
Multimedia Processing Pricing Strategy in
GPU-accelerated Cloud Computing

言語: en

出版者: IEEE

公開日: 2020-03-12

キーワード (Ja):

キーワード (En): Multimedia, GPU-accelerated, Cloud

Computing, Pricing

作成者: 李, 鶴, 太田, 香, 董, 冕雄, VASILAKOS, Athanasios

V., 永野, 宏治

メールアドレス:

所属: 室蘭工業大学, 室蘭工業大学, 室蘭工業大学,

室蘭工業大学

メタデータ

http://hdl.handle.net/10258/00010159URL

1

Multimedia Processing Pricing Strategy in
GPU-accelerated Cloud Computing

He Li, Member, IEEE, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE,
Athanasios V. Vasilakos, Senior Member, IEEE, Koji Nagano

Abstract—Graphics processing unit (GPU) accelerated processing performs significant efficiency in many multimedia applications.
With the development of GPU cloud computing, more and more cloud providers focus on GPU-accelerated services. Since the high
maintenance cost and different speedups for various applications, GPU-accelerated services still need a different pricing strategy. Thus,
in this paper, we propose an optimal GPU-accelerated multimedia processing service pricing strategy for maximize the profits of both
cloud provider and users. We first analyze the revenues and costs of the cloud provider and users when users adopt GPU-accelerated
multimedia processing services then state the profit functions of both the cloud provider and users. With a game theory based method,
we find the optimal solutions of both the cloud provider’s and users’ profit functions. Finally, through large scale simulations, our pricing
strategy brings higher profit to the cloud provider and users compared to the original pricing strategy of GPU cloud services.

Index Terms—Multimedia, GPU-accelerated, Cloud Computing, Pricing

F

1 INTRODUCTION

Recent years, with significantly improved efficiency, the
graphic processing unit (GPU) plays more and more
important role in multimedia processing applications,
such as GPU-accelerated video encoding and image pro-
cessing [1][2]. Meanwhile, some GPU-equipped cloud
providers begin to provide GPU-accelerated cloud com-
puting services [3]. Thus, as GPU devices bring high cost
and energy consumption, deploying GPU-accelerated
multimedia processing services in clouds is a scalable
and flexible solution [4][5].

In GPU-accelerated cloud computing, a fundamental
technology is GPU virtualization [6]. Early GPU virtual-
ization technologies are based on the remote procedure
call technology which sends GPU related system calls
to special virtual machines with GPU devices [7]. It is
hard to isolate different tasks with negligible perfor-
mance degradation [8][9]. As the later I/O virtualization
seems a solution that can support full GPU utilization
in virtualized environment, GPU devices are not shared
between different virtual machines with simple device
mapping [10]. GPU cloud computing services become
realistic due to GPU virtualization developed by GPU
vendors to support full isolation and sharing between
virtual machines [11].

As GPU cloud computing service brings new oppor-
tunity to the commercial cloud market, it still needs a
new strategy for pricing the new cloud resource [12].

• H. Li, K. Ota, M. Dong and K. Nagano are with Departmen-
t of Information and Electronic Engineering, Muroran Institute of
Technology, Muroran, Hokkaido, Japan. E-mail: {heli, ota, mxdong,
nagano}@mmm.muroran-it.ac.jp

• Athanasios V. Vasilakos is with Lulea University of Technology, Sweden.
E-mail: vasilako@ath.forthnet.gr

Usually, high performance GPU devices bring a much
higher cost than general processors mainly including the
additional rack space and energy consumption [13]. S-
traightforwardly, The cloud provider has to use a higher
price of GPU resources than general services to cover the
additional cost [14].

However, users will not choose GPU-accelerated ser-
vices with expensive prices as the performance of GPU
acceleration is not always higher than general comput-
ing. As general cloud computing resources are much
more than GPU resources, users prefer to use more gen-
eral computing resources rather than use expensive GPU
services [15]. The cloud provider needs to use reasonable
prices of GPU-accelerated services to motivate users.

Meanwhile, as speedup ratios between application-
s are different, it needs an on-demand pricing strat-
egy with different workloads [16]. Therefore, GPU-
accelerated services need a new pricing strategy instead
of existing strategies which only consider homogeneous
resources such as processors, memories and storage s-
pace in the cloud environment.

