Multiplicative induction and units for the ring of monomial representations

<table>
<thead>
<tr>
<th>メタデータ</th>
<th>言語: eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>出版者:</td>
<td></td>
</tr>
<tr>
<td>公開日: 2019-11-12</td>
<td></td>
</tr>
<tr>
<td>キーワード (Ja):</td>
<td></td>
</tr>
<tr>
<td>キーワード (En):</td>
<td></td>
</tr>
<tr>
<td>作成者: Takegahara, Yugen</td>
<td></td>
</tr>
<tr>
<td>メールアドレス:</td>
<td></td>
</tr>
<tr>
<td>所属:</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10258/00010040</td>
</tr>
</tbody>
</table>
Multiplicative induction and units for the ring of monomial representations

Yugen Takegahara*

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Abstract

Let G be a finite group, and let A be a finite abelian G-group. For each subgroup H of G, $\Omega(H, A)$ denotes the ring of monomial representations of H with coefficients in A, which is a generalization of the Burnside ring $\Omega(H)$ of H. We research the multiplicative induction map $\Omega(H, A) \to \Omega(G, A)$ derived from the tensor induction map $\Omega(H) \to \Omega(G)$, and also research the unit group of $\Omega(G, A)$. The results are explained in terms of the first cohomology groups $H^1(K, A)$ for $K \leq G$. We see that tensor induction for 1-cocycles plays a crucial role in a description of multiplicative induction. The unit group of $\Omega(G, A)$ is identified as a finitely generated abelian group. We especially study the group of torsion units of $\Omega(G, A)$, and study the unit group of $\Omega(G)$ as well.

Contents

1 Introduction 2

2 Monomial Burnside rings 4
 2A 1-cocycles ... 4
 2B Isomorphism classes .. 6
 2C Tensor product ... 9

3 Multiplicative induction 12
 3A Tensor induction .. 12
 3B Tensor induction for 1-cocycles 16
 3C Algebraic maps ... 18

4 The mark homomorphism 21
 4A The first cohomology group 21
 4B The ghost ring ... 23
 4C Invariant of tensor induction 26

*This work was supported by JSPS KAKENHI Grant Number JP16K05052.
2010 Mathematics Subject Classification. Primary 19A22; Secondary 20J06, 16U60.
Keywords. Burnside ring, cocycle, idempotent, monomial Burnside ring, multiplicative induction, tensor induction, unit.
1 Introduction

Let G be a finite group, and let A be a finite abelian group on which G acts via a homomorphism from G to the group of automorphisms of A. We are concerned with the ring $\Omega(G, A)$ of monomial representations of G with coefficients in A, which was introduced by Dress [12] and is called the monomial Burnside ring for short. This ring contains the ordinary Burnside ring $\Omega(G)$ as a subring, and is applicable to the representation theory of finite groups. There are some well-known facts about $\Omega(G, A)$ (see, e.g., [2, 3, 12, 13, 22, 23]). Many properties of Burnside rings seem to be extended to monomial Burnside rings; for instance, the prime ideal spectrum of $\Omega(G, A)$ was studied in [12] (see also [10]). In this paper, among others, we focus our mind on the concept of multiplicative induction for monomial Burnside rings and the unit group of $\Omega(G, A)$. There are some specific characterizations of them which mean the algebraic peculiarities of $\Omega(G, A)$.

Following [12], we give the concept of (G, A)-sets and define simple (G, A)-sets $(G/K)_\nu$ for $K \leq G$ and 1-cocycles $\nu : K \to A$ in Section 2. The monomial Burnside ring $\Omega(G, A)$, which is defined to be the Grothendieck ring of the category of (G, A)-sets (see Definition 2.13), is the commutative unital ring consisting of all formal \mathbb{Z}-linear combinations of the symbols $[(G/K)_\nu]$ corresponding to the isomorphism classes of (G, A)-sets containing simple (G, A)-sets $(G/K)_\nu$ (see Proposition 2.14).

The concept of multiplicative induction for Burnside rings was introduced by tom Dieck [9] and Dress [11], and was developed by Yoshida [32]. In an attempt to introduce multiplicative induction for monomial Burnside rings, Barker [2] successfully defined the tenduction map $\widetilde{T}_Cten_H^G : B(C, H) \to B(C, G)$ for each $H \leq G$, where C is a supercyclic group and $B(C, H)$ is the monomial Burnside ring for H with fibre group C, as a generalization of multiplicative induction for Burnside rings. (If C is a finite cyclic group on which G acts trivially, then $\Omega(G, C) \simeq B(C, G).$)

In Section 3, we introduce the multiplicative induction map

$$\overline{\text{Map}}_H(G, -) : \Omega(H, A) \to \Omega(G, A), \quad x \mapsto \overline{\text{Map}}_H(G, x)$$
for each \(H \leq G \). When \(A \) is a cyclic group on which \(G \) acts trivially, this map is associated with tensor induction for linear characters of \(G \) (cf. [8, §13A]). We have \(\text{Map}_H(G, [(H/H)_{\sigma}]) = [\text{Map}_H(G, (H/H)_{\sigma})] = [(G/G)_{\sigma^G}] \) for all 1-cocycles \(\sigma : H \to A \) (see Example 3.13), where 1-cocycles \(\sigma^G : G \to A \) are obtained from \(\sigma : H \to A \) by tensor induction. There is a nice formula of multiplicative (tensor) induction for Burnside rings (cf. [8, (80.49) Corollary]). The methods used in [8, §80C] enable us to establish that for any \((H, A)\)-sets \(T_0 \) and \(T \),

\[
\overline{\text{Map}}_H(G, [T_0] - [T]) = \sum_{i=0}^{n} (-1)^i[\overline{\text{Map}}_H(G, T_0, T_1, \ldots, T_i)],
\]

where \(n = |G : H| \) and \(T = T_1 = \cdots = T_n \) (see Proposition 3.22).

The mark homomorphism \(\rho_G \), which was introduced by Dress [12], is a ring monomorphism from \(\Omega(G, A) \) to the set \(\mathcal{U}(G, A) := (\prod_{K \leq G} \mathbb{Z}H^1(K, A))^G \) of \(G \)-invariants in the direct product of integral group rings of the first cohomology groups \(H^1(K, A) \) for \(K \leq G \), where the action of \(G \) on \(\prod_{K \leq G} \mathbb{Z}H^1(K, A) \) is given by the conjugation maps \(\text{con}_K^g : \mathbb{Z}H^1(K, A) \to \mathbb{Z}H^1(gK, A) \) for \(K \leq G \) and \(g \in G \). For each \(U \leq G \), there is a ring homomorphism \(- \otimes^G : \mathbb{Z}H^1(U, A) \to \mathbb{Z}H^1(G, A) \) derived from tensor induction which assigns to a 1-cocycle \(\tau : U \to A \) the 1-cocycle \(\tau \otimes^G : G \to A \). In Section 4, we describe \(\overline{\text{Map}}_H(G, x) \in \Omega(G, A) \) for each \(x \in \Omega(H, A) \) via \(\rho_G \) as

\[
\rho_G(\overline{\text{Map}}_H(G, x)) = \left(\prod_{K \leq G} \text{con}_K^G(x_{K \cap H \leq G}) \right) \in \mathcal{U}(G, A)
\]

under the assumption that \(\rho_H(x) = (x_L)_{L \leq H} \), where \(\rho_H : \Omega(H, A) \to \mathcal{U}(H, A) \) is the mark homomorphism (see Theorem 4.16). This fact is a generalization of [32, §3(h.3)]. We make use of Eq.(1.1) to prove Eq.(1.2).

The fundamental theorem of the Burnside ring \(\Omega(G) \) (cf. [32, Lemma 2.1]) is a useful instrument for finding the idempotents of \(\Omega(G) \) (cf. [33, 4.12 Theorem]), and is also essential to the Yoshida criterion (see Theorem 6.4) for the units of \(\Omega(G) \). In Section 5, we insist on the existence of a short exact sequence

\[
0 \to \Omega(G, A) \xrightarrow{\varphi} \tilde{\Omega}(G, A) \xrightarrow{\psi} \text{Obs}(G, A) \to 0
\]

of additive groups (see Theorem 5.9) derived from the Cauchy-Frobenius lemma (see, e.g., [33, 2.7 Lemma]), which generalizes the fundamental theorem of \(\Omega(G) \).

Information of the primitive idempotents of the Burnside algebra \(\mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G) \) can help us to realize the units of \(\Omega(G) \). Following [33, §4], we review the primitive idempotents of \(\mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G) \) and those of \(\Omega(G) \); the latter are precisely the primitive idempotents of \(\Omega(G, A) \) (see Theorem 5.18).

The unit group \(\Omega(G)^\times \) of the Burnside ring \(\Omega(G) \) is studied in many papers (see, e.g., [6, 9, 11, 15, 18, 19, 20, 24, 30, 32]). Section 6 is devoted to a review of some
well-known facts about $\Omega(G)^\times$. We also study a certain specific type of units (see Proposition 6.11), and present an additional fact about the structure of $\Omega(G)^\times$ for which the Yoshida criterion plays a crucial role (see Corollary 6.18).

The unit group $\Omega(G,A)^\times$ of the monomial Burnside ring $\Omega(G,A)$ was studied in [2, 22]. In Section 7, we show that $\Omega(G,A)^\times$ is a finitely generated abelian group (see Proposition 7.2). Consequently, the group $\Omega(G,A)^\omega$ of torsion units of $\Omega(G,A)$ is a finite abelian group. The basic structure of $\Omega(G,A)^\omega$ is analyzed on the basis of a generalization of the Yoshida criterion (see Theorem 7.3). We adapt the methods presented in [2, 8] for an analysis of $\Omega(G,A)^\omega$, and successfully elucidate the structure of $\Omega(G,A)^\omega$ in the sequel (see Corollary 7.4). Specifically, if G is nilpotent, then the universal result deduces that $\Omega(G,A)^\omega \cong \Omega(G)^\times \times H^1(G,A)$ (see Example 7.6). This fact is a generalization of [22, Proposition 5.1].

Notation Let G be a finite group. We denote by ϵ the identity of G, and denote by $S(G)$ the set of subgroups of G. The subgroup generated by $g_1, \ldots, g_k \in G$ is denoted by $\langle g_1, \ldots, g_k \rangle$. We write $H \leq G$ if H is a subgroup of G, and write $H < G$ if H is a proper subgroup of G. The Möbius function on the poset $(S(G), \subseteq)$ of all subgroups of G is denoted by μ (see, e.g., [1]). We denote by $C(G)$ a full set of non-conjugate subgroups of G. Let $H \subseteq G$. We set $gH = gHg^{-1}$ and $H^g = g^{-1}Hg$ for $g \in G$, and denote by $\langle H \rangle$ the set of conjugates of H in G. The normalizer of H in G is denoted by $N_G(H)$. We denote by $|G : H|$ the index of H in G, and denote by G/H the set of left cosets gH, $g \in G$, of H in G. Given $K, U \leq G$, $K \setminus G/U$ denotes the set of (K, U)-double cosets KgU, $g \in G$, in G. The category of finite left G-sets and G-equivariant maps is denoted by G-set. For each finite set X, we denote by $|X|$ the cardinality of X. The natural numbers, the rational numbers, and the complex numbers are denoted by \mathbb{N}, \mathbb{Q}, and \mathbb{C}, respectively. We set $[n] = \{1, 2, \ldots, n\}$ for each $n \in \mathbb{N}$. The identity map on a set Σ is denoted by id_Σ. For each group V, we denote by $\text{Hom}(V, (-1))$ the group consisting of all group homomorphisms from V to the unit group $\langle -1 \rangle$ of \mathbb{Z} with pointwise product.

2 Monomial Burnside rings

2A 1-cocycles

Throughout the paper, let G be a finite group, and let A be a finite G-group, that is, A is a finite group on which G acts via a homomorphism from G to the group of automorphisms of A (cf. [26, Chapter 1, Definition 8.1]). We start with the definition of (G, A)-sets introduced by Dress [12] (see also [27]). Given $g \in G$
and \(a \in A \), the effect of \(g \) on \(a \) is denoted by \(ga \). A finite free right \(A \)-set \(Y \) is called a \((G, A)\)-set if it is also a left \(G \)-set and if

\[
g(ya) = (gy)a
\]

for all \(g \in G \), \(a \in A \), and \(y \in Y \). A map between \((G, A)\)-sets is called a \((G, A)\)-equivariant map if it is a morphism of both left \(G \)-sets and right \(A \)-sets. We now obtain the category of \((G, A)\)-sets such that the empty set is an initial object, which is denoted by \((G, A)\)-set. Under the assumption that \(A \) is abelian, the set of isomorphism classes of \((G, A)\)-sets forms a commutative unital semiring, and the monomial Burnside ring \(\Omega(G, A) \) is defined to be the associated Grothendieck ring (cf. [12]).

For a \((G, A)\)-set \(Y \), we denote by \(Y/A \) the set of \(A \)-orbits \(yA := \{ya \mid a \in A\} \), \(y \in Y \), on \(Y \), which is considered as a left \(G \)-set with the action of \(G \) given by

\[
g(yA) = gyA
\]

for all \(g \in G \) and \(y \in Y \). A \((G, A)\)-set \(Y \) is said to be simple if \(Y/A \) is a transitive left \(G \)-set. Given a pair of \((G, A)\)-sets \(Y_1 \) and \(Y_2 \), their disjoint union \(Y_1 \cup Y_2 \) is also a \((G, A)\)-set. Every \((G, A)\)-set is a disjoint union of simple \((G, A)\)-sets. A subset of a \((G, A)\)-set is said to be a \((G, A)\)-subset if it is closed under the actions of \(G \) and \(A \).

Let \(A^\circ \) be the opposite group of \(A \). For each \(a \in A \), let \(a^\circ \) denote the element of \(A^\circ \) corresponding to \(a \). By definition, \(a^\circ b^\circ = (ba)^\circ \) for all \(a, b \in A \). We view \(A^\circ \) as a \(G \)-group with the action given by that of \(G \) on \(A \), and denote by \(F \) the semidirect product \(A^\circ \rtimes G \) of \(A^\circ \) and \(G \). Each \((G, A)\)-set \(Y \) is viewed as a left \(F \)-set with the action of \(F \) given by

\[
(a^\circ, g)y = (gy)a
\]

for all \((a^\circ, g) \in F \) and \(y \in Y \). A \((G, A)\)-set is simple if and only if it is a transitive left \(F \)-set. A bijection between \((G, A)\)-sets is an isomorphism of \((G, A)\)-sets if and only if it is an isomorphism of left \(F \)-sets.

Let \(H \leq G \). By restriction of operators from \(G \) to \(H \), we view \(A \) as an \(H \)-group. A map \(\sigma : H \to A \) is called a 1-cocycle or a crossed homomorphism if

\[
\sigma(h_1 h_2) = \sigma(h_1)^{h_2} \sigma(h_2)
\]

for all \(h_1, h_2 \in H \) (cf. [26, I, p. 243]). We define a 1-cocycle \(1_H : H \to A \) by \(1_H(h) = \epsilon_A \) for all \(h \in H \), where \(\epsilon_A \) is the identity of \(A \).

Definition 2.1. For each \(H \leq G \), we denote by \(Z^1(H, A) \) the set of 1-cocycles from \(H \) to \(A \). Let \(S(G, A) \) be the set of pairs \((H, \sigma)\) of \(H \leq G \) and \(\sigma \in Z^1(H, A) \). Given \((H, \sigma) \in S(G, A)\), we fix a complete set \(\{g_1, g_2, \ldots, g_n\} \) with \(g_1 = \epsilon \) of representatives of \(G/H \), and define a \((G, A)\)-set \((G/H)_\sigma\) to be the cartesian product \(A \times (G/H) \) with the left action of \(G \) and the right action of \(A \) given by

\[
g(a, g_j H) = (g_j \sigma(g_j^{-1} g g_j)^\circ a, g_j H) \quad \text{and} \quad (a, g_j H)b = (ab, g_j H),
\]
where \(gg_j H = g_j' H \), for all \(g \in G \), \(a, b \in A \), and \(j \in [n] \), respectively.

Let \((H, \sigma) \in \mathcal{S}(G, A) \). Then \((G/H)_\sigma\) is a transitive left \(F\)-set. We define
\[
F_{(H, \sigma)} := \{(\sigma(h)^{o-1}, h) \in F \mid h \in H\},
\]
so that \(F_{(H, \sigma)} \) is the stabilizer of \((\epsilon_A, H) \in (G/H)_\sigma\) in \(F \) (see [27, §2]), and make the set \(F/F_{(H, \sigma)} \) of left cosets of \(F_{(H, \sigma)} \) in \(F \) into a \((G, A)\)-set by defining
\[
g((a^o, r)F_{(H, \sigma)}) = (g a^o, gr)F_{(H, \sigma)} \quad \text{and} \quad ((a^o, r)F_{(H, \sigma)})b = ((ab)^o, r)F_{(H, \sigma)} \tag{2.2}
\]
for all \(g \in G \), \(b \in A \), and \((a^o, r) \in F\).

Lemma 2.2 Let \((H, \sigma) \in \mathcal{S}(G, A) \). Then \((G/H)_\sigma \simeq F/F_{(H, \sigma)}\) as \((G, A)\)-sets. In particular, the isomorphism class of \((G, A)\)-sets containing \((G/H)_\sigma\) is independent of the choice of \(g_2, \ldots, g_n \) in Definition 2.1.

Proof. There exists an isomorphism \(F/F_{(H, \sigma)} \overset{\sim}{\to} (G/H)_\sigma \) of \(F\)-sets given by
\[
(a^o, g)F_{(H, \sigma)} \mapsto (g(\epsilon_A, H))a
\]
for all \((a^o, g) \in F\), because \(F_{(H, \sigma)} \) is the stabilizer of \((\epsilon_A, H) \in (G/H)_\sigma\) in \(F \). Thus we have \((G/H)_\sigma \simeq F/F_{(H, \sigma)}\) as \((G, A)\)-sets, completing the proof. □

Remark 2.3 Given a simple \((G, A)\)-set \(Y \) and \(y \in Y \), the stabilizer \(F_y \) of \(y \) in \(F \) coincides with \(F_{(H, \sigma)} \) for some \((H, \sigma) \in \mathcal{S}(G, A)\) (see the proof of [27, Lemma 2.1]), and hence \(Y \simeq F/F_{(H, \sigma)}\) as \((G, A)\)-sets. Under the notation of Definition 2.1, we may define \((G/H)_\sigma\) without assuming that \(g_1 = \epsilon \). In such a case, \(F_{(H, \sigma)} \) is the stabilizer of \((\sigma(g_1)^{-1}, H) \in (G/H)_\sigma\) in \(F \), which yields \((G/H)_\sigma \simeq F/F_{(H, \sigma)}\).

2B Isomorphism classes

We give a complete set of representatives of isomorphism classes of \((G, A)\)-sets.

Definition 2.4 Let \((H, \sigma) \in \mathcal{S}(G, A)\). Suppose that \(g \in G \) and \(a \in A \). We define two 1-cocycles \(g\sigma : g^o H \to A \) and \(\sigma^o : H \to A \) by
\[
(g\sigma)(ghg^{-1}) = g\sigma(h) \quad \text{and} \quad \sigma^o(h) = a^{-1}\sigma(h)h^oa
\]
for all \(h \in H \), respectively.

Let \(H \leq G \), and let \(\sigma, \tau \in Z^1(H, A) \). We write \(\sigma =_A \tau \) if \(\tau = \sigma^a \) for some \(a \in A \).

Lemma 2.5 Let \((H, \sigma) \in \mathcal{S}(G, A)\). Then \(g\sigma =_A g(\sigma^a) \) for any \(g \in G \) and \(a \in A \).
Proof. We have \(g(\sigma^a) = (g\sigma)^{ha} \) for any \(g \in G \) and \(a \in A \), completing the proof. \(\square \)

The argument of the proof of Lemma 2.5 ensures that \(S(G, A) \) is a left \(F \)-set with the action of \(F \) given by

\[
(a^\circ, g)(H, \sigma) = (gH, (g\sigma)^a)
\]

for all \((a^\circ, g) \in F\) and \((H, \sigma) \in S(G, A)\).

By [27, Lemma 2.3], \((H, \sigma)\) and \((U, \tau)\) are contained in the same \(F \)-orbit on \(S(G, A) \) if and only if \((G/H)_\sigma \simeq (G/U)_\tau\) as \((G, A)\)-sets.

