

溶媒添加による粉砕物の高比表面積化

メタデータ	言語: jpn
	出版者: 粉体工学会
	公開日: 2019-12-18
	キーワード (Ja):
	キーワード (En):
	作成者: 山中, 真也, 漆戸, 勇貴, 神田, 康晴
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00010094

(室蘭工大院・工) 〇山中真也, 漆戸勇貴, 神田康晴

1. はじめに

粉砕は粉体を大量に製造する機械的単位操作 であり、その主たる目的は比表面積の増大にあ る。しかしながら、粉砕を利用して比表面積の 大きなサブミクロンからナノサイズ領域の粉体 を得るには、分散剤を含む水などの溶媒中で粉 砕を行う湿式粉砕や、粉砕助剤を添加した助剤 添加粉砕など限られた方法しかない。

これまでに我々は、乾式粉砕した炭酸カルシ ウムに水を添加して乾燥すると、比表面積が粉 砕物よりも 10 倍以上増大することを報告した [1]。水以外の溶媒(エタノールやトルエン)で 調べたところ、比表面積は変わらなかったこと から、粉砕によりアモルファス化した部分の水 への溶解性が、比表面積増大のポイントと考え ている(Fig.1;なお、Fig. 1a は原料結晶のイメ ージ図で、結晶子の集合体であることを意図し ている。)。

本研究では、各種無機炭酸塩や金属酸化物を 対象に、粉砕物への水の添加効果を確認して、 本法で高比表面積微粒子が得られるメカニズム を検討した[2,3]。

2. 実験方法

原料には、CaCO₃ (calcite), SrCO₃, MgCO₃, Al₂O₃ (*a* 型), TiO₂ (anatase), SiO₂ を用いた。 原料と粉砕媒体のジルコニアボールは、予め 60°C に設定した乾燥器で一晩以上乾燥させた。 乾燥原料 10.00 g とジルコニアボール 100 g をス テンレススチール製のミルポット (80 cc) に充 填し、遊星ボールミル装置 (FRITSCH, Premium line P-7) を用いて粉砕した。回転数は 900 rpm で 15-240 分間粉砕処理した。

(a) Feed scallop shell (b) Amorphous surface

粉砕後は常温になるまで自然冷却して,次の 2 通りの方法で粉砕物を回収した。1つ目は,薬 匙を用いてミル壁に固着した粉砕生成物を削り 取り,乾燥状態のまま回収する方法である(以 下,Dry回収と表記する)。2つ目は,Dry回収 した粉砕物 5.0 gを入れた遠沈管に蒸留水 40.0 mLを添加して,これを25℃に温調した恒温水 槽中で1時間放置し,その後3500 rpmで10分 間遠心分離した後,上澄み液を取り出し沈殿物 を60℃で12時間以上乾燥する方法である(以 下,水回収と表記する)。回収した試料は乳鉢で 軽度に解砕して測定に供した。

試料の比表面積は,窒素吸着量測定装置 (Nikkiso, Adsotrac-DN-400)を用いて測定した。 なお,試料は200℃で2時間真空処理して測定 に供した。

3. 結果および考察

比表面積の測定結果を、炭酸塩と金属酸化物 について、それぞれ **Tables 1**, 2 に示す。CaCO₃、 MgCO₃、 SrCO₃、 Al₂O₃では、水回収の方が Dry 回収よりも比表面積は大きい。

各粉砕時間において, Dry 回収した試料の比 表面積を1とした場合に, 水回収した試料の比 表面積との比, すなわち, 水を添加することで 何倍比表面積が増大したかを Table 3 に示す。 例えば, 240 分間粉砕した各試料について, Dry 回収試料の比表面積を1とした場合, 水回収の 比表面積は, CaCO₃, MgCO₃, SrCO₃, Al₂O₃ で それぞれ, 3.9, 1.8, 1.7, 64.8 倍となった。一 方, TiO₂, SiO₂では, 同 1.0, 1.0 倍となり, 回 収方法で比表面積は変わらなかった。