In this paper, we first analyze the main scenario
of multimedia processing services in GPU-accelerated
cloud computing. With this scenario, we discuss the
main motivations of the pricing strategy from both
the cloud provider and users. We consider the cloud
provider should use a varying prices for users with
different applications and users can arrange their tasks
with different speedup ratios and the prices. Then, we
model the payoffs of the cloud provider and users and
state interaction between the cloud provider and users
as a leader-follower (Stackel) game. In the first stage, the
cloud provider decides the prices of GPU and general
resources for each user. Accordingly, in the second stage,
every user decides how many tasks should be executed

2

with GPU-acceleration, and finds the game equilibrium.
The game model with equilibrium analysis can apply
different system settings, including the scale of the cloud
provider, the speedup ratios of applications, the user’s u-
tility, etc. As a result, it is possible to apply the derivation
of the optimal decisions to other heterogeneous cloud
resources.

To evaluate our work, we add the GPU cloud instance
into cloudsim [17], a popular cloud simulation frame-
work, to simulate GPU-accelerated cloud computing.
We use the speedup ratio data from the GPU vendor
with different applications. In simulations, we compare
the payoffs of the cloud provider between our pricing
strategy and prices from commercial cloud providers.
From the simulation results, we find our pricing strategy
brings better payoffs to the cloud providers.

The main contributions of this paper are summarized
as follows.
• We first study the pricing problem to maximize

the payoff of GPU-accelerated services. Since GPU-
accelerated cloud computing is a prospective tech-
nology, our work is the first work to optimize the
payoff of the cloud provider.

• We then design the optimal pricing strategy to bal-
ance the maintenance cost of GPU devices and the
speedup ratios of GPU-acceleration. It is a challeng-
ing problem which needs to understand thoroughly
the impact of pricing strategy in GPU-accelerated
cloud computing.

• We model the interaction of the cloud provider and
users as a two-stage Stackelberg game, and analyze
the game equilibrium. The analysis is generic and
use variable system settings, which is applicable to
different GPU-accelerated cloud computing scenar-
ios.

• We take the performance evaluation of the strat-
egy with extensive simulations with settings from
realistic GPU cloud providers. We also compare our
pricing strategy with some other pricing methods
and the results show our strategy performs better
than others.

The rest of this paper is summarized as follows. Sec-
tion 2 reviews the related work. Our network scenario
and motivation are introduced in Section 3. Section 4
presents the problem formulation. An optimal pricing
strategy is proposed in Section 5. Section 6 gives the
simulation results. Finally, Section 7 concludes this paper
and give the future work.

2 RELATED WORK

In this section, we first introduce some main technologies
of GPU-accelerated services in cloud computing. Then,
we discuss some pricing strategies in cloud computing.

2.1 GPU-accelerated cloud computing
With the rapid development of general-purpose com-
puting on graphics processing units (GPGPU), GPU-

acceleration can improve the performance of many gen-
eral computing applications [18][19]. As the closed struc-
ture and the difficulty of I/O virtualization, GPUs are
still considered as scarce resources [20][21]. However,
with its high performance, many works focused on GPU-
accelerated cloud computing [22][23].

In the past decade, there are two solutions to provide
GPU-acceleration in cloud computing, including general
I/O virtualization and GPU virtualization [24]. General
I/O virtualization means the GPU and other I/O devices
are virtualized and each virtual machine can access
virtual devices. Unlike simple block or character devices
such as disks and network interface cards [25], it is very
hard to divide complex GPU devices [26].

Some hardware companies, such as Intel and AMD,
propose the I/O virtualization to support assign I/O
devices to virtual machines [27][28]. As devices are
considered as PCI-express (PCIe) devices, it is possi-
ble to bind the PCIe devices to virtual machines[29].
With bound GPU devices, virtual machines have GPU
computing resources as the same as general physical
machines.

However, the binding between virtual machines and
GPU devices needs several devices in a single physical
server to support multiple virtual machines. Meanwhile,
GPU resources are not flexible for different applications.
Therefore, some previous work proposed GPU specific
virtualization technology including GPU library virtual-
ization [30] and virtualization in GPU devices.

GPU library virtualization is a technology that modi-
fying GPU graphic or general computing library in the
virtual machines and moving workloads from general
virtual machines to the virtual machines with GPU
device [21]. GPU library virtualization is a very flexible
solution that GPU resources can be divided with the
requirement of computing tasks. However, additional
overheads in workload moving and isolation risks stop
the cloud provider considering GPU devices as the com-
puting resources in cloud computing.