Lemma 2.6 Let \(H \leq G \), and let \(\sigma \in Z^1(H, A) \). Then \(h\sigma = \sigma^{(h)} \) for any \(h \in H \). Moreover, given \(\sigma_0 \in Z^1(H, A) \), \(\sigma_0 =_A \sigma \) if and only if \((H/H)_{\sigma_0} \simeq (H/H)_\sigma\).

Proof. The first assertion is shown in the proof of [27, Lemma 3.2]. Suppose that \(\sigma_0 \in Z^1(H, A) \). By [27, Lemma 2.3], \((H/H)_{\sigma_0} \simeq (H/H)_\sigma\) if and only if there exist some \(h \in H \) and \(a \in A \) such that \(\sigma_0 = (h\sigma)^a \). Hence the second assertion follows from the first one. This completes the proof. \(\square \)

Definition 2.7 We define a subset \(R(G, A) \) of \(S(G, A) \) to be a complete set of representatives of \(F \)-orbits on \(S(G, A) \) such that \(H \in C(G) \) for any \((H, \sigma) \in R(G, A)\).

The following proposition is [27, Proposition 2.4].

Proposition 2.8 Let \(Y \) be a simple \((G, A)\)-set. There exists a unique element \((H, \sigma) \) of \(R(G, A) \) such that \(Y \simeq (G/H)_\sigma \) as \((G, A)\)-sets.

Let \(H \leq G \), and let \(X \in H\text{-}set \). We define a left action of \(H \) on the cartesian product \(G \times X \) of \(G \) and \(X \) by

\[
h(g, x) = (gh^{-1}, hx)
\]

for all \(h \in H \) and \((g, x) \in G \times X \). Given \((g, x) \in G \times X \), let \(g \otimes x \) denote the \(H \)-orbit containing \((g, x) \). The left \(G \)-set \(\text{ind}^G_H(X) \) induced from \(X \) is the set of \(H \)-orbits on \(G \times X \) with the action of \(G \) given by

\[
g(r \otimes x) = gr \otimes x
\]

for all \(g, r \in G \) and \(x \in X \) (cf. [11, §4]). Let \(g \in G \), and set \(g \otimes X = \{ g \otimes x \mid x \in X \} \), which is a subset of \(\text{ind}^G_H(X) \). The left \(gH \)-set \(\text{con}_H^g(X) \) conjugate to \(X \) is the set \(g \otimes X \) with the action of \(gH \) given by

\[
ghg^{-1}(g \otimes x) = g \otimes hx
\]

for all \(h \in H \) and \(x \in X \), and is denoted simply by \(gX \).
Definition 2.9 Let $H \leq G$, and let T be an (H, A)-set. The (G, A)-set $\text{ind}_H^G(T)$ induced from T is the left G-set $\text{ind}_H^G(T)$ with the right action of A given by

$$(r \otimes t)a = r \otimes t^{r^{-1}}a$$

for all $r \in G$, $t \in T$, and $a \in A$ (cf. [27, Remark 6.2]). Let $g \in G$. The (gH, A)-set $\text{con}_H^g(T)$ conjugate to T is the left gH-set gT with the right action of A given by

$$(g \otimes t)a = g \otimes t^{g \cdot a}$$

for all $t \in T$ and $a \in A$ (cf. [27, Remark 6.4]), and is denoted simply by gT.

Lemma 2.10 If $U \leq H \leq G$ and $\tau \in Z^1(U, A)$, then $\text{ind}_H^G((H/U)_\tau) \simeq (G/U)_\tau$, $g((H/U)_\tau) \simeq (gH/gU)_\tau$ for each $g \in G$, and $h((H/U)_\tau) \simeq (H/U)_\tau$ for all $h \in H$.

Proof. The proof is straightforward. Note that the last assertion follows from the second one and [27, Lemma 2.3].

Let $(H, \sigma) \in S(G, A)$, and let T be an (H, A)-set. For each $K \leq H$, we define a 1-cocycle $\sigma|_K : K \to A$, the restriction of σ, to be the map obtained by restriction of $\sigma : H \to A$ from H to K, and define a (K, A)-set $\text{res}_K^H(T)$, the restriction of T, to be the (K, A)-set T obtained by restriction of operators from H to K.

We show a Mackey decomposition formula for (G, A)-sets (cf. [27, Lemma 6.5]).

Lemma 2.11 Let $H \leq G$, and let $(U, \tau) \in S(G, A)$. Then

$$\text{res}_H^G((G/U)_\tau) \simeq \bigcup_{HgU \in H \backslash G/U} (H/(H \cap gU))_{(g\tau)|_{H \cap gU}},$$

where the disjoint union is taken over all (H, U)-double cosets HgU, $g \in G$, in G.

Proof. Let $\{g_1, g_2, \ldots, g_m\}$ be a complete set of representatives of $H \backslash G/U$. For each $i \in [m]$, let $\{h_{i1}, h_{i2}, \ldots, h_{i[\ell_i]}\}$ be a complete set of representatives of $H/(H \cap g_iU)$. Then $\{h_{ij}g_i \mid i \in [m] \text{ and } j \in [\ell_i]\}$ is a complete set of representatives of G/U. We define a map $\Gamma : \text{res}_H^G((G/U)_\tau) \to \bigcup_{i \in [m]}(H/(H \cap g_iU))_{(g_i\tau)|_{H \cap g_iU}}$ by

$$(a, h_{ij}g_iU) \mapsto (a, h_{ij}(H \cap g_iU))$$

for all $i \in [m]$, $j \in [\ell_i]$, and $a \in A$. Obviously, this map is bijective and A-equivariant. Given $h \in H$, $i \in [m]$, and $j \in [\ell_i]$, if $hh_{ij} = h_{ij}h'$, then we have $h(h_{ij}g_i) = h_{ij}g_i(h^{-1}h')g_i = h_{ij}g_iU$ and

$$h_{ij}g_i\tau((h_{ij}g_i)^{-1}h(h_{ij}g_i)) = h_{ij}g_i\tau(g_i^{-1}h'h') = h_{ij}\tau(g_i\tau)(h_{ij}^{-1}h)h_{ij}.$$
From now on, we assume that A is abelian. Hence $A = A^\circ$. Following [12], we define the tensor product $Y_1 \otimes Y_2$ of (G, A)-sets Y_1 and Y_2. The cartesian product $Y_1 \times Y_2$ is viewed as a free right A-set with the action of A given by

$$(y_1, y_2)a = (y_1a^{-1}, y_2a)$$

for all $a \in A$ and $(y_1, y_2) \in Y_1 \times Y_2$. For each $(y_1, y_2) \in Y_1 \times Y_2$, let $y_1 \otimes y_2$ be the A-orbit containing (y_1, y_2). We set

$$Y_1 \otimes Y_2 = \{ y_1 \otimes y_2 \mid (y_1, y_2) \in Y_1 \times Y_2 \},$$

and make it into a (G, A)-set by defining

$$g(y_1 \otimes y_2) = gy_1 \otimes gy_2 \quad \text{and} \quad (y_1 \otimes y_2)a = y_1 \otimes y_2a$$

for all $g \in G$, $a \in A$, and $(y_1, y_2) \in Y_1 \times Y_2$. These actions are well-defined, because

$$g((y_1b^{-1} \otimes y_2b)a) = g(y_1b^{-1}) \otimes g(y_2ba) = (gy_1)^{gb^{-1}} \otimes g(y_2a)^{gb} = g((y_1 \otimes y_2)a)$$

for all $g \in G$, $a, b \in A$, and $(y_1, y_2) \in Y_1 \times Y_2$. Obviously, $Y_1 \otimes Y_2 \simeq Y_2 \otimes Y_1$.

Lemma 2.12 Let $K \leq H \leq G$, and let $g \in G$. For any (H, A)-sets T_1 and T_2,

$$\text{res}_K^H(T_1 \otimes T_2) \simeq \text{res}_K^H(T_1) \otimes \text{res}_K^H(T_2) \quad \text{and} \quad g(T_1 \otimes T_2) \simeq gT_1 \otimes gT_2.$$

Proof. The proof is straightforward. □

Let $F(G, A)$ be the free abelian group on the set of isomorphism classes of (G, A)-sets. For each (G, A)-set Y, we denote by \overline{Y} the isomorphism class of (G, A)-sets containing Y. Let $F(G, A)_0$ be the subgroup of $F(G, A)$ generated by the elements $\overline{Y_i}$ for (G, A)-sets Y_1 and Y_2. We define multiplication on the generators of $F(G, A)$ by

$$\overline{Y_1} \cdot \overline{Y_2} = \overline{Y_1 \otimes Y_2}$$

for all (G, A)-sets Y_1 and Y_2, and extend it to $F(G, A)$ by linearity. Then $F(G, A)$ is a commutative unital ring; moreover, $F(G, A)_0$ is an ideal of $F(G, A)$.

Definition 2.13 We define a commutative unital ring $\Omega(G, A)$ to be the quotient $F(G, A)/F(G, A)_0$, which is the ring of monomial representations of G with coefficients in A introduced by Dress [12] (see also [2]).
When $A = \{\epsilon_A\}$, which is the group consisting of only the identity, $\Omega(G, A)$ is isomorphic to the Burnside ring $\Omega(G)$ (see §5C).

For each (G, A)-set Y, we denote by $[Y]$ the coset $\overline{Y} + F(G, A)_0$ of $F(G, A)_0$ in $F(G, A)$. By [12, Proposition 1(b)] (or [27, Lemma 2.6]), $[Y_1] = [Y_2]$ if and only if $\overline{Y_1} = \overline{Y_2}$. Multiplication on the generators of $\Omega(G, A)$ is given by

$$[Y_1] \cdot [Y_2] = [Y_1 \otimes Y_2]$$

equation of all (G, A)-sets Y_1 and Y_2. The identity of $\Omega(G, A)$ is $[(G/G)_1c]$.

A Z-lattice is a finitely generated Z-free Z-module. Obviously, $\Omega(G, A)$ is a Z-lattice. The statement of the following proposition is given in [12, Proposition 1(a)] (see also [2, Remark 2.2] and [27, Proposition 2.7]).

Proposition 2.14 The elements $[(G/H)\sigma]$ for $(H, \sigma) \in \mathcal{R}(G, A)$ form a free Z-basis of the Z-lattice $\Omega(G, A)$.

Proof. The assertion follows from Proposition 2.8. \square

We obtain a product formula of simple (G, A)-sets (see also [2, Remark 2.3]).

Lemma 2.15 Let $(H, \sigma), (U, \tau) \in S(G, A)$. Then

$$(G/H)\sigma \otimes (G/U)_{\tau} \simeq \bigcup_{HgU \in H\cap G/U} (G/(H \cap gU))_{\sigma \cdot (g\tau)},$$

where $\sigma \cdot (g\tau) : H \cap gU \to A$ is the pointwise product of $\sigma|_{H \cap gU}$ and $(g\tau)|_{H \cap gU}$.

Proof. We view the tensor product $(F/F_{(H, \sigma)}) \otimes (F/F_{(U, \tau)})$ of (G, A)-sets $F/F_{(H, \sigma)}$ and $F/F_{(U, \tau)}$ as a left F-set. The left F-set $(F/F_{(H, \sigma)}) \otimes (F/F_{(U, \tau)})$ is expressed as a disjoint union of F-orbits. We identify each $g \in G$ with $(\epsilon_A, g) \in F$ for shortness' sake. For any $(a, g), (b, r) \in F$,

$$(a, g)^{-1}((a, g)_{F(H, \sigma)} \otimes (b, r)_{F(U, \tau)}) = (g^{-1}b, \epsilon)(F_{(H, \sigma)} \otimes \epsilon^{-1}r_{F(U, \tau)})$$

(see Eqs. (2.1) and (2.2)), which means that there exists an F-orbit containing both $(a, g)_{F(H, \sigma)} \otimes (b, r)_{F(U, \tau)}$ and $F_{(H, \sigma)} \otimes \epsilon^{-1}r_{F(U, \tau)}$. Let $g, r \in G$. Suppose that

$$F_{(H, \sigma)} \otimes r_{F(U, \tau)} = (a, h)(F_{(H, \sigma)} \otimes g_{F(U, \tau)}) = h_{F_{(H, \sigma)} \otimes (a, hg)}_{F(U, \tau)}$$

with $(a, h) \in F$. Then $h \in H$ and $r^{-1}hg \in U$, which yields $g \in HrU$. Conversely, if $g \in HrU$ and $r^{-1}hg \in U$ with $h \in H$, then we have

$$F_{(H, \sigma)} \otimes r_{F(U, \tau)} = (hg\tau(g^{-1}h^{-1}r)_{\sigma(h)^{-1}, h})(F_{(H, \sigma)} \otimes g_{F(U, \tau)}).$$

Consequently, both $F_{(H, \sigma)} \otimes r_{F(U, \tau)}$ and $F_{(H, \sigma)} \otimes g_{F(U, \tau)}$ are contained in the same F-orbit if and only if $g \in HrU$. Suppose that

$$F_{(H, \sigma)} \otimes g_{F(U, \tau)} = (a, h)(F_{(H, \sigma)} \otimes g_{F(U, \tau)}) = (a, h)_{F_{(H, \sigma)} \otimes hg_{F(U, \tau)}}.$$
with \((a, h) \in F\). Then there exists some \(b \in A\) such that
\[
(F_{\mathcal{H}, \sigma}, gF_{\mathcal{U}, \tau}) = (((a, h)F_{\mathcal{H}, \sigma})b^{-1}, (hgF_{\mathcal{U}, \tau})b) = ((b^{-1}a, h)F_{\mathcal{H}, \sigma}, (b, hg)F_{\mathcal{U}, \tau}),
\]
which yields \(h \in H \cap gU\) and
\[
(\sigma \cdot (g\tau))(h) = \sigma(h)g\tau(g^{-1}hg) = (a^{-1}b)g(g^{-1}b^{-1}) = a^{-1}.
\]
Hence \((a, h) \in F_{\mathcal{H} \cap gU, \sigma \cdot (g\tau)}\). Moreover, it is easily verified that \(F_{\mathcal{H} \cap gU, \sigma \cdot (g\tau)}\) is the stabilizer of \(F_{\mathcal{H}, \sigma} \otimes gF_{\mathcal{U}, \tau}\). Thus it turns out that
\[
(F/F_{\mathcal{H}, \sigma}) \otimes (F/F_{\mathcal{U}, \tau}) \simeq \bigcup_{HgU \in H \cap G/U} F/F_{\mathcal{H} \cap gU, \sigma \cdot (g\tau)}
\]
as left \(F\)-sets. The lemma now follows from Lemma 2.2. This completes the proof. □

For each \(K \leq H \leq G\) and \(g \in G\), there are additive maps
\[
\begin{align*}
\text{con}_H^g : \Omega(H, A) &\to \Omega(^gH, A), \quad \sum_T \ell_T[T] \mapsto \sum_T \ell_T[\text{con}_H^g(T)], \\
\text{res}_K^H : \Omega(H, A) &\to \Omega(K, A), \quad \sum_T \ell_T[T] \mapsto \sum_T \ell_T[\text{res}_K^H(T)], \quad \text{and} \\
\text{ind}_K^H : \Omega(K, A) &\to \Omega(H, A), \quad \sum_S k_S[S] \mapsto \sum_S k_S[\text{ind}_K^H(S)],
\end{align*}
\]
where \(S \in (K, A)\)-set, \(T \in (H, A)\)-set, and \(k_S, \ell_T \in \mathbb{Z}\); these maps are called the conjugation map, the restriction map, and the induction map, respectively. By Lemma 2.12, conjugation maps and restriction maps are ring homomorphisms.

Proposition 2.16 The family of \(\mathbb{Z}\)-algebras \(\Omega(H, A)\) for \(H \leq G\), together with conjugation, restriction, and induction maps, defines a Green functor on \(G\).

Proof. The axioms of Green functor follow from Lemmas 2.10, 2.11, and 2.15 (cf. [4, 1.1. Definition]). As for the Frobenius axiom, we have
\[
\text{res}_K^G((G/H)_{\sigma} \otimes (K/U)_{\tau}) \simeq \bigcup_{KgH \in K \cap G/H} \bigcup_{Lg \in L \setminus K \cap H / U} (K/((^gH \cap ^cU))_{(\sigma)}|_{Lg \cap (e\tau)});
\]
where \(L_g = K \cap ^gH\), and
\[
\text{ind}_K^G(\text{res}_K^G((G/H)_{\sigma} \otimes (K/U)_{\tau})) \simeq (G/H)_{\sigma} \otimes \text{ind}_K^G((K/U)_{\tau})
\]
for all \(K \leq G\), \((H, \sigma) \in \mathcal{S}(G, A)\), and \((U, \tau) \in \mathcal{S}(K, A)\), completing the proof. □
3 Multiplicative induction

3A Tensor induction

To begin with, we review the multiplicative induction $\text{Ind}_H^G : X \mapsto \text{Map}_H(G, X)$, where $H \leq G$ and $X \in H\text{-set}$, given in [32, §3(a.3)] (see also [11, §4]).

Definition 3.1 Let $H \leq G$, and let T be an (H, A)-set. We define a left G-set $\text{Map}_H(G, T)$ to be the set of maps $f : G \rightarrow T$ such that $f(hg) = hf(g)$ for all $h \in H$ and $g \in G$ with the action of G given by

$$(gf)(r) = f(rg)$$

for all $g, r \in G$ and $f \in \text{Map}_H(G, T)$.

Remark 3.2 Under the notation of Definition 3.1, the left G-set $\text{Map}_H(G, T)$ is viewed as a (G, A)-set with the right action of A given by

$$(fa)(r) = f(r) \cdot a$$

for all $r \in G$, $a \in A$, and $f \in \text{Map}_H(G, T)$. However, we need hardly recall such a right action of A on $\text{Map}_H(G, T)$ (see Definitions 3.3 and 3.5) in relation to multiplicative induction for monomial Burnside rings (see Proposition 3.20).

Let $H \leq G$, and let T be an (H, A)-set. The tensor induced G-set $T \otimes^G G$ obtained from T (see [8, §80C]) is isomorphic to $\text{Map}_H(G, T)$ and is related to tensor induction of modules. By modifying $\text{Map}_H(G, T)$, we define tensor induction for (H, A)-sets, and then define multiplicative induction for monomial Burnside rings in §3C.

Let $Hg, g \in G$, be the right coset of H in G containing g. Given $g, r \in G$ with $Hg \neq Hr$ and $a \in A$, we define a relation $\sim_{(g, r, a)}$ on $\text{Map}_H(G, T)$ by

$$f \sim_{(g, r, a)} f' : \iff f(hg)^{hr}a = f'(hg)$

and $f(hr) = f'(hr)^{hr}a$ for all $h \in H$, and $f(g') = f'(g')$ for all $g' \in G - Hg \cup Hr$.

Let \sim_A be the equivalence relation on $\text{Map}_H(G, T)$ generated by the relations $\sim_{(g, r, a)}$ for $g, r \in G$ and $a \in A$. For each $f \in \text{Map}_H(G, T)$, we denote by \hat{f} the equivalence class containing f with respect to the equivalence relation \sim_A.

Definition 3.3 Let $H \leq G$, and let T be an (H, A)-set. We define

$$\widehat{\text{Map}}_H(G, T) := \{ \hat{f} \mid f \in \text{Map}_H(G, T) \},$$

and make it into a free right A-set by defining

$$\hat{fa} = \hat{f}_a \quad \text{with} \quad f_a : G \rightarrow T, \quad r \mapsto f_a(r) = \begin{cases} f(r)^r & \text{if } r \in H, \\ f(r) & \text{if } r \in G - H \end{cases} \quad (3.1)$$

for all $a \in A$ and $f \in \text{Map}_H(G, T)$.
The following lemma tells us of a suitable left action of G on the free right A-set $\text{Map}_H(G, T)$ defined above for an extension of the multiplicative induction $\text{Jnd}_H^G : X \mapsto \text{Map}_H(G, X)$ where $X \in H$-set.

Lemma 3.4 Let $H \leq G$, and let T be an (H, A)-set. Then $\widehat{gf_a} = \widehat{gf} \cdot a$, where f_a is given in Eq. (3.1), for all $g \in G, a \in A$, and $f \in \text{Map}_H(G, T)$.

