confine light at the
gap region, it is seen that the light radiated to the air-gap is
widely spreading in the lateral direction and various modes are
excited. In this case, a simple evaluation scheme by overlap
integral which widely used in the analysis of the butt-coupling
between weakly guiding waveguides is insufficient and a more
rigorous analysis method is required.

Figure 4 shows the reflection of the fundamental mode
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Fig. 4. Reflection of the fundamental mode as a function of number
of discretization per wavelength; (a) convergence behavior with respect to
discretization number along transverse direction: (b) convergence behavior
with respect to discretization number along longitudinal dirction.
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Fig. 5. Normalized reflected and transmitted power of the fundamental modes
as a function of the air-gap length when n1 = 3.54, n2 = 3.17. Incident field:
(a) fundamental TE mode and (b) fundamental TM mode.

as a function of number of discretization per wavelength.
Since FEM requires discretization of the entire analysis region,
the length of analysis region along the longitudinal direction
L is set to 2.5 µm including the 0.5 µm of PML region
at the both ends. We employ uniform mesh with 2nd-order
triangular elements in FEM, and also 2nd-order line elements
are employed in the presented method. Figure 4(a) shows
the convergence behavior as a function of the discretization
number along transverse direction when the discretization
along the longitudinal direction is sufficiently fine. We can see
that the required discretization along the transverse direction
is almost same in both FEM and the present method. The
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Fig. 6. Electromagnetic field distribution at discontinuity boundary when
n1 = 3.54, n2 = 3.17 and L = 0.5 µm. Incident field: (a) fundamental TE
mode and (b) fundamental TM mode.

good convergence is obtained with about 10 elements per
wavelength. On the other hand, in the present method requires
less longitudinal discretization than FEM when the transverse
direction is sufficiently discretized, as shown in Fig. 4(b). In
this example, the computational times (and the size of matrix
to be solved) are 25 ms (130 unknowns) and 60 ms (5265
unknowns) in the present method and FEM, respectively. Of
cause, the matrix constructed in the FEM is coarse and may be
efficiently solved and the computational times are not much
different with each other in this example. However, in the
case of three-dimensional vector wave analysis, the present
method is expected to be a more efficient method than FEM
due to the large reduction of discretization [17]. Moreover,
since it is possible to calculate the transfer matrix in parallel
at the structure of each waveguide in POM, further efficiency
improvement can be expected.

Figure 5 shows the normalized reflected power and trans-
mitted power of the fundamental modes as a function of the
air-gap length L when the fundamental TE or TM mode with
operating wavelength of 1.3 µm is launched. From this figure,
it can be seen that the transmission and the reflection become
stronger or weaker while the air-gap length varies. This is
a phenomenon caused by Fabry-Perot resonance between
two discontinuous boundaries, and it can be confirmed that
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Fig. 7. Normalized reflected and transmitted power of the fundamental modes
as a function of the gap length when n1 = 3.6, n2 = 1. Incident field:
(a)fundamental TE mode and (b) fundamental TM mode.

the proposed method considers the interference of the light
reflected and transmitted at the discontinuous boundaries. This
figure also shows the results obtained by FEM for comparison,
and it shows that it agrees well with the result of our method.

The electromagnetic field distribution for L = 0.5 µm is
shown in Fig. 6. In terms of reflected waves and transmitted
waves, light spreads to the cladding region and it is seen that
the radiation field can be evaluated by the proposed method.
In the field distribution with respect to the incident field of
fundamental TM mode, the light spreads to the far side in the
transverse direction compared to the results of TE mode, and
simultaneously it is absorbed by PML imposed on the end
of the analysis region for suppressing the spurious reflection.
For the transmitted waves, the results of FEM with more
strict accuracy by discretizing the entire analysis region is also
depicted in Fig. 6, and it agree well with the result of the
proposed method in the core region. Although a slight error is
caused in the cladding region between FEM and our method,
as shown in Fig. 5, the error hardly affected for evaluating
the propagation characteristics of the fundamental mode, and
it is said that the analysis accuracy of the proposed method
can sufficiently offer the actual requirement of the evaluation
criteria.

B. Strongly guiding waveguides with an air-gap

Next, strongly guiding waveguides with core index n1 =
3.6, cladding index n2 = 1, core width w = 0.5 µm is
considered. The computational window size is W = 3.0 µm
and PML is imposed at the end of analysis region with the
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Fig. 8. Optical radiation from end facet of 2-D waveguide when fundamental
TM mode is launched: (a) propagation field distribution of magnetic field and
(b) magnetic field amplitude at propagation length LI = 0.1 µm, LII =
0.4 µm and LIII = 0.8 µm calculated by BPM and FEM.

same width as the above problem. Here, since the cladding
material is assumed to be the same as the air-gap, the diffrac-
tion of light is likely to occur in the cladding region when
the light is radiated to the air from the input waveguide, and
thus, analysis with higher accuracy than the weakly guiding
waveguide problem described above is required.