Virtualization in GPU devices is a final solution for
GPU-accelerated cloud computing [16]. The GPU ven-
dors implement virtualization in their products that a
single GPU device is able to be virtualized into multiple
virtual GPU devices that have same functions with the
physical one. Therefore, virtual machines can use virtual
GPU to support different applications, especially the
GPGPU tasks. With GPU virtualization, several cloud
companies begin to provide GPU-accelerated cloud in-
stances. In this paper, we focus on the pricing strategy
of the GPU-accelerated services.

2.2 Cloud pricing strategy
As the cloud computing is a very important commercial
model, the pricing strategy is a very important issue for
both academies and companies [31][32][33][34].

The pricing strategy of commercial cloud services is
usually considered as sensitive intelligence. With dif-
ferent discount and varying prices, the final cost is

3

not completely consistent with the initial open prices.
Agmon Ben-Yehuda et al. [35] analyzed the instance spot
price histories of Amazon EC2 which is one of most
successful cloud services. From the analysis results, the
prices usually seem not to be market-driven and the
Amazon company generates prices from within a tight
price interval via a dynamic hidden reserve price.

Some researchers also proposed some optimal pricing
strategies as suggestions to cloud providers. Hadji et al.
[36] proposed an optimal suggested pricing strategy by
the providers and the optimal user demands. According
to the demands and the updated price requests, the
model provides different prices for the cloud provider.
Moreover, with the Stackelberg game theoretical model,
the strategy consists in finding the game equilibrium.
However, as the pricing strategy only considered the
IaaS environment with instance pricing, it is not appro-
priate to the multimedia processing services.

Furthermore, there are some other useful theoretical
works focused on pricing strategies in cloud computing.
Sharma et al. [37] applied a financial economic model
for a statement of the pricing problem in cloud com-
puting. With the financial economic model and Moore’s
law, the pricing strategy found the lower and upper
boundaries of prices for the customers. On these two
boundaries, the pricing strategy is considered beneficial
for both customers and cloud providers. However, this
pricing strategy only considers homogeneous resources
and services.

For heterogeneous resources and services, the pricing
strategy becomes more complex with different cost and
revenues. Mihailescu and Teo [38] proposed a dynamical
pricing strategy in federated clouds in which resources
are shared among many cloud service providers. More-
over, the dynamic pricing strategy also supports het-
erogeneous sources and users in federated clouds and
brings better buyer welfare and more successful request
than fixed pricing strategies.

As the dynamic pricing strategy seems better for the
cloud environment, the difference between fixed and dy-
namic prices is studied deeply. Yeo et al [39] considered
fixed prices could not be fair to different users with
different request even though fixed prices were more
straightforward for customers. Therefore, they proposed
a strategy to charge variable prices with reservation
which lets users understand the exact costs that are
calculated when users take the reservation. Thus, pricing
with reservation becomes a better strategy for users rent
resources from cloud providers.

As a result, even though there is no direct pricing
strategy for GPU-accelerated cloud services, the dynamic
and reservation based pricing strategies seem appropri-
ate from previous works. Therefore, we try to design a
strategy that the cloud providers can dynamically price
user resources based on the required workloads.

Cloud Provider

GPUs

Users

Multimedia
Processing
Platforms

GPU-accelerated Cloud Data Center

GPU-accelerated
Computing

Fig. 1. Cloud provider encapsulates GPU-accelerated
computing to the users for multimedia processing

3 BACKGROUND AND MOTIVATION

In this section, we first introduce the scenario of multi-
media processing services from GPU-accelerated Cloud
Providers. Then, we discuss the motivations on the
pricing strategy of the GPU-accelerated services.

3.1 Multimedia processing services from GPU-
accelerated cloud providers
As GPU-accelerated computing becomes popular, some
cloud providers such as nVidea and Amazon begin to
provide GPU-accelerated services. As shown in Fig. 1,
the cloud provider encapsulates the GPU-accelerated
computing resources and provides multimedia process-
ing services to users. Usually, since GPUs bring much
higher energy consumption and heat than the general
processors, the cloud provider only equips a part of
servers with GPUs. Thus, we consider this type of cloud
data center as GPU-accelerated cloud instead of pure
GPGPU cloud.