Proof. Suppose that $g \in G, a \in A$, and $f \in \text{Map}_H(G, T)$. By definition,

$$(gf_a)(r) = \begin{cases} f(rg)^\cdot a & \text{if } rg \in H, \\ f(rg) & \text{if } rg \in G - H, \end{cases}$$

and

$$(gf)_a(r) = \begin{cases} f(rg)^\cdot a & \text{if } r \in H, \\ f(rg) & \text{if } r \in G - H. \end{cases}$$

Hence we may assume that $g \notin H$. Observe that for any $h \in H$,

$$(gf_a)(h)^\cdot a = (gf)_a(h) \quad \text{and} \quad (gf_a)(h^{-1}) = (gf)_a(h^{-1})^\cdot a.$$

Moreover, $(gf_a)(r) = (gf)_a(r)$ for all $r \in G - H \cup H^{-1}$. Thus $gf_a \sim_{(r, g^{-1}, a)} (gf)_a$.

We now obtain $\widehat{gf_a} = \widehat{gf} \cdot a$, completing the proof. □

Definition 3.5 (Tensor induction) Let $H \leq G$, and let T be an (H, A)-set. We make the free right A-set $\text{Map}_H(G, T)$ into a left G-set by defining

$$\widehat{g} = \widehat{gf}$$

for all $g \in G$ and $f \in \text{Map}_H(G, T)$, so that $\widehat{\text{Map}}_H(G, T)$ is a (G, A)-set. The operation which assigns to T the (G, A)-set $\widehat{\text{Map}}_H(G, T)$ is called tensor induction (cf. [8, §80C]), and is related to tensor induction for 1-cocycles (see §3B).

Remark 3.6 Keep the notation of Definition 3.5, and assume further that G acts trivially on A. Then the (G, A)-sets are considered as the A-fibred G-sets defined by Barker [2, §2], and the (G, A)-set $\widehat{\text{Map}}_H(G, T)$ obtained from T by tensor induction is identified with the A-fibred G-set $\text{Ten}_H^G(T)$ defined by Barker [2, §9].

We present a fundamental lemma which is essential to the investigation of multiplicative induction for monomial Burnside rings.

Lemma 3.7 Let $H \leq G$, and let T be an (H, A)-set. Suppose that $\{g_1, g_2, \ldots, g_n\}$ with $g_1 = e$ is a complete set of representatives of G/H. Let $f \in \text{Map}_H(G, T)$, and define $f^{(0)} \in \text{Map}_H(G, T)$ by $f^{(0)}(h^{-1}g_j) = f((h^{-1}g_j)a_j$ with $a_j \in A$ for all $h \in H$ and $j \in [n]$. Then $f^{(0)} \sim_A f_a$, where $a = g_1^{a_1}g_2^{a_2} \cdots g_n^{a_n}$, and hence $\widehat{f^{(0)}} = \widehat{f_a}$.
Proof. For each integer \(k \) with \(1 \leq k \leq n \), we define \(f^{(k)} \in \text{Map}_H(G, T) \) by

\[
f^{(k)}(hg_j^{-1}) = \begin{cases}
 f(hg_j^{-1}) & \text{if } j \in [k], \\
 f^{(0)}(hg_j^{-1}) & \text{if } j = k + 1, k + 2, \ldots, n
\end{cases}
\]

for all \(h \in H \). In particular, \(f^{(n)} = f \). Obviously, \(f^{(1)} = f_{\text{res}_{\text{H}}} \). Let \(k \) be an integer with \(2 \leq k \leq n \). Then

\[
f^{(k)}(hg_k^{-1}) = f^{(k-1)}(hg_k^{-1}h_k^{-1}) \quad \text{and} \quad f^{(k)}(hg_j^{-1}) = f^{(k-1)}(hg_j^{-1})
\]

for all \(h \in H \) and \(j \in [n] \) with \(j \neq k \), and

\[
f^{(k-1)}_{\text{res}_{\text{H}}}(hg_1^{-1}) = f^{(k-1)}(hg_1^{-1}h_1^{-1}a_k^{-1}) \quad \text{and} \quad f^{(k-1)}_{\text{res}_{\text{H}}}(hg_j^{-1}) = f^{(k-1)}(hg_j^{-1})
\]

for all \(h \in H \) and \(j = 2, 3, \ldots, n \). This shows that \(f^{(k-1)}_{\text{res}_{\text{H}}} = f^{(k-1)}(g_k^{-1}, g_1^{-1}, a_k^{-1}) f^{(k)} \). Hence we have \(f^{(0)} \sim_A f_a \), completing the proof. \(\square \)

Remark 3.8 Let \(H \leq G \), and let \(T \) be an \((H, A)\)-set. By Lemma 3.7, we have

\[
|\overline{\text{Map}_H(G, T)/A}| = |\text{Map}_H(G, T/A)|,
\]

whence

\[
|\overline{\text{Map}_H(G, T)}| = |T/A|^{G/H} \cdot |A|.
\]

The following proposition, which is a generalization of [32, §3(a.13)], describes a Mackey decomposition formula (see also [2, Lemma 9.1]).

Proposition 3.9 Let \(H, K \leq G \). For each \((H, A)\)-set \(T \),

\[
\text{res}^G_K(\overline{\text{Map}_H(G, T)}) \simeq \bigotimes_{K \not\subset H \in K \setminus G/H} \overline{\text{Map}}_{K \cap \not\subset H}(K, \text{res}^{gH}_{K \cap \not\subset H}(gT)).
\]

Proof. Let \(\{g_1, g_2, \ldots, g_m\} \) with \(g_1 = \epsilon \) be a complete set of representatives of \(K \setminus G/H \). For each \(i \in [m] \), let \(\{r_{i1}, r_{i2}, \ldots, r_{i\ell_i}\} \) be a complete set of representatives of \(K/(K \cap g_i H) \). Then \(\{r_{ij}g_i \mid i \in [m] \text{ and } j \in [\ell_i]\} \) is a complete set of representatives of \(G/H \). Let \(i \in [m] \). There is a map

\[
\Phi_i: \text{res}^G_K(\overline{\text{Map}_H(G, T)}) \rightarrow \overline{\text{Map}}_{K \cap \not\subset H}(K, \text{res}^{gH}_{K \cap \not\subset H}(gT))
\]

given by

\[
\Phi_i(f)(g_{ij}r_{ij}^{-1}) = g_i \otimes f((r_{ij}g_i)^{-1})(= g_i \otimes f((r_{ij}g_i)^{-1})) \in g_i T
\]

for all \(h \in g_i^{-1}K \cap H \), \(j \in [\ell_i] \), and \(f \in \text{Map}_H(G, T) \). Given \(j \in [\ell_i] \), we have

\[
\Phi_i(rf)(r_{ij}^{-1}) = g_i \otimes f((r_{ij}g_i)^{-1}r) = g_i \otimes f(g_i^{-1}(r_{ij}r_{ii'})g_i(r_{ij'}g_i)^{-1})
\]
and
\[(r\Phi_i(f))(r_{ij}^{-1}) = \Phi_i(f)(r_{ij}^{-1}) = \Phi_i(f)((r_{ij}^{-1}rr_{ij})r_{ij}^{-1}),\]
where \(r_{ij}(K \cap g_H) = rr_{ij}(K \cap g_H),\) for all \(r \in K\) and \(f \in \text{Map}_H(G, T).\) Thus \(\Phi_i\) is a \(K\)-equivariant map. We now define a \(K\)-equivariant map
\[
\hat{\Phi} : \text{res}^G_K(\text{Map}_H(G, T)) \to \bigotimes_{i=1}^m \text{Map}_{K \cap g_H}(K, \text{res}^{g_H}_{K \cap g_H}(g_H T))
\]
by
\[
\hat{f} \mapsto \Phi_1(f) \otimes \Phi_2(f) \otimes \cdots \otimes \Phi_m(f)
\]
for all \(f \in \text{Map}_H(G, T).\) (Of course this map is well-defined; see Remark 3.10.) The map \(\hat{\Phi}\) is also a \((K, A)\)-equivariant map, because
\[
(\Phi_1(f) \otimes \Phi_2(f) \otimes \cdots \otimes \Phi_m(f))a = \Phi_1(f)_a \otimes \Phi_2(f)_a \otimes \cdots \otimes \Phi_m(f)_a
\]
and
\[
\Phi_i(f_a)(r_{ij}^{-1}) = \begin{cases}
\epsilon \otimes f(r_{ij}^{-1})^{-1} & \text{if } i = 1 \text{ and } r_{ij} \in H, \\
\epsilon \otimes f(r_{ij}^{-1})^{-1} & \text{if } i = 1 \text{ and } r_{ij} \notin H, \\
g_i \otimes f((r_{ij}g_i)^{-1})^{-1} & \text{if } i \neq 1
\end{cases}
\]
for all \(i \in [m], j \in [\ell_i], a \in A,\) and \(f \in \text{Map}_H(G, T).\) Thus it only remains for us to show that \(\hat{\Phi}\) is bijective. For each \(i \in [m],\) choose \(f_i \in \text{Map}_{K \cap g_H}(K, \text{res}^{g_H}_{K \cap g_H}(g_H T)).\) Given \(i \in [m] \text{ and } j \in [\ell_i],\) we suppose that \(f_i(r_{ij}^{-1}) = g_i \otimes t_{ij} \in g_H T\) with \(t_{ij} \in T.\) Now define \(f \in \text{Map}_H(G, T)\) by
\[
f(h(r_{ij}g_i)^{-1}) = ht_{ij} \in T
\]
for all \(h \in H, i \in [m], \text{ and } j \in [\ell_i].\) Then \(\hat{\Phi}(f) = \hat{f}_1 \otimes \hat{f}_2 \otimes \cdots \otimes \hat{f}_m.\) Thus \(\hat{\Phi}\) is surjective, which means that it is also injective, because
\[
|\text{Map}_H(G, T)| = |T/A|^\sum_{i=1}^m \ell_i \cdot |A| = \left| \bigotimes_{i=1}^m \text{Map}_{K \cap g_H}(K, \text{res}^{g_H}_{K \cap g_H}(g_H T)) \right|
\]
by Remark 3.8. We now conclude that \(\hat{\Phi}\) is bijective, completing the proof. □

Remark 3.10 In the proof of Proposition 3.9, assume that \(f \sim ((r_{ij}g_i)^{-1}, (r_{ij}'g_{ij})^{-1}, a) f'\) with \(f, f' \in \text{Map}_H(G, T)\) and \(a \in A.\) Let \(u \in [m]\) and \(v \in [\ell_u].\) Then we have
\[
\Phi_u(f)(g_H r_{uv}^{-1}) = \begin{cases}
\Phi_i(f')(g_H r_{ij}^{-1}) g_H r_{ij}^{-1} a^{-1} & \text{if } (u, v) = (i, j), \\
\Phi_{i'}(f')(g_H r_{ij}^{-1}) g_H r_{ij}^{-1} a^{-1} & \text{if } (u, v) = (i', j'), \\
\Phi_{i'}(f')(g_H r_{ij}^{-1}) & \text{otherwise}
\end{cases}
\]
for all $h \in g^{-1}K \cap H$. This, combined with Lemma 3.7, shows that
\[\Phi_u(f) = \Phi_u(f') \quad \text{if} \quad u \neq i, i', \quad \Phi_i(f) = \Phi_i(f)a^{-1}, \quad \text{and} \quad \Phi_{i'}(f) = \Phi_{i'}(f'a). \]
Hence we have $\tilde{\Phi}(f) = \tilde{\Phi}(f')$. Consequently, the map $\tilde{\Phi}$ is well-defined.

3B Tensor induction for 1-cocycles

We introduce tensor induction for 1-cocycles, and see that it is closely allied to tensor induction for $(H;A)$-sets with $H \subseteq G$.

Definition 3.11 Let $(H, \sigma) \in S(G, A)$. We fix a complete set $\{g_1, g_2, \ldots, g_n\}$ with $g_1 = \epsilon$ of representatives of G/H, and define a 1-cocycle $\sigma^G : G \to A$ by
\[\sigma^G(g) = \prod_{j=1}^{n} g_j^a(g_{j'}^{-1}gg_j), \]
where $gg_jH = g_{j'}H$, for all $g \in G$. The operation which assigns to σ the 1-cocycle $\sigma^G : G \to A$ is called tensor induction (cf. [8, §13A]).

Remark 3.12 Keep the notation of Definition 3.11, and let $h_1, h_2, \ldots, h_n \in H$. Then
\[(\sigma^G)^a(g) = \prod_{j=1}^{n} g_j^a(h_j^{-1}g_j^{-1}gg_jh_j) \quad \text{with} \quad a = \prod_{j=1}^{n} g_j^a(h_j) \]
for all $g \in G$ (see Definition 2.4), because
\[g_j^a(h_j^{-1}g_j^{-1}gg_jh_j) = g_j^a(h_jg_j^{-1})g_j^a(g_j^{-1}gg_jh_j) = g_j^a(h_j^{-1}g_j^{-1}gg_jh_j) \]
for all $j \in [n]$. Hence the subset $\{(\sigma^G)^a \mid a \in A\}$ of $Z^1(G, A)$ is independent of the choice of a complete set of representatives of G/H. Likewise, if $b \in A$, then
\[(\sigma^G)^c = (a^b)^G \quad \text{with} \quad c = \prod_{j=1}^{n} g_j^b. \]

Example 3.13 Let $(H, \sigma) \in S(G, A)$. Obviously, A is a free right A-set with the action given by the product operation on A. We make it into an (H, A)-set $A^{(\sigma)}$ isomorphic to $(H/H)_{\sigma}$ by defining
\[ha = \sigma(h)^h_a \]
for all $h \in H$ and $a \in A(\sigma)$. For any $K \leq H$, $\text{res}_K^H(A(\sigma)) = A(\sigma|_K)$ (see Lemma 2.11). Keep the notation of Definition 3.11, and identify $(H/H)_\sigma$ with $A(\sigma)$. We define an element $\tilde{\sigma}$ of $\text{Map}_H(G, A(\sigma))$ by

$$\tilde{\sigma}(h_{g^{-1}}) = \sigma(h)$$

for all $h \in H$ and $i \in [n]$. Let $f \in \text{Map}_H(G, A(\sigma))$. For each $j \in [n]$, we set $a_j = f(g_j^{-1}) \in A(\sigma)$. Since $f(h_{g_j^{-1}}) = \tilde{\sigma}(h_{g_j^{-1}})h_{a_j}$ for all $h \in H$ and $j \in [n]$, it follows from Lemma 3.7 with $f(0) = f$ that $\tilde{f} = \tilde{\sigma}a$ where $a = g_{a_1}g_{a_2} \cdots g_{a_n}$. Hence $\text{Map}_H(G, A(\sigma)) = \{\tilde{\sigma}a \mid a \in A\}$. Let $g \in G$. We have

$$(g\tilde{\sigma})(h_{g_j^{-1}}) = \tilde{\sigma}(h_{g_j^{-1}}g) = \sigma(h_{g_j^{-1}}g_{g_j}) = \tilde{\sigma}(h_{g_j^{-1}}h_{g_{g_j}g_j}) = \tilde{\sigma}(h_{g_j^{-1}}h_{g_{g_j}g_j}g_j),$$

where $g_jH = gg_jH$, for all $h \in H$ and $j \in [n]$. Thus it follows from Lemma 3.7 that $g\tilde{\sigma} = \tilde{\sigma}a \otimes G(g)$. Moreover, there exists an isomorphism $\text{Map}_H(G, A(\sigma)) \simeq A(\sigma \otimes G)$ of (G, A)-sets given by

$$\tilde{\sigma}a \mapsto a$$

for all $a \in A$. Thus $\text{Map}_H(G, (H/H)_\sigma) \simeq (G/G)_\sigma \otimes \sigma$.

The following proposition describes a Mackey decomposition formula.

Proposition 3.14 Let $H, K \leq G$. For each $\sigma \in Z^1(H, A)$,

$$\sigma \otimes G|_K = A \prod_{KgH \in K \cap G/H} (g\sigma)|_{K \cap gH} \otimes K.$$

Proof. By Lemma 2.10, Proposition 3.9, and Example 3.13, we have

$$(K/K)_{\sigma \otimes G}|_K \simeq \bigotimes_{KgH \in K \cap G/H} (K/K)(g\sigma)|_{K \cap gH} \otimes K,$$

which, combined with Lemma 2.15, implies that

$$(K/K)_{\sigma \otimes G}|_K \simeq (K/K) \prod_{KgH \in K \cap G/H} (g\sigma)|_{K \cap gH} \otimes K.$$

The assertion follows from this fact and Lemma 2.6. This completes the proof. □

The following lemma states basic properties of tensor induction for 1-cocycles.

Lemma 3.15 Let $U \leq K \leq H$, and let $g \in G$. Then

$$g\nu \otimes H = A (g\nu) \otimes^g H \quad \text{and} \quad (\tau \otimes K) \otimes H = A \tau \otimes H$$

for all $\nu \in Z^1(K, A)$ and $\tau \in Z^1(U, A)$.

Proof. Fix a complete set \(\{ h_1, h_2, \ldots, h_m \} \) with \(h_1 = \epsilon \) of representatives of \(H/K \) and a complete set \(\{ r_1, r_2, \ldots, r_k \} \) with \(r_1 = \epsilon \) of representatives of \(K/U \). Given \(\nu \in Z^1(K,A) \) and \(\tau \in Z^1(U,A) \), we have

\[
\begin{align*}
(g\nu \otimes H)(gh_j) &= \prod_{j=1}^{m} q h_j \nu(h_j^{-1}hh_j) \\
&= \prod_{j=1}^{m} q h_j \nu((h_j^{-1}g^{-1}) q h_j(gh_j)) \\
&= \prod_{j=1}^{m} q h_j \nu(g^{-1}(q h_j^{-1} q h_j)g) \\
&= \prod_{j=1}^{m} q h_j (g\nu)(q h_j^{-1} q h_j),
\end{align*}
\]

where \(hh_j K = h_j' K \), and

\[
(\tau \otimes K) \otimes H(h) = \prod_{j=1}^{m} h_j' \otimes K(h_j^{-1}hh_j) \\
= \prod_{j=1}^{m} \prod_{i=1}^{k} h_j' r_i \tau((h_j'^{-1} h_j^{-1})^{-1} h(h_j r_i)),
\]

where \((h_j^{-1}hh_j)r_i U = r_i' U \), for all \(h \in H \). Consequently, the assertions follow from Remark 3.12. This completes the proof. \(\Box \)

3C Algebraic maps

We define a subset \(\Omega(G,A)^+ \) of \(\Omega(G,A) \) to be the set consisting of all elements \(\sum_{(U,\tau) \in \mathcal{R}(G,A)} \ell(U,\tau) [(G/U)_{\tau}] \) with \(\ell(U,\tau) \geq 0 \), which is an additive semigroup. By Lemma 2.15, \(\Omega(G,A)^+ \) is closed under multiplication. For each \(H \leq G \), there is a map (tensor induction) \(\text{Map}_H(G,-) : \Omega(H,A)^+ \to \Omega(G,A) \) given by

\[[T] \mapsto [\text{Map}_H(G,T)] \]

for all \((H,A) \)-sets \(T \) (cf. [8, (80.42)]). This map is multiplicative (see Lemma 3.19).

We review the concept of algebraic maps which is due to Dress [11]. Let \(B \) be an additive semigroup with zero element, and let \(E \) be an additive group. Given \(c \in B \) and a map \(f : B \to E \), we define a map \(D_c f : B \to E \) by

\[d \mapsto f(c + d) - f(d) \]

for all \(d \in B \). A map \(f : B \to E \) is said to be algebraic of degree \(n \) if \(n \) is the least integer such that

\[D_{c_1} D_{c_2} \cdots D_{c_n+1} f = 0 \]
for all $c_1, c_2, \ldots, c_{n+1} \in B$ (cf. [8, §80C]). Let $f : B \to E$ be an algebraic map of degree n, and let \overline{B} be the additive group generated by the elements of B. According to Dress [11, Proposition 1.1], there is a unique map $\overline{f} : \overline{B} \to E$ extending f, and \overline{f} is also algebraic of degree n (see also [8, (80.44) Theorem (Dress)]). Assume further that \overline{B} and E are commutative rings and B is closed under multiplication. If $f : B \to E$ is multiplicative, then the unique extension $\overline{f} : \overline{B} \to E$ of f to \overline{B} is also multiplicative (cf. [8, (80.47) Theorem]).