このように、水添加効果が見られた試料に おいても、その効果の大きさは異なる。この

(c) Dissolution and disperse (d) Nano-sized shell

Fig. 1 Schematic illustration of the effect of water addition after mechanical grinding. This figure is from Ref [1] with permission

	Specific surface area [m ² /g]					
	CaCO ₃		SrCO ₃		MgCO ₃	
Grinding time [min]	Dry	Water	Dry	Water	Dry	Water
0	0.6	0.5	5.4	5.0	1.0	1.0
15	5.4	17.7	7.0	8.7	16.3	35.0
30	5.2	15.9	7.8	11.0	17.0	34.6
60	5.2	17.5	7.1	11.7	29.4	42.6
120	5.7	16.8	7.1	12.6	29.4	55.3
240	4.5	17.5	6.4	11.3	29.9	51.6

 Table 1 Specific surface area of several carbonate particles

 Table 2 Specific surface area of several metal oxide particles

	Specific surface area [m ² /g]					
	Al ₂ O ₃		SiO ₂		TiO ₂	
Grinding time [min]	Dry	Water	Dry	Water	Dry	Water
0	0.7	0.7	0.8	0.5	10.2	10.3
15	1.2	14.6	13.5	13.2	16.0	15.7
30	1.1	28.7	18.2	18.3	16.6	17.9
60	1.1	42.6	19.3	17.5	16.1	17.0
120	1.0	59.0	17.7	19.4	15.6	16.4
240	0.9	57.6	16.5	17.0	14.1	13.5

	Increase rate [-]					
Grinding time [min]	CaCO ₃	SrCO ₃	MgCO ₃	Al_2O_3	SiO ₂	TiO ₂
0	0.9	0.9	1.0	1.1	0.7	1.0
15	3.3	1.2	2.1	12.5	1.0	1.0
30	3.1	1.4	2.0	26.9	1.0	1.1
60	3.3	1.7	1.5	40.3	0.9	1.1
120	2.9	1.8	1.9	57.8	1.1	1.1
240	3.9	1.8	1.7	64.8	1.0	1.0

原因を検討するため,比表面積の増加率と溶 解度の関係を調べたが,両者に明確な関係は 見られていない。

水の添加効果が見られた原料,および粉砕物 の溶解度は $10^{-3} \sim 10^{-5}$ mol/L の範囲にあり,わ ずかな溶解性の向上が比表面積増大に寄与して いると考えられる(Fig. 1参照)。それに対して, 添加効果の見られなかった TiO₂の溶解度は, $10^{-7} \sim 10^{-8}$ mol/L と 2 桁以上小さかった。

Fig. 1 で示したように、水添加により非晶質 部分が優先的に溶解して、その結果、一次粒子 サイズにまで分散、あるいは溶出部分が孔とな り比表面積が増加したとすると、水を添加して も比表面積が増加しなかった TiO₂ と SiO₂は、 水への溶解がほとんど起こらないため、こうし た現象が生じなかったと考えられる。

4. 結言

粉砕した炭酸塩や酸化物に、水を添加して乾燥すると、TiO2とSiO2以外の試料で比表面積が

増大した。砕料によって水添加効果は異なった が,比表面積は粉砕物に比べて最大 65 倍程度増 加した。提案方法においては,粉砕物のわずか な溶解が比表面積増大に寄与していると考えら れた。

謝辞

本研究の一部は,JSPS 科研費 19K05117,およ び公益財団法人日揮・実吉奨学会研究助成金の 助成を受けた。ここに記して謝意を表する。ま た、本研究は、Ref. 2,3 で発表済みの内容を含 む。

5. 参考文献

- S. Yamanaka, A. Suzuma, T. Fujimoto, Y. Kuga, J. Nanoparticle Res., 15, 1573.1-8 (2013).
- [2] 山中真也, 漆戸勇貴, 神田康晴, 第56回粉 体に関する討論会 (2018)
- [3] 山中真也, 漆戸勇貴, 神田康晴, 粉体工学 会誌, in press