Then, as cloud computing adopts virtualized machines
as service units, an important problem is the solution
to assign GPUs to instances. In general virtualization, as
the GPU vendors only provide closed device drivers, it is
very hard to virtualize GPU hardware to multiple GPU
instances for equipment in different virtual machines.
Thus, there are several methods focus on this problem
including GPU virtualization and I/O virtualization dis-
cussed in the related work section. As the GPU virtual-
ization provides more dynamical and flexible virtualiza-

4

tion and we focus on the GPU-accelerated general pur-
pose computing rather than GPU-accelerated computer
vision, we consider the GPU-accelerated service is based
on the GPU virtualization in the scenario.

Furthermore, another problem is the way to encap-
sulate computing resources such as processors, memo-
ry and GPU. In traditional cloud computing services,
there are several levels including Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Service
as a Service (SaaS). A flexible way is choosing virtual
machines/instances as the encapsulation of computing
resources which is adopted in IaaS level. In the GPU-
accelerated cloud computing, as we choose GPU virtual-
ization as a major way to share GPUs between users, we
consider the PaaS level encapsulation that providers pro-
vide several multimedia processing platforms equipped
with GPU-accelerated libraries is a more appropriate
solution.

Therefore, with the multimedia processing platform-
s, users can deploy their tasks equipped with GPU-
accelerated libraries for GPU-accelerated processing.
Meanwhile, when the speedup of some applications by
GPU-acceleration is not obvious, we assume that users
only choose general computing for task processing.

3.2 Motivation

The pricing strategy in the mentioned scenario is very
important with various user requirements and the GPU
computing resources. First, as the cost of GPU comput-
ing resources is higher than general resources, it needs a
higher price to cover the additional cost. For example, a
typical GPU card such as nVidea Tesla k40 has a thermal
design power (TDP) of 235 watts while the 18 cores Intel
Xeon E7-8895 v3 has 175 watts. As the general processors
can always work and the GPUs only work in the GPU-
acceleration, it needs a different price to cover the GPU
maintenance cost.

Second, as the GPU-accelerated performance is dif-
ferent between applications, high priced GPU resources
will lead to potential users choose other solutions in-
stead of GPU acceleration. From the evaluation results
of existing works, GPU-accelerated applications have
different speedup ratios compared to the original ver-
sions. From the report of NVidia, CAFFE, a machine
learning application, can have a speedup ratio of 14
times than the CPU version while Quantum espresso in
materials science has nearly the same performance. If the
additional cost from GPU is higher than the utility, most
users will not choose the GPU-acceleration services.

Third, as there are a few of cloud providers have
GPU-accelerated services, it is hard to consider the GPU
resources as unlimited. Thus, the relationship between
users and cloud providers is unequal with the scarce
GPU resources. Actually, until 2016, there are only six
providers have GPU cloud services in the market. Thus,
we consider the status of the providers is higher than
users in the pricing strategy.

u1

a11 a21 a12 a31

u3 u4u2

a41
Rrocessing

Services

Users

Servers

Instance

GPU GPU

Fig. 2. Illustration of the GPU-accelerated and general
services in GPU-accelerated cloud computing

4 PROBLEM STATEMENT

In this section, we first model the cloud provider
provides multimedia processing services in GPU-
accelerated cloud computing then state the problem of
pricing strategy of the services to users.

As shown in Fig. 2, users purchase multimedia pro-
cessing services from the cloud providers with cloud
instances. In cloud instances, there are two types in-
cluding GPU equipped and general instances. Users
can choose GPU-accelerated and general services for
different multimedia processing tasks. Thus, we use set
U = {u1, u2, u3, ..., u|U |} to denote the users who want to
use the GPU-accelerated services. In the pricing problem,
each user has different tasks. Thus, we use aij to denote
one task of user i and a set Ai = {ai1, ai2, ai3, ..., ai|Ai|}
to denote the user i’s all tasks. As the GPU-accelerated
speedup ratio of each task is different, we use sij to
denote the speedup ratio of task aij .

Then, we discuss the GPU-accelerated service from the
cloud provider. As the user needs to choose instances
with or without GPU-acceleration, we define a value
xij ∈ [0, 1]) to denote the ratio of workload with GPU-
acceleration in task aij .