Definition 3.16 Let $H \leq G$, and let T_0, T_1, \ldots, T_i be (H,A)-sets, where i is an integer with $0 \leq i \leq |G : H| + 1$. We define a (G,A)-set $\overline{\text{Map}}_H(G, T_0, T_1, \ldots, T_i)$ to be the set consisting of all elements \widehat{f} of $\overline{\text{Map}}_H(G, T_0 \cup T_1 \cup \cdots \cup T_i)$ containing $f \in \text{Map}_H(G, T_0 \cup T_1 \cup \cdots \cup T_i)$ such that $|\text{Im} f \cap T_\ell| \neq 0$ whenever $\ell \neq 0$ with the left action of G and the right action of A given by

$$g \widehat{f} = \overline{g} \widehat{f} \quad \text{and} \quad \widehat{f} a = \widehat{f_a}$$

for all $g \in G$, $a \in A$, and $\widehat{f} \in \overline{\text{Map}}_H(G, T_0, T_1, \ldots, T_i)$.

Under the notation of Definition 3.16, we have

$$\overline{\text{Map}}_H(G, T_0, T_1, \ldots, T_i) = \begin{cases} \text{Map}_H(G, T_0) & \text{if } i = 0, \\ \text{Map}_H(G, T_1) & \text{if } T_0 = \emptyset \text{ and } i = 1, \\ \emptyset & \text{if } i = |G : H| + 1. \end{cases}$$

Proposition 3.17 For each $H \leq G$, the map $\overline{\text{Map}}_H(G, -) : \Omega(H, A)^+ \to \Omega(G, A)$ is algebraic of degree $|G : H|$.

This proposition is analogous to [8, (80.43) Proposition (Dress)], and is an immediate consequence of the following lemma.

Lemma 3.18 Keep the notation of Definition 3.16, and assume further that $i \geq 1$. Set $\Theta_i = D_{[T_1]} \cdots D_{[T_i]} \bar{\text{Map}}_H(G, -)$. Then

$$\Theta_i([T_0]) = [\overline{\text{Map}}_H(G, T_0, T_1, \ldots, T_i)].$$

Proof. The assertion is proved by an argument analogous to that in the proof of [8, (80.43) Proposition (Dress)]. □

Tensor induction is multiplicative.

Lemma 3.19 For each $H \leq G$,

$$\overline{\text{Map}}_H(G, T_1 \otimes T_2) \simeq \overline{\text{Map}}_H(G, T_1) \otimes \overline{\text{Map}}_H(G, T_2)$$

for all (H,A)-sets T_1 and T_2.

Proof. If \(f \in \text{Map}_H(G, T_1 \otimes T_2) \), then by Lemma 3.7, there exists a unique element \(\Psi_i(f) \otimes \Psi_2(f) \) of \(\text{Map}_H(G, T_1) \otimes \text{Map}_H(G, T_2) \), where \(\Psi_i(f) \in \text{Map}_H(G, T_i) \) with \(i = 1, 2 \), such that

\[
f(g) = \Psi_1(f)(g) \otimes \Psi_2(f)(g)
\]

for all \(g \in G \). Obviously, \(\Psi_1(f) \otimes \Psi_2(f) = \Psi_1(f') \otimes \Psi_2(f') \) whenever \(f \sim_A f' \). We now define a map \(\hat{\Psi} : \text{Map}_H(G, T_1 \otimes T_2) \to \text{Map}_H(G, T_1) \otimes \text{Map}_H(G, T_2) \) by

\[
\hat{\Psi}(f) = \Psi_1(f) \otimes \Psi_2(f)
\]

for all \(f \in \text{Map}_H(G, T_1 \otimes T_2) \). Observe that this map is \((G, A)\)-equivariant and surjective. Moreover, by Remark 3.8,

\[
|\text{Map}_H(G, T_1 \otimes T_2)| = (|T_1/A| \cdot |T_2/A|)^{|G/H|} \cdot |A| = |\text{Map}_H(G, T_1) \otimes \text{Map}_H(G, T_2)|.
\]

Hence \(\hat{\Psi} \) is an isomorphism of \((G, A)\)-sets. This completes the proof. \(\square \)

Combining Proposition 3.17 and Lemma 3.19 with [8, (80.47) Theorem], we obtain a result analogous to [8, (80.48) Theorem (Dress)].

Proposition 3.20 For any \(H \leq G \), there is a unique multiplicative map

\[
\text{Map}_H(G, -) : \Omega(H, A) \to \Omega(G, A), \quad x \mapsto \text{Map}_H(G, x)
\]

extending \(\text{Map}_H(G, -) \), called multiplicative induction or tensor induction, and this map is algebraic of degree \(|G : H|\).

Remark 3.21 The multiplicative induction map \(\text{Map}_H(G, -) : \Omega(H, A) \to \Omega(G, A) \) with \(A = \{\epsilon_A\} \) is introduced by Dress [11, §4].

Our concern is an explicit description of each element of \(\text{Im Map}_H(G, -) \) with \(H \leq G \), and is to prove Eq.(1.1) (see also [8, (80.49) Corollary]).

Proposition 3.22 Let \(H \leq G \). For any \((H, A)\)-sets \(T_0 \) and \(T \),

\[
\text{Map}_H(G, [T_0] - [T]) = \sum_{i=0}^{n} (-1)^i [\text{Map}_H(G, T_0, T_1, \ldots, T_i)],
\]

where \(n = |G : H| \) and \(T = T_1 = \cdots = T_n \).

Proof. We set \(D^{0}_{[T]} \Theta = \Theta = \text{Map}_H(G, -) : \Omega(H, A) \to \Omega(G, A) \), and define inductively \(D^{i}_{[T]} \Theta : \Omega(H, A) \to \Omega(G, A) \), \(i = 1, 2, \ldots \), by \(D^{i}_{[T]} \Theta = D^{i}_{[T]}(D^{i-1}_{[T]} \Theta) \). From [8, (80.45)], we know that \(\Theta([T_0] - [T]) = \sum_{i=0}^{\infty} (-1)^i D^{i}_{[T]} \Theta([T_0]) \). Hence the assertion follows from Proposition 3.17 and Lemma 3.18. This completes the proof. \(\square \)
Remark 3.23 Let $(H, \sigma) \in \mathcal{S}(G, A)$. By Lemma 3.7 and Proposition 3.22, we can describe the structure of $\overline{\text{Map}}_H(G, -[(H/H)_\sigma])$. For each $X \in G$-set, let $\tilde{\Lambda}_P(X)$ be the reduced Lefschetz invariant of the poset $P(X)$ consisting of non-empty and proper subsets of X, which is an element of the Burnside ring $\Omega(G)$ (cf. [5, 29]). When $A = \{\epsilon_A\}$, $\overline{\text{Map}}_H(G, -[(H/H)_1])$ is identified with $\tilde{\Lambda}_P(G/H)$.

There is a Mackey decomposition formula which generalizes [32, §3(G.5)] (see also [2, Proposition 9.5]).

Proposition 3.24 Let $H, K \leq G$. For each $x \in \Omega(H, A)$,

$$\text{res}_K^G(\overline{\text{Map}}_H(G, x)) = \prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, \text{res}_K^{gH} \circ \text{con}_{gH}^H(x)).$$

Proof. By [8, (80.44) Theorem (Dress)], $\text{res}_K^G \circ \overline{\text{Map}}_H(G, -) : \Omega(H, A) \to \Omega(K, A)$ is the unique map extending the algebraic map

$$\text{res}_K^G \circ \overline{\text{Map}}_H(G, -) = \prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, -) \circ \text{res}_K^{gH} \circ \text{con}_{gH}^H : \Omega(H, A)^+ \to \Omega(K, A),$$

and so is $\prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, -) \circ \text{res}_K^{gH} \circ \text{con}_{gH}^H : \Omega(H, A) \to \Omega(K, A)$ (see [11, Proposition 1.2] and Propositions 3.9, 3.17, and 3.20). Thus the assertion holds. \(\square\)

4 The mark homomorphism

4A The first cohomology group

Following [12, §2], we provide preliminaries of the mark homomorphism for $\Omega(G, A)$ which is given in §4B.

Let $H \leq G$. The set $Z^1(H, A)$ is a right A-set with the action of A given in Definition 2.4, and is an abelian group with the product operation given by

$$\sigma \cdot \tau(h) = \sigma(h)\tau(h)$$

for all $\sigma, \tau \in Z^1(H, A)$ and $h \in H$. Obviously, the identity of $Z^1(H, A)$ is 1_H.

For each $\sigma \in Z^1(H, A)$, we denote by $\overline{\sigma}$ the A-orbit $\{\sigma^a \mid a \in A\}$ containing σ. Given $\sigma, \tau \in Z^1(H, A)$ and $a, b \in A$, it is easily seen that $\overline{\sigma^a \cdot \tau^b} = (\overline{\sigma \cdot \tau})^{ab} = \overline{\sigma \cdot \tau}$.

Definition 4.1 For each $H \leq G$, we define

$$H^1(H, A) := \{\overline{\sigma} \mid \sigma \in Z^1(H, A)\},$$

$$\text{res}_K^G(\overline{\text{Map}}_H(G, x)) = \prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, \text{res}_K^{gH} \circ \text{con}_{gH}^H(x)).$$

Proof. By [8, (80.44) Theorem (Dress)], $\text{res}_K^G \circ \overline{\text{Map}}_H(G, -) : \Omega(H, A) \to \Omega(K, A)$ is the unique map extending the algebraic map

$$\text{res}_K^G \circ \overline{\text{Map}}_H(G, -) = \prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, -) \circ \text{res}_K^{gH} \circ \text{con}_{gH}^H : \Omega(H, A)^+ \to \Omega(K, A),$$

and so is $\prod_{KgH \in K \setminus G/H} \overline{\text{Map}}_{K \cap gH}(K, -) \circ \text{res}_K^{gH} \circ \text{con}_{gH}^H : \Omega(H, A) \to \Omega(K, A)$ (see [11, Proposition 1.2] and Propositions 3.9, 3.17, and 3.20). Thus the assertion holds. \(\square\)

4 The mark homomorphism

4A The first cohomology group

Following [12, §2], we provide preliminaries of the mark homomorphism for $\Omega(G, A)$ which is given in §4B.

Let $H \leq G$. The set $Z^1(H, A)$ is a right A-set with the action of A given in Definition 2.4, and is an abelian group with the product operation given by

$$\sigma \cdot \tau(h) = \sigma(h)\tau(h)$$

for all $\sigma, \tau \in Z^1(H, A)$ and $h \in H$. Obviously, the identity of $Z^1(H, A)$ is 1_H.

For each $\sigma \in Z^1(H, A)$, we denote by $\overline{\sigma}$ the A-orbit $\{\sigma^a \mid a \in A\}$ containing σ. Given $\sigma, \tau \in Z^1(H, A)$ and $a, b \in A$, it is easily seen that $\overline{\sigma^a \cdot \tau^b} = (\overline{\sigma \cdot \tau})^{ab} = \overline{\sigma \cdot \tau}$.

Definition 4.1 For each $H \leq G$, we define

$$H^1(H, A) := \{\overline{\sigma} \mid \sigma \in Z^1(H, A)\},$$
the set of A-orbits on $Z^1(H, A)$, and make it into an abelian group by defining
\[\sigma \cdot \tau = \sigma \cdot \tau \]
for all $\sigma, \tau \in Z^1(H, A)$. (This product operation is well-defined.)

Let $H \leq G$. We denote by $ZH^1(H, A)$ the group ring of $H^1(H, A)$ over \mathbb{Z}. Given $K \leq H$ and $g \in G$, there are ring homomorphisms
\[
\text{con}^g_H : ZH^1(H, A) \rightarrow ZH^1(ghA), \quad \sum_{\sigma \in H^1(H, A)} \ell_\sigma \sigma \mapsto \sum_{\sigma \in H^1(H, A)} \ell_\sigma g^{-1}\sigma \quad \text{and}
\text{res}_K^g : ZH^1(H, A) \rightarrow ZH^1(K, A), \quad \sum_{\sigma \in H^1(H, A)} \ell_\sigma \sigma \mapsto \sum_{\sigma \in H^1(H, A)} \ell_\sigma \sigma |_K, \]
where $\ell_\sigma \in \mathbb{Z}$ with $\sigma \in Z^1(H, A)$ (see §2B), which are called the conjugation map and the restriction map, respectively (cf. [12, §2.2]). Obviously, the restriction map is well-defined. Let $\sigma \in Z^1(H, A)$. By Lemma 2.5, we have $g(\sigma^a) = g\sigma$ for any $a \in A$. Thus the conjugation map is well-defined.

Let Y be a (G, A)-set. The set of A-orbits yA, $y \in Y$, on Y is a left G-set. For each $y \in Y$, we denote by G_{yA} the stabilizer of the A-orbit yA in G, that is,
\[G_{yA} = \{ g \in G \mid gy = ya \text{ for some } a \in A \}, \]
and define a 1-cocycle $\sigma_y : G_{yA} \rightarrow A$ by
\[gy = y\sigma_y(g) \]
for all $g \in G_{yA}$. Obviously, $G_{(ya)A} = G_{yA}$ and $\sigma_{ya} = \sigma_y^a$ for any $y \in Y$ and $a \in A$.

Definition 4.2 Let Y be a (G, A)-set, and let $H \leq G$. We define
\[\text{inv}_H(Y) := \{ y \in Y \mid H \leq G_{yA} \}, \]
which is viewed as an (H, A)-subset of $\text{res}_H^Y(Y)$, and define
\[[Y]_H := \frac{1}{|A|} \sum_{y \in \text{inv}_H^Y(Y)} \text{res}_{H}^{G_{yA}}(\sigma_y) = \sum_{yA \in \text{inv}_H^Y(Y)/A} \text{res}_{H}^{G_{yA}}(\sigma_y) \in ZH^1(H, A). \]

Let Y_1 and Y_2 be (G, A)-sets, and let $H \leq G$. Obviously,
\[[Y_1 \cup Y_2]_H = [Y_1]_H + [Y_2]_H. \]
Let $(y_1, y_2) \in Y_1 \times Y_2$. Given $g \in G$ and $a \in A$, $g(y_1 \otimes y_2) = (y_1 \otimes y_2)a$ if and only if $(gy_1b^{-1}, gy_2b) = (y_1, y_2a)$ for some $b \in A$. Hence we have
\[G_{(y_1 \otimes y_2)A} = G_{y_1A} \cap G_{y_2A} \quad \text{and} \quad \sigma_{y_1 \otimes y_2} = \sigma_{y_1}|_{G_{(y_1 \otimes y_2)A}} \cdot \sigma_{y_2}|_{G_{(y_1 \otimes y_2)A}}. \]
Multiplicative induction and units/ Yugen Takegahara

Moreover, $y_1 \otimes y_2 \in \text{inv}^A_H(Y_1 \otimes Y_2)$ if and only if $y_1 \in \text{inv}^A_H(Y_1)$ and $y_2 \in \text{inv}^A_H(Y_2)$. This means that

$$\left[Y_1 \right]_H \cdot \left[Y_2 \right]_H = \frac{1}{|A|} \left(\sum_{y \in \text{inv}^A_H(Y_1)} \text{res}^G_H(\overline{y}) \right) \left(\sum_{yA \in \text{inv}^A_H(Y_2)/A} \text{res}^G_H(\overline{yA}) \right)$$

$$= \frac{1}{|A|} \sum_{y_1 \otimes y_2 \in \text{inv}^A_H(Y_1 \otimes Y_2)} \text{res}^G_H(y_1 \otimes y_2)$$

$$= \left[Y_1 \otimes Y_2 \right]_H.$$

Given $H \leq G$, we define a ring homomorphism $\rho^H_G : \Omega(G, A) \to ZH^1(H, A)$ by

$$[Y] \mapsto [Y]_H$$

for all (G, A)-sets Y (cf. [12, §2.4]).

The ring homomorphisms $\rho^H_G : \Omega(G, A) \to ZH^1(H, A)$ for $H \leq G$ form the map

$$\prod_{H \leq G} \rho^H_G : \Omega(G, A) \to \prod_{H \leq G} ZH^1(H, A), \quad x \mapsto (\rho^H_G(x))_{H \leq G}$$

(cf. [12, §2.5]), which is injective (cf. [12, Theorem 1]).

4B The ghost ring

We continue reviewing part of [12, §2.4, §2.5], and define a ring monomorphism $\rho_G : \Omega(G, A) \to \overline{\Omega}(G, A), \ x \mapsto \prod_{H \leq G} \rho^H_G(x)$ (see Eq.(4.2)).

Definition 4.3 Let Y be a (G, A)-set, and let $(H, \sigma) \in S(G, A)$. We define a subset $\text{inv}((H, \sigma))(Y)$ of Y to be the set of $F_{(H, \sigma)}$-invariants in Y, so that

$$\text{inv}((H, \sigma))(Y) = \{ y \in Y \mid hy = y\sigma(h) \text{ for all } h \in H \} = \{ y \in \text{inv}^A_H(Y) \mid \sigma|_H = \sigma \},$$

and denote by A_{σ} the stabilizer $\{ a \in A \mid \sigma = \sigma^a \}$ of $\sigma \in Z^1(H, A)$ in A.

Under the notation of Definition 4.3, the set $\text{inv}((H, \sigma))(Y)$ is a free right A_{σ}-set with the action inherited from that of A on Y. For each $(H, \sigma) \in S(G, A)$, we denote by $\text{inv}((H, \sigma))(Y)/A_{\sigma}$ the set of A_{σ}-orbits on $\text{inv}((H, \sigma))(Y)$.

Lemma 4.4 Let Y be a (G, A)-set, and let $H \leq G$. Then

$$\left[Y \right]_H = \sum_{\sigma \in H^1(H, A)} \left| \text{inv}((H, \sigma))(Y)/A_{\sigma} \right| \cdot \sigma.$$

Moreover, $|\text{inv}((gH, g\sigma))(Y)/A_{g\sigma}| = |\text{inv}((H, \sigma))(Y)/A_{\sigma}|$ for any $\sigma \in Z^1(H, A)$ and $g \in G$.
Proof. The second statement is clear. To prove the first statement, we set
\[(Y/A)_{(H, \sigma)} = \{yA \in \text{inv}^A_H(Y)/A \mid \text{res}^G\text{inv}^A_H(\sigma y) = \sigma\}\]
for each \(\sigma \in Z^1(H, A)\), so that
\[|Y|_H = \sum_{\sigma \in H^1(H, A)} |(Y/A)_{(H, \sigma)}| \cdot \sigma.\]

Hence it suffices to verify that \(|(Y/A)_{(H, \sigma)}| = |\text{inv}^A_{(H, \sigma)}(Y)/A_{\sigma}|\) for any \(\sigma \in Z^1(H, A)\).

Let \(\sigma \in Z^1(H, A)\). We make the set \(\text{inv}^A_H(Y)\) into a free right \(A_{\sigma}\)-set by restriction of operators from \(A\) to \(A_{\sigma}\). By definition,
\[\text{inv}^A_{(H, \sigma)}(Y) = \{yA_{\sigma} \in \text{inv}^A_H(Y)/A_{\sigma} \mid \sigma y|_H = \sigma\},\]
where \(\text{inv}^A_H(Y)/A_{\sigma}\) is the set of \(A_{\sigma}\)-orbits \(yA_{\sigma} := \{ya \mid a \in A_{\sigma}\}, y \in \text{inv}^A_H(Y)\), on \(\text{inv}^A_H(Y)\). Let \(y \in \text{inv}^A_H(Y)\), and suppose that \(\sigma y|_H = \sigma^a = \sigma^b\) for some \(a, b \in A\). Then \(ab^{-1} \in A_{\sigma}\) and \(ya^{-1}A_{\sigma} = yb^{-1}A_{\sigma} \in \text{inv}^A_{(H, \sigma)}(Y)/A_{\sigma}\). (Note that \(\sigma y|_H = \sigma^{ac}\) for any \(c \in A\).) Hence there is a bijection \((Y/A)_{(H, \sigma)} \rightarrow \text{inv}^A_{(H, \sigma)}(Y)/A_{\sigma}\) given by
\[yA \mapsto ya^{-1}A_{\sigma},\]
where \(\sigma y|_H = \sigma^a\) with \(a \in A\), for all \(yA \in (Y/A)_{(H, \sigma)}\). This completes the proof. \(\Box\)

The following lemma is [27, Lemma 3.3].