Figure 7 shows the normalized reflected power and trans-
mitted power of the fundamental modes as a function of the
air-gap length L when the fundamental TE or TM mode
with operating wavelength of 1.55 µm is launched. Although
it is found that the reflection and transmission are in good
agreement with FEM results when the gap length is relatively
long, they do not coincide in both TE and TM mode when the
gap length is short.

To study the reason, we investigate the light propagating

characteristics of fundamental TM mode radiated from a
single discontinuity facet using BPM, and compared with
the analysis result of FEM as shown in Fig. 8. This figure
shows the electromagnetic field distribution of the waveguide
cross-section propagated from discontinuous boundary to the
air by the distance LI = 0.1 µm, LII = 0.4 µm and
LIII = 0.8 µm. When the propagation distance is short, the
error between BPM and FEM is large, and as the propa-
gation distance becomes longer, the error becomes smaller.
Comparing amplitudes obtained by BPM and FEM, evanescent
waves which is attenuated with propagation on the cladding
region propagates without attenuation in BPM. This problem
is considered to be due to the fact that it can not be evaluated
correctly for the wavevector which are greatly different from
the propagation direction in approximation of BPM, as a result,
deterioration of accuracy in Fig. 7 is probably caused. On
the other hand, at the distance where the evanescent wave
is sufficiently attenuated, the result of the proposed method
is quite close to the results of FEM, and it can be handled
with high accuracy by this method. Since BPM is applied
to a uniform medium in the propagation direction here, it is
easy to create a transfer matrix using eigenmode expansion
instead of using BPM. However, when the structure varies
in the propagation direction, the computational cost becomes
enormous for the eigenmode expansion. It has been proposed
to suppress excitation of unnecessary modes by utilizing a
linear filter in full-vectorial finite element BPM [28], and
it is considered that undesired modes can be suppressed by
applying this filter to our method. However, it is difficult to
set the filtering range because it is necessary to handle various
radiation mode in the problem discussed here. Nevertheless,
since it can be calculated with relatively low calculation cost
by FEM when the propagation distance is short, the proposed
method is still very useful for analysis of optical waveguides
with long propagation distances.

C. A taperd waveguide between uniform waveguides

In the above two analysis examples, the BEP can be easily
applied because there are only two structures required for
eigenmode expansion and we confirm that same results are
obtained. Here, a tapered waveguide whose structure varies
continuously between two different uniform waveguides as
shown in Fig. 9 is analyzed. In order to show the applicability
to problems with significant multiple reflection at disconti-
nuities, the uniform waveguide with a core index of 3.24 and
cladding index of 3.17, and the tapered waveguide with a core
index of 1.45 and cladding index of 1.445 is employed. Such a
problem is difficult tot be evaluated by conventional BPM. The
fundamental mode with operating wavelength of 1.55 µm is
launched into a left side uniform waveguide with a core width
of 1 µm, and then, the light propagates bound for a uniform
waveguide with a core width of 4 µm via a tapered waveguide
whose width is linearly varying from 2 µm to 3 µm.

The electromagnetic field distribution at the input and output
ports is shown in Fig. 10. The inset in Fig. 10 shows the elec-
tromagnetic field distribution calculated by FEM, and it can be
seen that the light is strongly reflected from the discontinuity
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Fig. 9. Taper waveguide between uniform waveguides.

facets and a standing wave is observed. From this figure, we
can see that the obtained transmitted waves by the present
method and FEM agree well except for the PML region. The
transmitted powers obtained by the present method and FEM
are 44.23% and 44.68% in the case of TE mode and 45.34%
and 45.80% in the case of TM mode, respectively. It seems that
the slight difference of the electromagnetic field in the vicinity
of the PML region is due to the fact that the analysis accuracy
of BPM for the light radiated in the transverse direction is not
sufficient. However, the electromagnetic field is sufficiently
attenuated near the end of analysis region. There is no major
influence to the evaluation of transmission power. On the other
hand, although the analysis result by using conventional BPM
which cannot handle the reflection is also shown in the same
figure, it is greatly different from the result of this method or
FEM. The transmitted power obtained by BPM is 77.78% and
77.74% for TE mode and TM mode, respectively, which are
optimistically evaluated.

IV. CONCLUSION

We proposed a combination method of POM and BPM
based on FEM for multiple waveguide discontinuity prob-
lem and investigated its validity. In the numerical example
assuming the case where the air-gap occurs between the
optical waveguides, it was shown that high precision analysis
can be performed except for analysis of a structure with
a short gap length in a strongly guiding waveguide prob-
lem. This remaining matter was shown to be due to the
inaccuracy for evaluation of the evanescent wave offered by
BPM approximation. The proposed method is very useful for
discontinuity problems with a long propagation distance and
high refractive index difference, and the efficiency will be
dramatically increased when it is applied to the analysis of
three-dimensional waveguide which requires a huge amount
of computational cost, and this is our future work.
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