Thus, we define a set Xi = {xi1, xi2, xi3, xi|A|}to de-
note the decision of user i to arrange GPU-acceleration
to task set Ai. To describe the time cost of each task,
we consider a workload unit that a task can be fin-
ished in a time unit with a unit of general computing
resource. Therefore, we can define a value lij to denote
the number of workload units of task aij and a set
Li = li1, li2, li3, ..., li|Ai| to denote the workload unit
numbers of tasks of user ui. With the definition of
workload units, we use tij to denote the entire time to
serially finish task aij as

tij =
lij
sij
· xij + lij · (1− xij), (1)

5

while ui ∈ U and aij ∈ Ai and a set Ti =
{ti1, ti2, ti3, ..., ti|Ai|} to denote the executing time of all
tasks of user ui.

Now, we discuss the price in the GPU-accelerated
cloud. As the workload of each user is different, the
pricing strategy of the cloud provider sets a different
price for each user. Meanwhile, as discussed in Section
3.2 that the cost of GPU computing resource is higher the
general computing resource, to user ui, we use pci and pgi
to denote the one time unit price for general computing
resources and GPU-accelerated computing resources, re-
spectively. Meanwhile, as the general computing services
are not unique, the price pci is not higher than the other
providers for similar services. We define a value pm

where pci ≤ pm to denote the maximum price of pci . With
the different price of computing resource, we use Ci to
denote the cost for user ui to finished its tasks as

Ci =

|Ai|∑
j=1

lij
sij
· xij · pgi + lij · (1− xij) · pci (2)

while pci ≤ p
g
i and pci ≤ pmi .

Thus, as the results of task processing bring utility to
the users, we use a Utility Ui(Li, Xi) function to denote
the utility that user ui can receive from processing all
tasks. As we seek an elastic model of the pricing strategy,
the user utility function is compatible with multiple
previous models [40] [41]. Therefore, we use a function
OU

i (Xi; p
c
i , p

g
i) to denote the payoff of user ui when

choosing a strategy (Xi) as

OU
i (Xi; p

c
i , p

g
i) = Ui(Li, Xi)− Ci. (3)

To the cloud provider, we first discuss the cost for
each unit of computing resources including general and
GPU-accelerated computing resources. We use ec and
eg to denote the cost of one unit of general and GPU-
accelerated computing resource, respectively. Thus, we
can find Ei to denote the cost for providing service to
user ui as

Ei =

|Ai|∑
j=1

lij
sij
· xij · eg + lij · (1− xij) · ec. (4)

With the service cost for user ui, it is easy to find a
function OP

i (p
c
i , p

g
i ;Xi) to denote the payoff of the cloud

provider with the pricing strategy (pci , p
g
i) as

OP
i (p

c
i , p

g
i ;Xi) = Ci − Ei. (5)

We list all notations in the pricing strategy of the GPU-
accelerated multimedia processing service in Table 1. As
there are limited cloud providers have GPU-accelerated
services, we consider the cloud provider as the leader
in the game with the cloud users. Thus, the pricing
problem of the GPU-accelerated multimedia processing
services can be considered as a two level Stackelberg
game between the users and the cloud provider. A
Stackelberg game is a leadership model in economics
in which the leader firm moves before the follower. In

TABLE 1
Notations in the pricing problem of the GPU-accelerated

multimedia services

U Set of cloud users
ui One user in U
Ai Task set of user ui

aij One task in Ai

sij Speedup ratio of aij with GPU-acceleration
Xi All decisions for GPU-accelerated tasks of ui

xij Ratio of workload in aij is accelerated with GPU
Li All task workloads of ui

lij Number of workload units of aij
tij Time for executing aij
pci General computing resource for ui

pgi GPU-accelerated computing resource for ui

Ci Cost for executing all tasks of ui

Ui(·) Utility of executing all tasks of ui

OU
i (·) Payoff function of ui

ec Cost of one unit general computing resource
eg Cost of one unit GPU-accelerated computing resource
Ei Cost for executing all tasks of ui

OP
i Payoff function of the cloud provider from ui

game terms, game players are a leader and a follower
and they compete on quantity. Thus, in our model, the
game players are the cloud provider and users. In the
first stage, the cloud provider (leader) decides the price
of general and GPU-accelerated computing resources for
maximizing its payoff. The object of the cloud provider
is to maximize its payoff, which consists of revenue
from the user paid for cloud services, and the cost of
maintaining the general and GPU-accelerated computing
resources. In the second stage, under the decisions from
the leader, user ui decides whether tasks need GPU-
acceleration. The payoff of each user ui depends on
the utility Ui from the finished task workloads and the
payment on general and GPU-accelerated computing
resources.