Lemma 4.5 Let \((H, \sigma), (U, \tau) \in S(G, A)\). Then
\[|\text{inv}^A_{(H, \sigma)}((G/U)\tau)/A_{\sigma}| = |\{gU \in G/U \mid H \leq gU \text{ and } (g\tau)|_H = A \sigma\}|.\]

Let \(H, U \leq G\), and consider \(G/U\) to be a left \(G\)-set with the action of \(G\) given by the product operation on \(G\). Following [8, (80.5) Proposition], we define
\[\text{inv}^A_H(G/U) := \{gU \in G/U \mid H \leq gU\}.\] (4.1)

Lemma 4.6

(a) Let \(H \leq G\), and let \((U, \tau) \in S(G, A)\). Then
\[|(G/U)\tau|_H = \sum_{gU \in \text{inv}^A_H(G/U)} \text{res}^G_H \circ \text{con}^G_U(\tau).\]

(b) Let \(K \leq H \leq G\), and let \((U, \tau) \in S(H, A)\). Then for any \(r \in G\),
\[\left[\tau\left((H/U)\tau\right)\right]_K = \text{con}^G_K\left(\left[(H/U)\tau\right]_K\right).\]

If \(H = G\), then for any \(r \in G\),
\[\left[(G/U)\tau\right]_K = \text{con}^G_K\left(\left[(G/U)\tau\right]_K\right).\]
Proof. (a) Although the assertion follows from Lemmas 4.4 and 4.5, we directly prove it. In the proof of Lemma 4.4, if \(Y = (G/U)_\tau \), then by Lemmas 2.5 and 2.6,

\[
(Y/A)_{(H,\sigma)} = \{(\epsilon_A, gU)A \in \text{inv}_H^A(Y)/A \mid \res_H^g U \circ \con_U^g(\tau) = \sigma\},
\]

whence

\[
[(G/U)_\tau]_H = \sum_{\sigma \in H^1(H,A)} [(Y/A)_{(H,\sigma)}] \cdot \sigma = \sum_{gU \in \text{inv}_H(G/U)} \res_H^g U \circ \con_U^g(\tau).
\]

(b) By Lemma 2.10, it suffices to prove the first assertion. We have

\[
[(H/rU)_\tau]_K = \sum_{h' \in \text{inv}_K(H/rU)} \res_{h'K}^{h'rU} \circ \con_{h'U}(\tau)
\]

\[
= \sum_{h' \in \text{inv}_K(H/rU)} \con_{h'K} \circ \res_K^{r^{-1} h'U} \circ \con_U^{r^{-1} h'U}(\tau)
\]

\[
= \con_{h'K}([H/U)_\tau]_K).
\]

Hence the first assertion follows from Lemma 2.10. This completes the proof. \(\square\)

Definition 4.7 We define

\[
\mathcal{U}(G, A) := \left\{ (x_H)_{H \leq G} \in \prod_{H \leq G} \mathbb{Z}H^1(H, A) \mid \con_H^g(x_H) = x_\sigma for all g \in G \right\},
\]

the ghost ring of \(\Omega(G, A) \), which is a subring of \(\prod_{H \leq G} \mathbb{Z}H^1(H, A) \).

Remark 4.8 The family of \(\mathbb{Z} \)-algebras \(\mathbb{Z}H^1(H, A) \) for \(H \leq G \), together with conjugation maps and restriction maps, defines a \(\mathbb{Z} \)-algebra restriction functor \(\mathbb{Z}H^1(-, A) \) defined in [4, 1.1. Definition]. The rings \(\Omega(G, A) \) and \(\mathcal{U}(G, A) \) are identified with \(\mathbb{Z}H^1(G, A)_+ \) and \(\mathbb{Z}H^1(G, A)_+^+ \), respectively, which are obtained by the plus constructions \(\mathbb{Z}H^1(-, A) \mapsto \mathbb{Z}H^1(-, A)_+ \) and \(\mathbb{Z}H^1(-, A) \mapsto \mathbb{Z}H^1(-, A)_+^+ \); moreover, the Green functor given in Proposition 2.16 is identified with \(\mathbb{Z}H^1(-, A)_+ \) (see [4]).

From Proposition 2.14 and Lemma 4.6, we know that there is an additive map \(\rho_G : \Omega(G, A) \to \mathcal{U}(G, A) \) given by

\[
[(G/U)_\tau] \mapsto \left(\sum_{gU \in \text{inv}_H(G/U)} \res_H^g U \circ \con_U^g(\tau) \right)_{H \leq G}
\]

for all \((U, \tau) \in R(G, A) \) (cf. [4, 2.3.]), which is called the mark homomorphism. Since

\[
\rho_G([Y]) = ([Y]_H)_{H \leq G}
\]

Multiplicative induction and units/ Yugen Takegahara
for all \((G, A)\)-sets \(Y\), the mark homomorphism is a ring homomorphism defined by

\[
\rho_G(x) = (\rho_H^G(x))_{H \leq G}
\]

(4.2)

for all \(x \in \Omega(G, A)\) (cf. [12, §2.5]). We write \(\rho = \rho_G\) for shortness’ sake.

According to [4, (2.3a)], there is a map \(\mathcal{M}^* : \Omega(G, A) \rightarrow \Omega(G, A)\) given by

\[
\left(\sum_{\sigma \in Z^1(H, A)} \ell_{(H, \sigma)}(\phi) \right)_{H \leq G} \mapsto \sum_{H \leq U \leq H} \sum_{\sigma \in Z^1(H, A)} |U| \mu(U, H) \sum_{\sigma \in Z^1(H, A)} \ell_{(H, \sigma)}((G/U)_{\sigma|U})
\]

for all \(\ell_{(H, \sigma)} \in \mathbb{Z}\) with \(H \leq G\) and \(\sigma \in Z^1(H, A)\).

We quote concise versions of [4, 2.4. Proposition] and [12, Theorem 1].

Proposition 4.9 (a) \(\eta \circ \rho = |G| id_{\Omega(G, A)}\). (b) \(\rho \circ \eta = |G| id_{\Omega(G, A)}\).

Corollary 4.10 The mark homomorphism \(\rho\) is injective.

4C Invariant of tensor induction

Let \(H \leq G\). By Example 3.13 and Proposition 3.14, we have

\[
\rho(\text{Map}_{H}(G, (H/H)_{\sigma})) = (\text{id}_G)_{K \leq G}
\]

(4.3)

for all \(\sigma \in Z^1(H, A)\). Let \(T\) be an \((H, A)\)-set. We are interested in the description of \(\rho(\text{Map}_{H}(G, T))\), which naturally extends Eq.(4.3) (see Proposition 4.14). For each \(K \leq G\), the \(K\)-component \([\text{Map}_{H}(G, T)]_K\) of \(\rho(\text{Map}_{H}(G, T))\) is also associated with a Mackey decomposition formula (see Proposition 3.9).

Let \(Y\) be a \((G, A)\)-set, and let \(K \leq G\). By Definition 4.2,

\[
[Y]_K = \frac{1}{|A|} \sum_{y \in \text{inv}_K^A(Y)} \text{res}_K^{G_A}(\sigma_y) = \sum_{yA \in \text{inv}_K^A(Y)/A} \text{res}_K^{G_A}(\sigma_y).
\]

Concerning this formula, we have

\[
[Y]_K = \frac{1}{|A|} \sum_{y \in \text{inv}_K^A(Y)} \text{res}_K^{G_A}(\sigma_y) = \frac{1}{|A|} \sum_{y \in \text{inv}_K^A(\text{res}_K^A(Y))} \sigma_y = [\text{res}_K^A(Y)]_K.
\]

(4.4)

Obviously, this fact implies that \(\rho_K^G(x) = \rho_K^G(\text{res}_K^A(x))\) for any \(x \in \Omega(G, A)\) which is applied to the following lemma.
Lemma 4.11 Let $H, K \leq G$. For any $x \in \Omega(H, A)$,
\[
\rho^K_G(\Map_H(G, x)) = \prod_{KgH \in K \setminus G/H} \rho^K_G(\Map_{KgH}(K, \res^{\Omega_H}_K(\Map_H(G, x)))).
\]

Proof. Since $\rho^K_G(\Map_H(G, x)) = \rho^K_G(\res^{\Omega_H}_K(\Map_H(G, x)))$ for any $x \in \Omega(H, A)$, the assertion follows from Proposition 3.24. This completes the proof. □

Definition 4.12 Let $H \leq G$. We define a map $-\otimes^G : ZH^1(H, A) \to ZH^1(G, A)$ by
\[
\sum_{\sigma \in H^1(H, A)} \ell_{\sigma} \mapsto \left(\sum_{\sigma \in H^1(H, A)} \ell_{\sigma} \right)^{-\otimes^G} := \sum_{\sigma \in H^1(H, A)} \ell_{\sigma} \sigma^{\otimes^G}
\]
for all $\ell_{\sigma} \in Z$ with $\sigma \in Z^1(H, A)$. (This map is well-defined; see Remark 3.12.)

Lemma 4.13 Let $H \leq G$, and let T be an (H, A)-set. Then
\[
[\Map_H(G, T)]_G = \frac{1}{|A|} \sum_{f \in \inv^A_H(\Map_H(G, T))} \sigma_f = \frac{1}{|A|} \sum_{t \in \inv^A_H(T)} \sigma_t^{\otimes^G} = [T]^H \otimes^G.
\]

Proof. Fix a complete set $\{g_1, g_2, \ldots, g_n\}$ with $g_1 = \epsilon$ of representatives of G/H. Let $t \in \inv^A_H(T)$. We define an element $f(t)$ of $\Map_H(G, T)$ by
\[
f(t)(g_j^{-1}) = t
\]
for all $j \in [n]$. For any $g \in G$ and $j \in [n]$, if $g_H = gg_j H$, then
\[
(gf(t)(g_j^{-1}) = (g_j^{-1}gg_j)f(t)(g_j^{-1}) = (g_j^{-1}gg_j)t = f(t)(g_j^{-1})\sigma_t(g_j^{-1}gg_j).
\]
This, combined with Lemma 3.7, shows that $gf(t) = f(t)(\sigma_t^{\otimes^G})(g)$ for all $g \in G$ (see Definition 3.11). Hence $G = G_{f(t)A} : f(t) \in \inv^A_H(\Map_H(G, T))$, and $\sigma_{f(t)} = \sigma_t^{\otimes^G}$.

We now define a map $\hat{\Gamma} : \inv^A_H(T)/A \to \inv^A_G(\Map_H(G, T))/A$ by
\[
\hat{\Gamma}(tA) = f(t)A
\]
for all $t \in \inv^A_H(T)$. This map is well-defined, because, by Lemma 3.7, $f(tA) = f(t)b$ with $b = g_1g_2 \cdots g_n$ for any $a \in A$. If $\hat{\Gamma}(t_1A) = \hat{\Gamma}(t_2A)$ with $t_1, t_2 \in \inv^A_H(T)$, then $f(t_1) = f(t_2)a$ for some $a \in A$, and hence $t_1 = t_2b$ for some $b \in A$. Thus $\hat{\Gamma}$ is injective. Let $f \in \inv^A_H(\Map_H(G, T))$ with $f \in \Map_H(G, T)$, and let $g \in G$. Given $j \in [n]$, we have $(gf)(g_j^{-1}) = f(g_j^{-1})a_j(g)$ for some $a_j(g) \in A$. Set $t = f(\epsilon)$. Then
\[
h(t) = hf(\epsilon) = f(h) = (hf)(\epsilon) = ta_1(h)
\]
for all \(h \in H \), which yields \(t \in \text{inv}_H^A(T) \). Observe now that for any \(j \in [n] \),
\[
f(g_j^{-1}a_j(g_j)) = (g_jf)(g_j^{-1}) = f(\epsilon) = t = f_0(g_j^{-1}).
\]
By Lemma 3.7, we have \(\tilde{f} = f_0a \), where \(a = (g_0a_1(g_1)g_2a_2(g_2) \cdots g_na_n(g_n))^{-1} \), so that \(\tilde{\Gamma}(T^A) = f_0A \). Thus \(\tilde{\Gamma} \) is bijective. The assertion now follows from the fact that \(\sigma_{f_0} = \sigma_{t^G} \) for all \(t \in \text{inv}_H^A(T) \). This completes the proof. \(\square \)

The following proposition generalizes the equation in [32, p. 39] (see also [2, Lemma 9.2], [9, p. 149], and [30, p. 111, Eq.(2)]).

Proposition 4.14 Let \(H, K \leq G \). For each \((H,A)\)-set \(T \),
\[
[\text{Map}_H(G,T)]_K = \prod_{KgH \in K \setminus G/H} [^gT]_{K \cap gH} \otimes K.
\]

Proof. Combining Lemma 4.13 with Lemma 4.11, we have
\[
[\text{Map}_H(G,T)]_K = \prod_{KgH \in K \setminus G/H} [\text{Map}_{K \cap gH}(K, \text{res}_{K \cap gH}[^gT])]_K
\]
\[
= \prod_{KgH \in K \setminus G/H} [\text{res}_{K \cap gH}[^gT]]_{K \cap gH} \otimes K.
\]
Hence the assertion follows from Eq.(4.4). This completes the proof. \(\square \)

How about the description of \(\rho(\text{Map}_H(G,x)) \) for any \(H \leq G \) and \(x \in \Omega(H,A) \)? By using Eq.(1.1), we are successful in proving Eq.(1.2) (see Theorem 4.16).

Lemma 4.15 Let \(H \leq G \). For any \((H,A)\)-sets \(T_0 \) and \(T \),
\[
\rho_H^G(\text{Map}_H(G,\{T_0\} - [T])) = [\text{Map}_H(G,T_0)]_G - [\text{Map}_H(G,T)]_G.
\]

Proof. We may assume that \(H < G \). By Proposition 3.22,
\[
\text{Map}_H(G,\{T_0\} - [T]) = [\text{Map}_H(G,T_0)] + \sum_{i=1}^n (-1)^i[\text{Map}_H(G,T_0,T_1,\ldots,T_i)],
\]
where \(n = |G : H| \) and \(T = T_1 = \cdots = T_n \). If \(i \in [n] \) and \(i \geq 2 \), then obviously, \([\text{Map}_H(G,T_0,T_1,\ldots,T_i)]_G = 0 \). Moreover, we have
\[
\text{inv}_G^A(\text{Map}_H(G,T_0,T_1)) = \text{inv}_G^A(\text{Map}_H(G,\emptyset,T_1)) = \text{inv}_G^A(\text{Map}_H(G,T_1)),
\]
completing the proof. \(\square \)

The following theorem, which is equivalent to Eq.(1.2), is an extension of Proposition 4.14 and is a generalization of [32, §3(b.3)].
Theorem 4.16 Let $H \leq G$, and define a map $\text{ind}_H^G : \Omega(H, A) \to \Omega(G, A)$ by

$$(x_L)_{L \leq H} \mapsto \left(\prod_{KgH \in K \setminus G/H} \text{con}^g_{KgH}(x_{KgH}) \right)_{K \leq G}$$

for all $(x_L)_{L \leq H} \in \Omega(H, A)$. Then the diagram

$$
\begin{array}{ccc}
\Omega(G, A) & \xrightarrow{\rho_H} & \Omega(G, A) \\
\downarrow \text{Map}_H(G, -) & & \downarrow \text{ind}_H^G \\
\Omega(H, A) & \xrightarrow{\rho_H} & \Omega(H, A)
\end{array}
$$

is commutative, where $\rho_H : \Omega(H, A) \to \Omega(H, A)$ is the mark homomorphism.

Proof. We prove Eq.(1.2). Let $x \in \Omega(H, A)$. We may assume that $x = [T_0] - [T]$ for some (H, A)-sets T_0 and T. Let $K \leq G$. Then by Lemmas 4.11 and 4.15, we have

$$
\rho^K_G(\text{Map}_H(G, [T_0] - [T])) = \prod_{KgH \in K \setminus G/H} \rho^K_K(\text{Map}_{KgH}(K, [\text{res}^g_{KgH}(gT_0)] - [\text{res}^g_{KgH}(gT)]))
$$

Moreover, it follows from Eq.(4.4) and Lemma 4.13 that

$$
\rho^K_G(\text{Map}_H(G, [T_0] - [T])) = \prod_{KgH \in K \setminus G/H} \left\{ [gT_0]_{KgH} - [gT]_{KgH} \right\}.
$$

By Lemma 4.6(b), $[gT_1]_{KgH} = \text{con}^g_{KgH}(T_1)$, where $T_1 = T_0$ or $T_1 = T$, for all $g \in G$. Hence Eq.(1.2) follows from Eq.(4.2). This completes the proof. \[\square\]

Remark 4.17 Given $(H, \sigma) \in \mathcal{S}(G, A)$, it follows from Lemma 4.6 and Eq.(4.5) that

$$
\rho(\text{Map}_H(G, -[(H/H)_\sigma])) = \left((-1)^{|K \setminus G/H|} \prod_{KgH \in K \setminus G/H} (g\sigma)_{KgH} \right)_{K \leq G}
$$

(see also Eq.(4.3)). Here we return to Remark 3.23. Deducing this fact directly from Lemma 3.7 and Proposition 3.22 requires the use of [25, (24d)] which provides a combinatorial explanation. Let $H, K \leq G$. When $A = \{e_A\}$, the K-component of $\rho(\text{Map}_H(G/H))$ is $(-1)^{|K \setminus G/H|}$ (see [29, Proposition 5.1] and [32, Lemma 3.6]).
For each $H \leq G$, we denote by $\Omega(H, A)^\times$ the unit group of $\Omega(H, A)$, and consider this abelian group as a \mathbb{Z}-module. Note that the \mathbb{Z}-module structure of $\Omega(H, A)^\times$ is different from that of $\Omega(H, A)$.

There is a fact relative to [2, Theorem 9.6] and [32, Lemma 3.1].

Theorem 4.18 The family of \mathbb{Z}-modules $\Omega(H, A)^\times$ for $H \leq G$, together with conjugation, restriction, and multiplicative induction maps inherited from those on the family of \mathbb{Z}-algebras $\Omega(H, A)$ for $H \leq G$ defines a Mackey functor on G.

Proof. Let $\text{jnd}^H_K : \Omega(K, A)^\times \to \Omega(H, A)^\times$ with $K \leq H \leq G$ be the map inherited from $\text{Map}_K(H, -) : \Omega(K, A) \to \Omega(H, A)$. By [4, 1.1. Definition], Lemma 2.10, and Proposition 3.24, it suffices to verify that for any $U \leq V \leq H \leq G$ and $g \in G$,

$$\text{con}^g_H \circ \text{jnd}^H_U = \text{jnd}^V_H \circ \text{con}^g_U \quad \text{and} \quad \text{jnd}^V_U \circ \text{jnd}^H_U = \text{jnd}^H_U. \quad (4.6)$$

Given $H \leq G$ and $g \in G$, we define a map $\text{con}^g_H : \mathcal{U}(H, A) \to \mathcal{U}(^gH, A)$ by

$$(x_K)_{K \leq H} \mapsto (\text{con}^g_{K}(x_K))_{gK \leq ^gH}$$

for all $(x_K)_{K \leq H} \in \mathcal{U}(H, A)$. Let $U \leq V \leq H \leq G$, and let $g \in G$. Given $K \leq H$ and $(x_L)_{L \leq U} \in \mathcal{U}(U, A)$, we have

$$\text{con}^g_K(\text{con}^h_{K \cap U}(x_{Kh \cap U})^\otimes K) = (\text{con}^g_{K \cap U} \circ \text{con}^h_{Kh \cap U}(x_{Kh \cap U}))^\otimes ^gK$$

for all $h \in H$ and

$$\prod_{KhV \in K \setminus H/V} \text{con}^h_{K_h} \left(\prod_{KhU \in K_h \setminus U/V} \text{con}^h_{Kh \cap U}(x_{Kh \cap U})^\otimes K \right)^\otimes K = \prod_{KhU \in K \setminus H/U} \text{con}^h_{K \cap U}(x_{Kh \cap U})^\otimes K,$$

where $K_h = K^h \cap V$ (see Lemma 3.15). Relative to ‘jnd’ defined in Theorem 4.16, these equations enable us to obtain the equations

$$\text{con}^g_H \circ \text{jnd}^H_U = \text{jnd}^V_H \circ \text{con}^g_U \quad \text{and} \quad \text{jnd}^V_U \circ \text{jnd}^H_U = \text{jnd}^H_U.$$

By Lemma 4.6(b), $\text{con}^g_H \circ \rho_H = \rho_{^gH} \circ \text{con}^g_H$ and $\text{con}^g_U \circ \rho_U = \rho_{^gU} \circ \text{con}^g_U$. Hence Eq.(4.6) follows from Corollary 4.10 and Theorem 4.16. This completes the proof. □

5 **Fundamentals of monomial Burnside rings**

5A The Burnside homomorphism

The discussion in this section is a special case of [28, §9] (see also [27, §3, §4]).
For each \((U, \tau) \in \mathcal{S}(G, A)\), we set
\[
N_G(U, \tau) = \{g \in G \mid gU = U \text{ and } \text{con}_U^g(\tau) = \tau\}.
\]
By definition, the elements \((x_{H}^{(U, \tau)})_{H \leq G}\) for \((U, \tau) \in \mathcal{R}(G, A)\), where
\[
x_{H}^{(U, \tau)} = \begin{cases}
\sum_{gN_G(U, \tau) \in N_G(U) / N_G(U, \tau)} \text{con}_U^g(\tau) & \text{if } H = rU \text{ with } r \in G, \\
0 & \text{otherwise},
\end{cases}
\]
form a free \(\mathbb{Z}\)-basis of the ghost ring \(\mathcal{O}(G, A)\). We define
\[
\tilde{\Omega}(G, A) := \prod_{(K, \nu) \in \mathcal{R}(G, A)} \mathbb{Z},
\]
so that there exists an isomorphism \(\kappa : \tilde{\Omega}(G, A) \sim \mathcal{O}(G, A)\) of \(\mathbb{Z}\)-lattices given by
\[
(\delta(U, \tau)(K, \nu))_{(K, \nu) \in \mathcal{R}(G, A)} \mapsto (x_{H}^{(U, \tau)})_{H \leq G}
\]
for all \((U, \tau) \in \mathcal{R}(G, A)\), where \(\delta\) is the Kronecker delta.

Definition 5.1 We define an additive map \(\varphi : \Omega(G, A) \rightarrow \tilde{\Omega}(G, A)\) by
\[
\varphi([[(G/U)_{\tau}]]) = (|\text{inv}_{(K, \nu)}(G/U)_{\tau}|A_{\nu})_{(K, \nu) \in \mathcal{R}(G, A)}
\]
for all \((U, \tau) \in \mathcal{R}(G, A)\) (see Lemma 4.5), and call it the Burnside homomorphism.

Proposition 5.2 The diagram
\[
\begin{array}{ccc}
\Omega(G, A) & \xrightarrow{\varphi} & \tilde{\Omega}(G, A) \\
\rho \downarrow & & \downarrow \kappa \\
\mathcal{O}(G, A)
\end{array}
\]
is commutative. In particular, the Burnside homomorphism \(\varphi\) is injective.

Proof. The assertion follows from Lemma 4.4 and Corollary 4.10. \(\square\)

Let \((U, \tau) \in \mathcal{R}(G, A)\). By Lemma 2.6, \(N_G(U, \tau)\) contains \(U\). Observe that for any \((K, \nu) \in \mathcal{R}(G, A)\), the \((K, \nu)\)-component of \(\varphi([[(G/U)_{\tau}]])\) is divisible by \([N_G(U, \tau)/U]\) (see Lemma 4.5). We define
\[
y^{(U, \tau)} := \frac{1}{[N_G(U, \tau)/U]} \varphi([[(G/U)_{\tau}]])
\]
for \((U, \tau) \in \mathcal{R}(G, A)\). The elements \(y^{(U, \tau)}\) for \((U, \tau) \in \mathcal{R}(G, A)\) form a free \(\mathbb{Z}\)-basis of the \(\mathbb{Z}\)-lattice \(\tilde{\Omega}(G, A)\).

Proposition 5.3 The elements \(y^{(U, \tau)}\) for \((U, \tau) \in \mathcal{R}(G, A)\) form a free \(\mathbb{Z}\)-basis of the \(\mathbb{Z}\)-lattice \(\Omega(G, A)\).

Proof. The proof is completely analogous to that of [8, (80.15) Proposition]. \(\square\)
5B The Cauchy-Frobenius homomorphism

We aim to state a fundamental theorem for the monomial Burnside ring \(\Omega(G, A) \)
(see Theorem 5.9).

Definition 5.4 For each \((U, \tau) \in S(G, A) \), let \(W_G(U, \tau) \) denote the factor group \(N_G(U, \tau)/U \). We define

\[
\text{Obs} (G, A) := \prod_{(U, \tau) \in R(G, A)} \mathbb{Z}/|W_G(U, \tau)|\mathbb{Z},
\]

the obstruction group of \(\Omega(G, A) \).

The following fact is a corollary to Proposition 5.3.

Corollary 5.5 \(\tilde{\Omega}(G, A)/\text{Im} \varphi \simeq \text{Obs} (G, A) \).

Proof. The proof is completely analogous to that of [27, Corollary 3.8]. □

Let \(p \) be a prime, and let \(\mathbb{Z}(p) \) be the localization of \(\mathbb{Z} \) at \(p \). For each \(\mathbb{Z} \)-module \(M \), we set \(M(p) = \mathbb{Z}(p) \otimes_{\mathbb{Z}} M \) and \(M(\infty) = M \). Let \((U, \tau) \in S(G, A) \). We denote by \(W_G(U, \tau)_p \) a Sylow \(p \)-subgroup of \(W_G(U, \tau) \), and set \(W_G(U, \tau)_\infty = W_G(U, \tau) \).

Let \(p \) be a prime or the symbol \(\infty \) hereafter. By Proposition 2.14, the elements \([(G/H)_{\sigma}] \) for \((H, \sigma) \in R(G, A) \) form a free \(\mathbb{Z}(p) \)-basis of the \(\mathbb{Z}(p) \)-lattice \(\Omega(G, A)_p \).

We identify \(\tilde{\Omega}(G, A)_p \) and \(\text{Obs} (G, A)_p \) with

\[
\prod_{(K, \nu) \in R(G, A)} \mathbb{Z}(p) \quad \text{and} \quad \prod_{(U, \tau) \in R(G, A)} \mathbb{Z}(p)/|W_G(U, \tau)_p|\mathbb{Z}(p),
\]

respectively. Let \(\varphi(p) \) denote the monomorphism from \(\Omega(G, A)_p \) to \(\tilde{\Omega}(G, A)_p \) determined by \(\varphi \). (So \(\varphi(\infty) = \varphi \).) Then by Corollary 5.5, we have

\[
\tilde{\Omega}(G, A)_p/\text{Im} \varphi(p) \simeq \text{Obs} (G, A)_p. \quad (5.1)
\]

The expression \(`x \mod \ell ' \) with \(x, \ell \in \mathbb{Z}(p) \) denotes the coset \(x + \ell \mathbb{Z}(p) \) of \(\ell \mathbb{Z}(p) \) in \(\mathbb{Z}(p) \) containing \(x \). Let \((U, \tau) \in S(G, A) \). Given \((y_{(H, \sigma)})_{(H, \sigma) \in R(G, A)} \in \tilde{\Omega}(G, A)_p \),
\(y_{(U, \tau)} \) denotes \(y_{(H, \sigma)} \) for a representative \((H, \sigma) \in R(G, A) \) of the \(F \)-orbit on \(S(G, A) \) containing \((U, \tau) \). For each \(g \in N_G(U, \tau) \), we set

\[
H^1_F((g)U, A) = \{ \overline{v} \in H^1((g)U, A) \mid \text{res}^g_U(\overline{v}) = \overline{v} \}.
\]

Definition 6.6 We define an additive map \(\psi(p) : \tilde{\Omega}(G, A)_p \to \text{Obs} (G, A)_p \) by

\[
(y_{(K, \nu)})_{(K, \nu) \in R(G, A)} \mapsto \left(\sum_{\substack{y_{(g)U, \nu) \mod |W_G(U, \tau)_p| \in H^1_F((g)U, A) \quad (U, \tau) \in R(G, A)}} y_{(g)U, \nu} \right)
\]

for each \(U \in \mathcal{U} \) and \((U, \tau) \in R(G, A) \).
for all \((y_{(K,\nu)})_{(K,\nu)\in \mathcal{R}(G,A)} \in \tilde{\Omega}(G,A)_{(p)}\), and call it the Cauchy-Frobenius homomorphism.

Remark 5.7 (1) When \(p\) is a prime, \(\psi^{(p)}\) is independent of the choice of a Sylow \(p\)-subgroup \(W_G(U,\tau)_p\) of \(W_G(U,\tau)\) (cf. [28, §9]). (2) When \(p = \infty\), we write \(\psi = \psi^{(\infty)}\).

For each \((H,\sigma) \in \mathcal{R}(G,A)\), it follows from Lemma 4.5 that

\[
\psi^{(p)} \circ \varphi^{(p)}([G/H]_\sigma) = \left(\sum_{gU \in W_G(U,\tau)_p} |I_{gU,\tau}^{H,\sigma}| \mod |W_G(U,\tau)_p| \right)_{(U,\tau) \in \mathcal{R}(G,A)},
\]

where

\[
I_{gU,\tau}^{H,\sigma} = \{ rH \in G/H \mid (g)U \leq rH \text{ and } (r\sigma)|_U = A \tau \}.
\]

The following lemma, which is a special case of [28, Lemma 9.2], is a consequence of the Cauchy-Frobenius lemma (see, e.g., [33, 2.7 Lemma]).

Lemma 5.8 Let \((H,\sigma), (U,\tau) \in \mathcal{R}(G,A)\). For any \(V \leq N_G(U,\tau)\) with \(U \leq V\),

\[
\sum_{gU \in V/U} |I_{gU,\tau}^{H,\sigma}| \equiv 0 \pmod{|V/U|}.
\]

Proof. The proof is analogous to that of [28, Lemma 9.2], and is also analogous to part of the proof of [27, Lemma 4.1]. ∎

We are now in a position to show a special case of [28, Theorem 9.4], which is a generalization of [9, Proposition 1.3.5] and [32, Lemma 2.1].

Theorem 5.9 (Fundamental theorem) The sequence

\[
0 \rightarrow \Omega(G,A)_{(p)} \xrightarrow{\varphi^{(p)}} \tilde{\Omega}(G,A)_{(p)} \xrightarrow{\psi^{(p)}} \text{Obs } (G,A)_{(p)} \rightarrow 0
\]

of additive groups is exact.

Proof. By Proposition 5.2, \(\varphi^{(p)}\) is injective. Moreover, it is easily verified that \(\psi^{(p)}\) is surjective (see, e.g., the proof of [27, Lemma 4.3]). Using Eqs.(5.1) and (5.2) and Lemma 5.8, we have \(\text{Im } \varphi^{(p)} = \text{Ker } \psi^{(p)}\), completing the proof. ∎

5C Idempotents of Burnside rings

The Burnside ring \(\Omega(G)\) of \(G\), which is defined to be the Grothendieck ring of \(G\)-set, is the commutative unital ring consisting of all formal \(\mathbb{Z}\)-linear combinations of the symbols \([G/H]\) for \(H \in \mathcal{C}(G)\) with multiplication given by

\[
[G/H] \cdot [G/U] = \sum_{HgU \in H \setminus G/U} [G/(H \cap gU)]
\]

(5.3)
for all $H, U \in C(G)$, where $[G/(H \cap gU)] = [G/K]$ for a conjugate $K \in C(G)$ of $H \cap gU$ in G (see, e.g., [33, 2.1]). The identity of $\Omega(G)$ is $[G/G]$.

We regard $\Omega(G)$ as $\Omega(G, A)$ with $A = \{e_A\}$. For each $X \in G$-set, the symbol $[X]$ denotes an element $\sum_{i=1}^{n}[G/H_i]$ of $\Omega(G)$ if $X \simeq \bigcup_{i \in [n]} G/H_i$ with $H_i \in C(G)$.

Remark 5.10 The product $X_1 \times X_2$ of $X_1, X_2 \in G$-set is their cartesian product with the componentwise action of G (cf. [8, §80A]). Let $H, U \leq G$, and let $H \leq G/U$ be a complete set of representatives of $H \leq G/U$ (see, e.g., [33, 2.1]). The identity of $\Omega(G)$ is $[G/G].$

We regard $\Omega(G)$ as $\Omega(G; A)$ with $A = f \epsilon A g$. For each $X \in G$-set, the symbol $[X]$ denotes an element $\sum_{i=1}^{n}[G=H_i]$ of $\Omega(G)$ if $X \simeq \bigcup_{i \in [n]} G/H_i$ with $H_i \in C(G)$.

Remark 5.10 The product $X_1 \times X_2$ of $X_1, X_2 \in G$-set is their cartesian product with the componentwise action of G.

Definition 5.11 We define a ring homomorphism $\alpha : \Omega(G, A) \rightarrow \Omega(G)$ by

$$[(G/U)_\tau] \mapsto [G/U]$$

for all $(U, \tau) \in R(G, A)$ and define a ring homomorphism $\iota : \Omega(G) \rightarrow \Omega(G, A)$ by

$$[G/U] \mapsto [(G/U)_1]$$

for all $U \in C(G)$.

Since $\alpha \circ \iota = \text{id}_{\Omega(G)}$, the Burnside ring $\Omega(G)$ is identified with $\text{Im}\iota$. We define

$$\bar{\Omega}(G) := \prod_{H \in C(G)} \mathbb{Z}.$$

There exists a ring monomorphism $\phi : \Omega(G) \rightarrow \bar{\Omega}(G)$ given by

$$[G/U] \mapsto ([\text{inv}_H(G/U)]_{H \in C(G)}$$

for all $U \in C(G)$ (cf. [8, (80.12) Proposition]), where $\text{inv}_H(G/U)$ is given by Eq.(4.1).

The ring homomorphism $\varepsilon : \mathbb{Z}H^1(H, A) \rightarrow \mathbb{Z}$ with $H \leq G$ given by

$$\sum_{\sigma \in H^1(H, A)} \ell_\sigma \tau \mapsto \sum_{\sigma \in H^1(H, A)} \ell_\sigma$$

for all $\ell_\sigma \in \mathbb{Z}$ where $\sigma \in Z^1(H, A)$ is called the augmentation map of $\mathbb{Z}H^1(H, A)$ (cf. [21, Definition 3.2.9]).
Definition 5.12 We define a ring homomorphism \(\tilde{\alpha} : \mathcal{U}(G, A) \to \mathcal{U}(G) \) by
\[
(x_H)_{H \leq G} \mapsto (\varepsilon(x_H))_{H \in \text{C}(G)}
\]
for all \((x_H)_{H \leq G} \in \mathcal{U}(G, A) \) and define a ring homomorphism \(\tilde{\tau} : \mathcal{U}(G) \to \mathcal{U}(G, A) \) by
\[
(y_H)_{H \in \text{C}(G)} \mapsto (y_H)_{H \leq G},
\]
where \(\tilde{y}_H = y_K \) for a conjugate \(K \in \text{C}(G) \) of \(H \) in \(G \), for all \((y_H)_{H \in \text{C}(G)} \in \mathcal{U}(G) \).

Obviously, \(\tilde{\alpha} \circ \tilde{\tau} = \text{id}_{\mathcal{U}(G)} \). We provide the following two lemmas.

Lemma 5.13 (a) The diagrams
\[
\begin{array}{ccc}
\Omega(G, A) & \xrightarrow{\rho} & \mathcal{U}(G, A) \\
\alpha & \downarrow & \tilde{\alpha} \\
\Omega(G) & \xrightarrow{\phi} & \mathcal{U}(G)
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
\Omega(G, A) & \xrightarrow{\rho} & \mathcal{U}(G, A) \\
\iota & \uparrow & \tilde{\tau} \\
\Omega(G) & \xrightarrow{\phi} & \mathcal{U}(G)
\end{array}
\]
are commutative.

(b) Let \(x \in \Omega(G, A) \). If \(\rho(x) = \tilde{\tau}(y) \) for some \(y \in \mathcal{U}(G) \), then \(\iota \circ \alpha(x) = x \).

Proof. The statement (a) is clear. We prove the statement (b). Since \(\tilde{\alpha} \circ \tilde{\tau} = \text{id}_{\mathcal{U}(G)} \), it follows from the statement (a) that
\[
\rho \circ \iota \circ \alpha(x) = \tilde{\tau} \circ \phi \circ \alpha(x) = \tilde{\tau} \circ \tilde{\alpha} \circ \rho(x) = \tilde{\tau} \circ \tilde{\alpha} \circ \tilde{\tau}(y) = \tilde{\tau}(y) = \rho(x).
\]
This, combined with Corollary 4.10, shows that \(\iota \circ \alpha(x) = x \), completing the proof.

Lemma 5.14 (a) \(\alpha \circ \eta \circ \tilde{\tau} \circ \phi = |G|\text{id}_{\Omega(G)} \). (b) \(\phi \circ \alpha \circ \eta \circ \tilde{\tau} = |G|\text{id}_{\mathcal{U}(G)} \).

Proof. The lemma follows from Proposition 4.9 and Lemma 5.13(a).

The rest of this section is devoted to the idempotents of \(\mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G) \).

Definition 5.15 Given \(U \leq G \), we define \(W_G(U) \) to be the factor group \(N_G(U)/U \).

Let \(p \) be a prime or the symbol \(\infty \). For each \(U \leq G \), we denote by \(W_G(U)_p \) a Sylow \(p \)-subgroup of \(W_G(U) \) provided \(p \) is a prime, and set \(W_G(U)_\infty = W_G(U) \).

The elements \([G/H] \) for \(H \in \text{C}(G) \) form a free \(\mathbb{Z}(p) \)-basis of the \(\mathbb{Z}(p) \)-lattice \(\Omega(G)_{(p)} \). We identify \(\mathcal{U}(G)_{(p)} \) with \(\prod_{H \in \text{C}(G)} \mathbb{Z}(p) \). Let \(\phi(p) \) denote the ring monomorphism from \(\Omega(G)_{(p)} \) to \(\mathcal{U}(G)_{(p)} \) determined by \(\phi \).

We quote [9, Proposition 1.3.5] (see also [32, Lemma 2.1]).
Proposition 5.16 Let $\tilde{x} = (x_H)_{H \in C(G)} \in \mathcal{U}(G)_{(p)}$. Then $\tilde{x} \in \text{Im}\phi^{(p)}$ if and only if
\[\sum_{gU \in W_G(U)_p} x_{(g)U} \equiv 0 \pmod{|W_G(U)_p|}, \]
where $x_{(g)U} = x_K$ for a conjugate $K \in C(G)$ of $(g)U$ in G, for all $U \in C(G)$.

Proof. The assertion follows from Theorem 5.9 and Lemma 5.13(a). \square

By Lemma 5.14, the primitive idempotents of $\mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G)$ are the elements
\[e_H := \frac{1}{|G|} \alpha \circ \eta \circ \bar{\tau}(\delta_{H,K}K \in C(G)) = \frac{1}{|N_G(H)|} \sum_{U \leq H} |U| \mu(U,H)[G/U] \tag{5.4} \]
for $H \in C(G)$. This fact was shown by Gluck [14] and independently by Yoshida [31]. Obviously, $e_{HK} = \delta_{HK}e_H$ for all $H, K \in C(G)$, and $[G/G] = \sum_{H \in C(G)} e_H$.

Following [33], we present the primitive idempotents of $\Omega(G)$. Let \sim_p be the equivalence relation on the set \{(H) \mid H \leq G\}, where (H) is the set of conjugates of H in G, generated by
\[(gU) \sim_p (U) \]
for $U \leq G$ and $gU \in W_G(U)_p$ with $g \in N_G(U)$. We define an equivalence relation \sim_p on the set $S(G)$ of subgroups of G by
\[H \sim_p K \iff (H) \sim_p (K). \]
Let $H \leq G$. When p is a prime, we denote by $O^p(H)$ the smallest normal subgroup of H such that $H/O^p(H)$ is a p-group (cf. [31]). Suppose that
\[H = H^{(0)} \geq H^{(1)} \geq H^{(2)} \geq \cdots \geq H^{(i)} \geq \cdots \]
is the derived series of H (cf. [26, Chapter 2, Definition 3.11]). Then we define $O^\infty(H) := \cap_{i=0}^\infty H^{(i)}$. The following lemma is well-known (cf. [33, p. 535]).

Lemma 5.17 Let $H, U \leq G$. Then $H \sim_p U$ if and only if $(O^p(H)) = (O^p(U))$.

Proof. The ‘if’ part follows from [26, Chapter 2, Theorem 1.6]. To prove the ‘only if’ part, we may assume that $H = (g)U$ for some $gU \in W_G(U)_p$ with $g \in N_G(U)$. If p is a prime, then $U \geq O^p(U) \geq O^p(H)$, and hence $O^p(U) = O^p(H)$. Suppose that $p = \infty$. We have $U^{(i-1)} \geq H^{(i)} \geq U^{(i)}$ for any $i \geq 1$. If $U^{(i-1)} = U^{(i)}$ for some i, then $U^{(i-1)} = H^{(i)} = U^{(i)}$. Thus we have $O^\infty(H) = O^\infty(U)$, completing the proof. \square

A subgroup H of G is said to be p-perfect if $H = O^p(H)$. For each $K \leq G$, $K \sim_p O^p(K)$ by Lemma 5.17, and $O^p(K)$ is p-perfect. Let $C^{(p)}(G)$ be a full set of non-conjugate p-perfect subgroups of G. For each $H \in C^{(p)}(G)$, we define
\[e_H := \sum_{H \sim_p K \in C(G)} e_K, \]
The elements e^p_H for $H \in C^p(G)$ are the primitive idempotents of $\Omega(G)_p$, and the elements $e^{(\infty)}_H$ for $H \in C^{(\infty)}(G)$ are also those of $\Omega(G,A)$.

Proof. For any idempotent $(x_H)_{H \in C(G)}$ of $\Omega(G)_p$, it follows from Proposition 5.16 that $(x_H)_{H \in C(G)} \in \text{Im} \phi(p)$ if and only if $x_K = x_U \in \{0, 1\}$ for all pairs (K,U) of $K, U \in C(G)$ with $K \sim_p U$. Hence the elements e^p_H for $H \in C^p(G)$ are the primitive idempotents of $\Omega(G)_p$. Let x be an idempotent of $\Omega(G,A)$. According to [21, Corollary 7.2.4], $ZH^2(H,A)$ with $H \leq G$ contains only trivial idempotents, whence $\rho(x) = \overline{\ell}(y)$ for some $y \in \Omega(G)$. This, combined with Lemma 5.13(b), shows that $\psi \circ \alpha(x) = x$. By this fact, we may identify x with $\alpha(x) \in \Omega(G)$. Since the map $\alpha : \Omega(G,A) \to \Omega(G)$ is a ring homomorphism, it follows that $\alpha(x)$ is an idempotent of $\Omega(G)$. Consequently, the idempotents of $\Omega(G,A)$ are those of $\Omega(G)$. This completes the proof. \(\square\)

There is an immediate consequence of Theorem 4.18 (see [4, 1.5. Proposition]).

Proposition 5.19 The \mathbb{Z}-module $\Omega(G,A)^x$ has a structure of an $\Omega(G)$-module, namely,

$$\Omega(G) \otimes_{\mathbb{Z}} \Omega(G,A)^x \to \Omega(G,A)^x, \quad [G/H] \otimes_{\mathbb{Z}} x \mapsto \overline{\text{Map}}_H(G, \text{res}_H^G(x)).$$

Moreover,

$$\Omega(G,A)^x = \prod_{H \in C^{(\infty)}(G)} \{e^{(\infty)}_H x \mid x \in \Omega(G,A)^x\},$$

where $e^{(\infty)}_H x$ denotes the effect of $e^{(\infty)}_H$ on x.

6 Units of Burnside rings

6A The Yoshida criterion for the units of Burnside rings

We turn to the unit group $\Omega(G)^x$ of $\Omega(G)$. Let $\mathcal{U}(\Omega(G)^x)$ be the unit group of $\mathcal{U}(G)$, and let $\phi^{x} : \Omega(G)^x \to \mathcal{U}(\Omega(G)^x)$ be the map obtained by restriction of $\phi : \Omega(G) \to \mathcal{U}(G)$ from $\Omega(G)$ to $\Omega(G)^x$. Obviously, $\mathcal{U}(\Omega(G)^x) = \prod_{H \in C(G)} \langle -1 \rangle$, where $\langle -1 \rangle = \{\pm 1\}$, and hence $\Omega(G)^x$ is embedded in $\prod_{H \in C(G)} \langle -1 \rangle$. In particular, $\Omega(G)^x$ is an elementary abelian 2-group with identity $[G/G]$ (cf. [11, Proposition 3.1]). Thus $\Omega(G)^x$ consists of all $x \in \Omega(G)$ such that $(|G/G| \pm x)/2$ are idempotents of $\mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G)$.

where the sum is taken over all $K \in C(G)$ such that $H \sim_p K$.

The following theorem concerns [2, Theorem 7.3] and [33, 4.12 Theorem] (see also [14, Lemma 2] and [31, Theorem 3.1]).
Example 6.1 Suppose that $K \leq G$ and $|G : K| = 2$. Then $[G/K] \cdot [G/K] = 2[G/K]$, and hence $[G/G] - [G/K] \in \Omega(G)^\times$. We have $\phi^\times([G/G] - [G/K]) = ((-1)^{\zeta(H,K)})_{H \in C(G)}$, where $\zeta(H,K) = 1$ if $H \leq K$, and $\zeta(H,K) = 0$ otherwise.

Remark 6.2 According to Dress [10], G is solvable if and only if 0 and $[G/G]$ are the only idempotents of $\Omega(G)$ (see also Lemma 5.17 and Theorem 5.18). Suppose that G is of odd order. Then by Eq.(5.4), $\Omega(G)^\times$ consists of all $x \in \Omega(G)$ such that $([G/G] \pm x)/2$ are idempotents of $\Omega(G)$, whence $|\Omega(G)^\times|$ is the number of idempotents of $\Omega(G)$. Consequently, we have $\Omega(G)^\times = \langle -[G/G] \rangle$ because, by Feit-Thompson’s theorem, G is solvable (cf. [9, Proposition 1.5.1]).

Definition 6.3 Given $\tilde{x} = (x_H)_{H \in C(G)} \in \tilde{\Omega}(G)^\times$ and $U \leq G$, we define a class function $\gamma_{\tilde{U}} : W_G(U) \to \langle -1 \rangle$ by

$$gU \mapsto x_U x_{(g)U}$$

for all $g \in N_G(U)$, where $x_{(g)U} = x_K$ for a conjugate $K \in C(G)$ of $(g)U$ in G.

We quote [32, Proposition 6.5] which is due to Yoshida.

Theorem 6.4 (The Yoshida criterion) The subgroup $\text{Im} \phi^\times$ of $\tilde{\Omega}(G)^\times$ consists of all $\tilde{x} = (x_H)_{H \in C(G)} \in \tilde{\Omega}(G)^\times$ such that $\gamma_{\tilde{U}} \in \text{Hom}(W_G(U), \langle -1 \rangle)$ for each $U \leq G$.

Example 6.5 Let p be an odd prime, and suppose that G is a finite p-group. Let $\tilde{x} = (x_H)_{H \in C(G)} \in \text{Im} \phi^\times$. If $G_r < \cdots < G_1 < G_0 = G$ is a sequence of subgroups of G with $|G_{i-1} : G_i| = p$ for all $i \in [r]$, then by Theorem 6.4, $x_{G_0} = x_{G_1} = \cdots = x_{G_r}$. Thus it follows from [26, Chapter 2, Theorem 1.9] that \tilde{x} is determined by x_G, and hence $\tilde{x} \in \langle (-1, -1, \ldots, -1) \rangle$. Consequently, $\Omega(G)^\times \approx \langle -[G/G] \rangle$ (see Remark 6.2).

Definition 6.6 For each $\tilde{x} \in \text{Im} \phi$, $\phi^{-1}(\tilde{x})$ denotes the unique element x of $\Omega(G)$ such that $\tilde{x} = \phi(x)$. We define a subgroup $\Omega(G)^\times_1$ of $\Omega(G)^\times$ to be the product of the subgroups $\langle [G/K] - [G/G] \rangle$ for $K \leq G$ with $|G : K| = 2$, and define a subgroup $\Omega(G)^\times_1$ of $\Omega(G)^\times$ to be the group consisting of all $x = \phi^{-1}((x_H)_{H \in C(G)})$ with $(x_H)_{H \in C(G)} \in \text{Im} \phi^\times$ such that $x_H = 1$ whenever H is cyclic.

The group $\text{Hom}(G, \langle -1 \rangle)$ with pointwise product is isomorphic to the factor group G/G_2 where G_2 is the intersection of all subgroups of index 2 in G.

Proposition 6.7 (a) $|\langle -[G/G] \rangle \times \Omega(G)^\times_0| = 2^{|\text{Hom}(G, \langle -1 \rangle)|}$.

(b) $\Omega(G)^\times_0 \approx \langle -[G/G] \rangle \times \Omega(G)^\times_0 \Omega(G)^\times_1 \simeq \Omega(G)^\times_0 \times \text{Hom}(G, \langle -1 \rangle) \times \Omega(G)^\times_1$.

Proof. Obviously, $\Omega(G)^\times_0$ is the direct product of the subgroups $\langle [G/K] - [G/G] \rangle$ for $K \leq G$ with $|G : K| = 2$. Thus the assertion (a) holds. We prove the assertion (b). For each $K \leq G$ with $|G : K| = 2$, if $\phi([G/K] - [G/G]) = \tilde{x} = (x_H)_{H \in C(G)}$, then
by Example 6.1 and Theorem 6.4, \(\gamma(K) := \gamma_{\{\epsilon\}} \in \text{Hom}(G, \langle -1 \rangle) \), \(\text{Ker}\gamma(K) = K \), and \(\gamma(K)(g) = x(g) \) for all \(g \in G \). Let \(y \in \Omega(G)^{\times} \), and suppose that the \(\{\epsilon\} \)-component of \(\phi(y) \) is 1. If \(\phi^{\times}(y) = \bar{y} = (y_H)_{H \in C\!(G)} \) with \(y_{\{\epsilon\}} = 1 \), then \(\gamma_{\{\epsilon\}}^{\bar{y}} \in \text{Hom}(G, \langle -1 \rangle) \) by Theorem 6.4, and \(\gamma_{\{\epsilon\}}^{\bar{y}}(g) = y(g) \) for all \(g \in G \). This, combined with the preceding argument, shows that \(((G/K) - [G/G]) \cdot y \in \Omega(G)^{\times} \) with \(K = \text{Ker}\gamma_{\{\epsilon\}}^{\bar{y}} \), which yields \(y \in \Omega(G)^{\times} \Omega(G)^{\times} \). Hence \(\Omega(G)^{\times} \Omega(G)^{\times} \) consists of all \(x \in \Omega(G)^{\times} \) such that the \(\{\epsilon\} \)-component of \(\phi(x) \) is 1. We now obtain

\[
\Omega(G)^{\times} = \{ -[G/G] \times \Omega(G)^{\times} \Omega(G)^{\times} \}.
\]

Let \(K_1, K_2, \ldots, K_n \) be the subgroups of index 2 in \(G \). Then \(\Omega(G)^{\times} \) is the direct product of the subgroups \(([G/K_i] - [G/G]) \) for \(i \in [n] \) and \(\text{Hom}(G, \langle -1 \rangle) \) is the group consisting of 1\(_G\) and the linear \(\mathbb{C} \)-characters \(\gamma(K_i) \) for \(i \in [n] \). Define a group epimorphism \(\gamma : \Omega(G)^{\times} \to \text{Hom}(G, \langle -1 \rangle) \) by

\[
\prod_{j=1}^{m} ([G/K_{i_j}] - [G/G]) \mapsto \prod_{j=1}^{m} \gamma(K_{i_j})
\]

for all sequences \((i_1, i_2, \ldots, i_m)\) with \(1 \leq i_1 < i_2 < \cdots < i_m \leq n \) of natural numbers. Then it is obvious that \(\text{Ker}\gamma = \Omega(G)^{\times} \cap \Omega(G)^{\times} \). Consequently, we have

\[
\Omega(G)^{\times} \Omega(G)^{\times} \simeq \text{Hom}(G, \langle -1 \rangle) \times \Omega(G)^{\times},
\]

completing the proof. \(\Box \)

Proposition 6.8 Let \(\hat{C}(G) \) be the set of all \(U \in C\!(G) \) such that \(|N_G(U) : U| \leq 2 \). For any \(\bar{x} = (x_H)_{H \in C\!(G)} \in \text{Im}\phi^{\times} \), the values \(x_H \) for \(H \in C\!(G) \) are determined by the values \(x_U \) for \(U \in \hat{C}(G) \). In particular, \(|\Omega(G)^{\times}| \leq 2|\hat{C}(G)| \).

Proof. Let \(\bar{x} = (x_H)_{H \in C\!(G)} \in \text{Im}\phi^{\times} \), and let \(H \leq G \). By Theorem 6.4, we have

\[
x_{(g_1)H}x_{(g_2)H}x_H = x_{(g_1g_2)H}
\]

for all \(g_1, g_2 \in N_G(H) \). Hence, if \(|N_G(H) : H| > 2 \), then the value \(x_H \) is determined by the values \(x_K \) with \(H < K \leq N_G(H) \) (cf. [7, p. 904]). This completes the proof. \(\Box \)

Example 6.9 Assume that \(G \) is abelian. Then by Propositions 6.7 and 6.8, we have \(|\Omega(G)^{\times}| = 2^{\text{Hom}(G, \langle -1 \rangle)} \), because \(\hat{C}(G) \) is the set of all \(K \leq G \) such that \(|G : K| \leq 2 \) (cf. [32, Lemma 7.1]). This fact is due to Matsuda (cf. [18, Example 4.5]).
6B Structure of the unit groups of Burnside rings

We continue to discuss the structure of $\Omega(G)^\times$.

Definition 6.10 We define a subset $\overline{C}(G)$ of $C(G)$ to be the set consisting of all subgroups U which satisfy the following conditions.

(i) $|N_G(U) : U| \leq 2$.

(ii) If L is a normal subgroup of U and if U/L is a non-trivial cyclic group, then U/L is a cyclic 2-group and there exists a subgroup K of index 2 in $N_G(L)$ containing L such that

$$\{\langle g \rangle L \mid g \in N_G(L) - K \} = \{\langle g \rangle L \mid g \in N_G(L) \text{ and } (\langle g \rangle L) = (U)\}.$$

Proposition 6.11 Let $U \in C(G)$, and set $\bar{x} = ((-1)^{y_{U}})_{H \in C(G)} \in \Omega(G)^\times$. Then $\bar{x} \in \text{Im } \phi^\times$ if and only if $U \in \overline{C}(G)$. In particular, if $U \in \overline{C}(G)$, then $2e_U \in \Omega(G)$, or equivalently, $[G/G] - 2e_U = \phi^{-1}(\bar{x}) \in \Omega(G)^\times$.

Proof. Assume that $\bar{x} \in \text{Im } \phi^\times$. For any $L \leq G$, it follows from Theorem 6.4 that the map $\gamma^\times_{L} : W_G(L) \to \langle -1 \rangle$ is a linear C-character of $W_G(L)$. Moreover, by assumption, $\gamma^\times_{U}(gU) = -1$ for any $g \in N_G(U) - U$. This means that $\text{Ker } \gamma^\times_{U} = U/U$. Consequently, $|N_G(U) : U| \leq 2$. Let L be a normal subgroup of U, and suppose that U/L is non-trivial cyclic. Set $U = \langle r \rangle L$ with $r \in N_G(L) - L$. Then for any $g \in N_G(L)$, $\gamma^\times_{L}(gL) = -1$ if and only if $\langle g \rangle L$ is a conjugate of $\langle r \rangle L$ in G. In particular, rL must be a 2-element of $W_G(L)$, whence U/L is a cyclic 2-group. Moreover, there exists a subgroup K of index 2 in $N_G(L)$ containing L such that $K/L = \text{Ker } \gamma^\times_{L} \langle g \rangle L$ and

$$\{\langle g \rangle L \mid g \in N_G(L) - K \} = \{\langle g \rangle L \mid g \in N_G(L) \text{ and } (\langle g \rangle L) = (U)\}.$$

Thus $U \in \overline{C}(G)$, as required. Conversely, if $U \in \overline{C}(G)$, then by Theorem 6.4, we have $\bar{x} \in \text{Im } \phi^\times$, completing the proof. \square

Remark 6.12 Under the hypotheses of Proposition 6.11, it follows from Eq.(5.4) that $\bar{x} \in \text{Im } \phi^\times$ if and only if $[G/G] - 2e_U \in \Omega(G)^\times$.

Corollary 6.13 Let $U \in \overline{C}(G)$, and suppose that U is non-trivial cyclic. Then U is a Sylow 2-subgroup of G, and $N_G(U) = U$.

Proof. Set $\bar{x} = ((-1)^{y_{U}})_{H \in C(G)} \in \Omega(G)^\times$. By Theorem 6.4 and Proposition 6.11, the map $\gamma^\times_{\{e\}} : G \to \langle -1 \rangle$ is a linear C-character of G. Since U is non-trivial cyclic, it follows that $\gamma^\times_{\{e\}}$ is not the trivial character of G. If $K = \text{Ker } \gamma^\times_{\{e\}}$, then any cyclic subgroup $\langle g \rangle$ with $g \in G - K$ is a conjugate of U in G and

$$\frac{|G|}{2} = |K| = |G - K| = |G : N_G(U)| \cdot \frac{|U|}{2} = \frac{|G|}{2N_G(U) : U}.$$
because U is a 2-group. Thus we have $|N_G(U) : U| = 1$. The corollary is now a consequence of [26, Chapter 2, Theorem 1.6]. This completes the proof. □

Let $\lambda = (\lambda_1, \ldots, \lambda_j, \ldots, \lambda_m, \lambda_{m+1}, \ldots)$, where $\lambda_1 > \cdots > \lambda_j > \cdots > \lambda_m > 0$ and $\lambda_\ell = 0$ for $\ell = m + 1$, $m + 2$, ..., be a partition of $n \in \mathbb{N}$. Such a partition is said to be strict. We set $S_\lambda = S_{(\lambda_1)} \times \cdots \times S_{(\lambda_j)} \times \cdots \times S_{(\lambda_m)}$, where each $S_{(\lambda_j)}$ is the symmetric group on $\{\sum_{i \geq j+1} \lambda_i + 1, \ldots, \sum_{i \geq j} \lambda_i\}$. Let S_n be the symmetric group on $[n]$. Then S_λ is a Young subgroup of S_n associated with the strict partition λ.

Proposition 6.14 For any strict partition λ of n, the set $\overline{C}(S_n)$ contains a conjugate of the Young subgroup S_λ of S_n associated with λ.

Proof. We may assume that $S_\lambda \in C(S_n)$. Obviously, $N_{S_n}(S_\lambda) = S_\lambda$. We show that $S_\lambda \in \overline{C}(S_n)$. Under the preceding notation, let $A_{(\lambda_j)}$ with $j \in [m]$ be the subgroup of $S_{(\lambda_j)}$ consisting of all even permutations. Then the commutator subgroup of S_λ is $A_{(\lambda_1)} \times \cdots \times A_{(\lambda_j)} \times \cdots \times A_{(\lambda_m)}$. Hence every normal subgroup L of S_λ such that S_λ/L is a non-trivial cyclic is a subgroup of index 2 in S_λ. If $N_{S_n}(L) = S_\lambda$ for a subgroup L of index 2 in S_λ, then $(g)L = S_\lambda$ for any $g \in N_{S_n}(L) - L$. Thus it suffices to verify that, if $N_{S_n}(L) \neq S_\lambda$ for a subgroup L of index 2 in S_λ, then

$$\{(g)L \mid g \in N_{S_n}(L) - K\} = \{(g)L \mid g \in N_{S_n}(L) \text{ and } (g)L = (S_\lambda)\}$$

for a subgroup K of index 2 in $N_{S_n}(L)$ containing L. Let $L \leq S_\lambda$ with $|S_\lambda : L| = 2$ and $N_{S_n}(L) \neq S_\lambda$. Then $\lambda_{m-1} = 2$, $\lambda_m = 1$, and every permutation in L fixes both 2 and 3 in $[n]$. (In this case, $S_{(\lambda_{m-1})}$ is the symmetric group on $\{2, 3\}$). Hence it turns out that $L = S_{(\lambda_1)} \times \cdots \times S_{(\lambda_j)} \times \cdots \times S_{(\lambda_{m-2})}$, $S_\lambda = L \times S_{(\lambda_{m-1})} \times S_{(\lambda_m)}$, and $N_{S_n}(L) = L \times S_3$. Consequently, $L \leq L \times A_3 \leq N_{S_n}(L)$, $|N_{S_n}(L) : L \times A_3| = 2$, $(g)L \neq (S_\lambda)$ for any $g \in L \times A_3$, where A_3 is the alternating group on $[3]$, and the set of conjugates of S_λ in S_n includes the set $\{(g)L \mid g \in N_{S_n}(L) - (L \times A_3)\}$, as required. We now conclude that $S_\lambda \in \overline{C}(S_n)$, completing the proof. □

Definition 6.15 For each $L \leq G$, we define a subset $S(G; L)$ of $S(G)$ to be the set consisting of all subgroups U of $N_G(L)$ which satisfy the following conditions.

(i) U/L is a non-trivial cyclic 2-group.

(ii) There exists a subgroup K of index 2 in $N_G(L)$ containing L such that

$$\{(g)L \mid g \in N_G(L) - K\} = \{(g)L \mid g \in N_G(L) \text{ and } (g)L = (U)\}.$$

Let \approx be the equivalence relation on the set $\{(H) \mid G \geq H \neq \{\epsilon\}\}$ generated by

$$(g)L \approx (L)$$

for $L \in C(G)$ and $g \in N_G(L)$ such that $(g)L \notin S(G; L)$. We set $C(G)^0 = C(G) - \{\epsilon\}$, and define an equivalence relation \approx on $C(G)^0$ by

$$H \approx K : \iff (H) \approx (K).$$
Proposition 6.16 If $|G| > 2$, then each $U \in \overline{C}(G)$ forms an equivalence class consisting of a single element with respect to the equivalence relation \equiv on $C(G)^\circ$.

Proof. Suppose that $|G| > 2$, and let $U \in \overline{C}(G)$. Then $U \neq \{e\}$ and $|N_G(U) : U| \leq 2$. If $N_G(U) \neq U$, then $|N_G(U) : U| = 2$ and $N_G(U) \in S(G; U)$. Moreover, if L is a normal subgroup of U and if U/L is a non-trivial cyclic group, then $U \in S(G; L)$. Thus (U) is isolated with respect to \equiv. This completes the proof. □

Proposition 6.17 Suppose that $\tilde{y} = (yH)_{H \in C(G)} \in \text{Im} \phi^x$ and $\phi^{-1}(\tilde{y}) \in \Omega(G)_1^x$. Let $U \in C(G)^\circ$, and define $\tilde{x} = (xH)_{H \in C(G)} \in \overline{U}(G)^{\times}$ by

$$x_H = \begin{cases} y_H & \text{if } H \approx U, \\ 1 & \text{if } H \neq U \text{ or } H = \{e\}. \end{cases}$$

Then $\tilde{x} \in \text{Im} \phi^x$ and $\phi^{-1}(\tilde{x}) \in \Omega(G)_1^x$.

Proof. By the definition of \tilde{x}, the map $\gamma^x_L : G \to \langle -1 \rangle$ is the trivial character of G. Hence it suffices to verify that $\tilde{x} \in \text{Im} \phi^x$. Let $L \in C(G)^\circ$. We show that the map $\gamma^x_L : W_G(L) \to \langle -1 \rangle$ is a linear C-character of $W_G(L)$. By Theorem 6.4, the map $\gamma^y_L : W_G(L) \to \langle -1 \rangle$ is a linear C-character of $W_G(L)$. We may assume that $\gamma^x_L \notin \{ \gamma^y_L, 1_{W_G(L)} \}$. (If $\langle g \rangle L \notin S(G; L)$ for all $g \in N_G(L) - L$, then either $\gamma^x_L = \gamma^y_L$ or $\gamma^x_L = 1_{W_G(L)}$.) Obviously, $\gamma^x_L(L) = 1$. We analyze the values $\gamma^x_L(\langle g \rangle L)$ for $g \in N_G(L) - L$ in each of the cases where $L \approx U$ and $L \neq U$. Let r be any element of $N_G(L) - L$ such that $\langle r \rangle L \in S(G; L)$. Then there exist a subgroup K of index 2 in $N_G(L)$ containing L such that for each $g \in N_G(L)$, $g \in N_G(L) - K$ if and only if $\langle g \rangle L$ is a conjugate of $\langle r \rangle L$ in G. We define a map $\beta_r : W_G(L) \to \langle -1 \rangle$ to be the linear C-character of $W_G(L)$ whose kernel is K/L.

Case 1. Assume that $L \approx U$. Let $X = \{ \langle r_i \rangle L \mid i \in [\ell] \}$ be a full set of non-conjugate subgroups of G chosen from among the subgroups $\langle g \rangle L$ for $g \in N_G(L) - L$ with $\gamma^x_L(gL) \neq \gamma^y_L(gL)$. Then we have $\langle r_i \rangle L \neq (L)$ and $\langle r_i \rangle L \in S(G; L)$ for all $i \in [\ell]$. For any $g \in N_G(L) - L$,

$$\gamma^x_L(gL) = -\gamma^y_L(gL) = \gamma^y_L(gL) \prod_{i=1}^{\ell} \beta_{r_i}(gL)$$

if $\langle g \rangle L$ is a conjugate of some $\langle r_j \rangle L$ with $j \in [\ell]$ in G, and

$$\gamma^x_L(gL) = \gamma^y_L(gL) = \gamma^y_L(gL) \prod_{i=1}^{\ell} \beta_{r_i}(gL)$$

otherwise. Thus we have

$$\gamma^x_L = \gamma^y_L \prod_{i=1}^{\ell} \beta_{r_i}.$$
Case 2. Assume that \(L \not\approx U \). Then \(x_L \equiv 1 \). Let \(Y = \{ \langle r_i \rangle L \mid i \in [\ell] \} \) be a full set of non-conjugate subgroups of \(G \) chosen from among the subgroups \(\langle g \rangle L \) for \(g \in N_G(L) - L \) with \(\gamma \langle r_i \rangle L = 1 \). Then \(\langle r_i \rangle L \approx (U) \), whence \(\langle r_i \rangle L \not\approx (L) \) and \(\langle r_i \rangle L \in S(G; L) \) for all \(i \in [\ell] \). By an argument analogous to that in Case 1, we have \[
\gamma \langle r_i \rangle L = \prod_{i=1}^{\ell} \beta r_i.
\]

We now conclude that the map \(\gamma \langle r_i \rangle L : W_G(L) \to (-1) \) is a linear \(\mathbb{C} \)-character of \(W_G(L) \) in either case. Consequently, \(\gamma \langle r_i \rangle L \in \text{Hom}(W_G(L), (-1)) \) for any \(L \leq G \). This, combined with Theorem 6.4, shows that \(\beta \in \text{Im} \phi \), completing the proof. \(\square \)

Corollary 6.18 Let \(C(G)^\circ / \cong \) be a complete set of representatives of equivalence classes with respect to the equivalence relation \(\approx \) on \(C(G)^\circ \). Set
\[
\Omega(G)_U^\chi = \{ \phi^{-1}(\bar{x}) \mid \bar{x} = (x_H)_{H \in C(G)} \in \text{Im} \phi^\chi \text{ and } x_H = 1 \text{ if } H \not\approx U \text{ or } H = \{\epsilon\} \}
\]
for each \(U \in C(G)^\circ / \cong \). Then
\[
\Omega(G)_U^\chi = \prod_{U \in C(G)^\circ / \cong} (\Omega(G)_U^\chi \cap \Omega(G)_U^\chi).
\]
Moreover, if \(U \in \overline{C}(G) \cap C(G)^\circ \), then \(U \in C(G)^\circ / \cong \) and \(\Omega(G)_U^\chi = \langle [G/G] - 2\epsilon_U \rangle \).

Proof. The assertion follows from Propositions 6.11, 6.16, and 6.17. \(\square \)

7 Units of monomial Burnside rings

7A The unit groups of monomial Burnside rings

We continue assuming that \(A \) is abelian. Given a commutative unital ring \(R \), we denote by \(R^\times \) the unit group of \(R \), and denote by \(R^{\text{tor}} \) the group of torsion units of \(R \). For each \(H \leq G \), since \(H^1(H, A) \) is a finite abelian group, it follows from [21, Theorem 8.3.1] that \((ZH^1(H, A))^\times \) is a finitely generated abelian group.

Lemma 7.1 The group \(\mathcal{U}(G, A)^\times \) is a finitely generated abelian group.

Proof. Observe that \(\mathcal{U}(G, A) \simeq \prod_{H \in C(G)} (ZH^1(H, A))^{\text{Nc}(H)} \), where
\[
(ZH^1(H, A))^{\text{Nc}(H)} = \{ x_H \in ZH^1(H, A) \mid \text{con}_H^g(x_H) = x_H \text{ for all } g \in N_G(H) \}.
\]
Then we have \(\mathcal{U}(G, A)^\times \simeq \prod_{H \in C(G)} J_H \), where
\[
J_H = (ZH^1(H, A))^\times \cap (ZH^1(H, A))^{\text{Nc}(H)}.
\]
Hence it suffices to verify that the groups J_H for $H \leq G$ are finitely generated. Let $H \leq G$, and assume that $(\mathbb{Z}H^1(H, A))^\times$ is generated by x_1, \ldots, x_k. We set $y_i = \prod_{g \in N_G(H)} \text{con}_H^g(x_i)$ for all i, and set $\widehat{J}_H = \langle y_1, \ldots, y_k \rangle$. Obviously, \widehat{J}_H is a subgroup of J_H. We have

$$x^{[N_G(H)]} = \prod_{g \in N_G(H)} \text{con}_H^g(x) \in \widehat{J}_H$$

for any $x \in J_H$, so that J_H/\widehat{J}_H is a torsion subgroup of $(\mathbb{Z}H^1(H, A))^\times/\widehat{J}_H$. Since $(\mathbb{Z}H^1(H, A))^\times/\widehat{J}_H$ is finitely generated, it follows from the fundamental theorem of abelian groups (see, e.g., [16, I, §10, Theorem 8]) that J_H/\widehat{J}_H is a finite group. Thus J_H is finitely generated, as desired. This completes the proof. □

Proposition 7.2 The group $\Omega(G, A)^\times$ is a finitely generated abelian group. In particular, $\Omega(G, A)^\times$ is the direct product of $\Omega(G, A)^\omega$ and a free abelian group of finite rank, and $\Omega(G, A)^{\omega \times}$ is a finite abelian group.

Proof. By the fundamental theorem of abelian groups, it suffices to prove the first statement. Using Proposition 5.2 and Corollary 5.5, we have

$$\mathbb{Q} \otimes \mathbb{Z} \text{Im}\rho = \mathbb{Q} \otimes \mathbb{Z} \mathcal{U}(G, A).$$

This, combined with [21, Lemma 2.9.5], shows that $|\mathcal{U}(G, A)^\times : (\text{Im}\rho)^\times|$ is finite. Moreover, by Lemma 7.1, $\mathcal{U}(G, A)^\times$ is finitely generated. Hence it follows from [17, Corollary 2.7.1] that $(\text{Im}\rho)^\times$ is finitely generated. By Corollary 4.10, we have $\Omega(G, A)^{\times} \simeq (\text{Im}\rho)^{\times}$, completing the proof. □

7B Torsion units of monomial Burnside rings

From Higman’s theorem (cf. [21, Theorem 7.1.4]), we know that for any $H \leq G$,

$$(\mathbb{Z}H^1(H, A))^\omega = \langle -1 \rangle \times H^1(H, A) = \{ \pm \sigma \mid \sigma \in Z^1(H, A) \}.$$ \hspace{1cm} (7.1)

Theorem 7.3 The necessary and sufficient condition for an element $\hat{x} = (x_H)_{H \leq G}$ of $\mathcal{U}(G, A)^\omega$ to be contained in $\text{Im}\rho$ is that $\gamma_{U}^G(\hat{x}) \in \text{Hom}(W_G(U), \langle -1 \rangle)$ for all $U \leq G$ and $(x(x_H)x_H)_{H \leq G} \in \Upsilon(G, A)$ (see Definitions 5.12 and 6.3), where

$$\Upsilon(G, A) = \left\{ (\sigma_H)_{H \leq G} \in \mathcal{U}(G, A)^\omega \left| \begin{array}{c} \sigma_U \in Z^1(U, A) \text{ and } \sigma_U = \text{res}_U^{(g)_U}(\sigma_{(g)_U}) \text{ for all } U \leq G \text{ and } g \in N_G(U) \end{array} \right. \right\}.$$ \hspace{1cm}

Proof. Let $\hat{x} = (x_H)_{H \leq G} \in \mathcal{U}(G, A)^\omega$. Suppose that for each $H \leq G$, $\sigma_H = \varepsilon(x_H)x_H$ with $\sigma_H \in Z^1(H, A)$ (see Eq.(7.1)). We first prove ‘sufficient’ part. By assumption, $\text{con}_U^g(\sigma_U) = \sigma_U$ and $\sigma_U = \text{res}_U^{(g)_U}(\sigma_{(g)_U})$ for all $U \leq G$ and $g \in N_G(U)$, so that

$$\psi \circ \kappa^{-1}(\hat{x}) = (z_{(U, \tau)} \text{ mod } |W_G(U, \tau)|)_{(U, \tau) \in \mathcal{R}(G, A)},$$
where
\[
\zeta(U, \tau) = \sum_{gU \in W_G(U)} \varepsilon(x_{(g)U}) \text{ if } \tau = \sigma_U,
\]
For any \(U \leq G \), since \(\gamma^{(x)}_{U} \in \text{Hom}(W_G(U), \langle -1 \rangle) \), we have
\[
\frac{1}{|W_G(U)|} \sum_{gU \in W_G(U)} \varepsilon(x_U)\varepsilon(x_{(g)U}) \in \{0, 1\}
\]
by [8, (9.21) Proposition]. Hence either \(\zeta(U, \tau) = \varepsilon(x_U)|W_G(U)| \) or \(\zeta(U, \tau) = 0 \) for all \((U, \tau) \in \mathcal{R}(G, A) \), which yields \(\psi \circ \kappa^{-1}(\tilde{x}) = 0 \in \text{Obs}(G, A) \). This, combined with Proposition 5.2 and Theorem 5.9, shows that \(\tilde{x} \in \text{Im} \rho \), as desired. We next prove ‘necessary’ part. Assume that \(\rho(x) = \tilde{x} \) with \(x \in \Omega(G, A)^\omega \). Then \(\alpha(x) \in \Omega(G)^\times \), because the map \(\alpha : \Omega(G, A) \to \Omega(G) \) is a ring homomorphism. By Lemma 5.13(a) and Theorem 6.4, \(\gamma^{(x)}_U \in \text{Hom}(W_G(U), \langle -1 \rangle) \) for all \(U \leq G \), and
\[
\rho(x \circ \alpha(x) \cdot x) = (\sigma_H)_{H \leq G} \in \Omega(G, A)^\omega.
\]
In particular, we have \(\text{con}^G_{(x)}(\sigma_U) = \sigma_U \) for all \(U \leq G \) and \(g \in N_G(U) \). For each \((U, \tau) \in \mathcal{R}(G, A) \) with \(\tau = \sigma_U \), the \((U, \tau) \)-component of \(\psi \circ \kappa^{-1}(\sigma_H)_{H \leq G} \) is
\[
\sum_{gU \in W_G(U), \sigma_U - \text{res}_{(g)U}^{(g)}(\sigma_{(g)U})} 1 \mod |W_G(U)|,
\]
where the sum is taken over all left cosets \(gU, g \in N_G(U) \), of \(U \) in \(N_G(U) \) such that \(\sigma_U = \text{res}_{(g)U}^{(g)}(\sigma_{(g)U}) \). Since \((\sigma_H)_{H \leq G} \in \text{Im} \rho \), it follows from Proposition 5.2 and Theorem 5.9 that \(\sigma_U = \text{res}_{(g)U}^{(g)}(\sigma_{(g)U}) \) for all \(U \leq G \) and \(g \in N_G(U) \), as desired. This completes the proof. \(\square \)

In \S4A, the ring epimorphism \(\rho^G_G : \Omega(G, A) \to \mathbb{Z}H^1(G, A) \) is given by
\[
[(G/U)_{\tau}] \mapsto \begin{cases}
\tau & \text{if } G = U, \\
0 & \text{otherwise}
\end{cases}
\]
for all \((U, \tau) \in \mathcal{R}(G, A) \) (see Lemma 4.6(a)). Following [2, \S7], we define a ring monomorphism \(\nu : \mathbb{Z}H^1(G, A) \to \Omega(G, A) \) by
\[
\chi \mapsto [(G/G)_{\chi}]
\]
for all \(\chi \in \mathbb{Z}^1(G, A) \) (see Lemmas 2.6 and 2.15). There are group homomorphisms
\[
\nu^\omega : (\mathbb{Z}H^1(G, A))^\omega \to \Omega(G, A)^\omega \quad \text{and} \quad \theta^\omega : \Omega(G, A)^\omega \to (\mathbb{Z}H^1(G, A))^\omega
\]
inherited from \(\nu \) and \(\rho^G_G \), respectively (see Eq.(7.1)). Hence it turns out that
\[
\Omega(G, A)^\omega = \text{Im} \nu^\omega \times \text{Ker} \theta^\omega \simeq (-1) \times H^1(G, A) \times \text{Ker} \theta^\omega
\]
(cf. [2, \S8]), because \(\theta^\omega \circ \nu^\omega = \text{id}_{(\mathbb{Z}H^1(G, A))^\omega} \). We continue to describe \(\Omega(G, A)^\omega \).
Corollary 7.4 Identify the finite groups $\Omega(G)^\times$ and $H^1(G, A)$ with the subgroups
$\{\iota(u) \mid u \in \Omega(G)^\times\}$ and $\{([G/G]_\chi) \mid \chi \in \mathbb{Z}^1(G, A)\}$ of $\Omega(G, A)^\omega$, respectively. Set
\[
\nabla(G, A) = \left\{ \frac{1}{|G|} \sum_{H \leq G} \sum_{U \leq H} |U| \mu(U, H) ([G/U]_{\sigma_H}) \right\}_{\sigma_H \leq G \in \Upsilon(G, A) \text{ with } \sigma_G = 1_G}.
\]

Then
\[
\Omega(G, A)^\omega = \Omega(G)^\times \times H^1(G, A) \times \nabla(G, A).
\]

Proof. Let $x \in \Omega(G, A)^\omega$, and suppose that $\rho(x) = (x_H)_{H \leq G}$. By Theorem 7.3,
$\rho(\iota \circ \alpha(x) \cdot x) = (\varepsilon(x_H)x_H)_{H \leq G} \in \Upsilon(G, A)$. Since the map $\alpha : \Omega(G, A) \to \Omega(G)$ is a ring epimorphism, it follows from Proposition 4.9 and Theorem 7.3 that
\[
\Omega(G, A)^\omega = \Omega(G)^\times \times \left\{ \frac{1}{|G|} \eta(\langle [G/H]_{H \leq G} \rangle) \right\}_{\langle [G/H]_{H \leq G} \rangle \in \Upsilon(G, A)}.
\]

Moreover, $\rho([([G/G]_\chi) \chi \in \mathbb{Z}^1(G, A) \times \langle [G/H]_{H \leq G} \rangle \in \Upsilon(G, A) \mid \sigma_G = 1_G\rangle$.

The assertion now follows from Proposition 4.9. This completes the proof. \[\square\]

Remark 7.5 Suppose that G is of odd order and that G acts trivially on A. Then by Remark 6.2 and Corollary 7.4, we have
\[
\Omega(G, A)^\omega = (-[([G/G]_1)] \times \Omega(G, A)^{\text{odd}},
\]
where $\Omega(G, A)^{\text{odd}}$ is the Hall $2'$-subgroup of $\Omega(G, A)^\omega$ (cf. [2, Proposition 8.2]).

Example 7.6 Suppose that G is nilpotent. Then by [26, Chapter 4, Theorem 2.9],
$\nabla(G, A) = ([([G/G]_1)]$ in Corollary 7.4, and hence
\[
\Omega(G, A)^\omega \simeq \Omega(G)^\times \times H^1(G, A).
\]

REFERENCES