5 OPTIMAL PRICING STRATEGY

In this section, we study the provider-user game under
complete information, where both the cloud provider
and the users know all system parameters mentioned
above. We solve the game by backward induction. First,
we solve the user’s best GPU-acceleration decision strat-
egy in the second stage. Then, we study the provider’s
best pricing strategy in the first stage.

5.1 Best decision of users in the second stage
We assume that the number of user tasks is elastic
that the analysis can be easily extended to other sce-
narios. Specifically, give the provider’s pricing strategy
(pc∗i , p

g∗
i), user ui can derive the optimal assignment

strategy (Xi) by solving the problem as

max
Xi OU

i (Xi; p
c∗
i , p

g∗
i)

s.t., xij ∈ [0, 1], i ∈ [1, |U |], j ∈ [1, |Ai|].
(6)

It is easy to check that (6) is a convex optimization. We
first study the optimal strategy (x∗ij) with a particular

6

task aij (fixed the scheduling decisions in other |Ai| −
1 tasks), and then study the optimal strategy (X∗i) =
(x∗ij)aij∈Ai of all |Ai| tasks jointly which is the solution
of (6).

Now we consider the strategy of a single task aij . We
first use a strategy way that converges to the optimal
single-task strategy. Then, we characterize the optimal
scheduling step by step.

We use oij denote the first-order derivatives of payoff
OU

i (·) for user ui with respect to aij as

oij(xij) , dOU
i (xij)
dxij

=

U ′i(lij , xij)−
lij
sij
· pg∗i + lij · pc∗i .

(7)

As we assume the utility function is derivable, the val-
ue of OU

i (xij) when oij(xij) = 0 should be the maximum.
We use xdij to denote the value when oij(xij) = 0 as

xdij = argxij
(oij(xij) = 0). (8)

With the value of xdij , we can get the maximum payoffs
of the users. While the solution will exceed the range
of ratio xij , we study the value of oij(xdij) to find the
solution in [0, 1]. Obviously, as the payoff of user ui is
monotonic increasing when oij(1) > 0 and xdij /∈ [0, 1],
the optimal solution is xij = 1. Otherwise, the optimal
solution is xij = 0 when oij(1) < 0 and xdij /∈ [0, 1]. We
use a value x∗ij to denote the solution for maximizing
the payoff of user ui’s decision on task aij as

x∗ij =

1, xdij /∈ [0, 1], oij(1) > 0,

0, xdij /∈ [0, 1], oij(1) < 0,

xdij , xdij ∈ [0, 1].
(9)

Since the workloads of each task are not divided
infinitely, the unit number of workloads is integer. With
solution in (9), we design an algorithm to decide the
optimal ratio of the workloads processed by GPU-
acceleration in task aij . As shown in Algorithm 1, the
strategy adds one unit workload for GPU-acceleration
in each loop until the ratio exceeds the optimal value.

Algorithm 1 Single Task Strategy
1: x∗ij ← 0;
2: l′ij ← 0;
3: while x∗ij ≤ 1 do and oij(x

∗
ij) > 0

4: l′ij ← lij + 1;

5: x∗ij ←
l′ij
lij

;
6: end while

Now we study the optimal strategy (X∗ij) = (x∗ij)aj∈Aj

with the task set Ai of user ui. As we assume tasks are
isolated in the cloud environment, the resource assign-
ment of each task is independent. Thus, we can get the
optimal solution of Xi as

X∗i =

|Ai|⋃
j=1

x∗ij (10)

while s∗ij is calculated in (9).
Thus, for less time complicity, we choose an opti-

mization learning from the binary search algorithm and
propose an algorithm for solute the GPU-accelerated
ratio Xi of user ui as Algorithm 2.

Algorithm 2 Strategy for task set Ai

1: X∗i ← Ø;
2: for j ← 1 to |Ai| do
3: x∗ij ← 0;
4: l′ij ← 0;
5: lb ← li;
6: le ← 0;
7: while lb > le and oij(x

∗
ij) > 0 do

8: if oij(x∗ij) > 0 then

9: l′ij ← l′ij +
l′ij+lb

2 ;
10: le ← l′ij ;

11: x∗ij ←
l′ij
lij

;
12: else if oij(x∗ij) < 0 then

13: l′ij ←
l′ij+le

2 ;
14: lb ← l′ij ;

15: x∗ij ←
l′ij
lij

;
16: else if oij(x∗ij) = 0 then
17: break;
18: end if
19: end while
20: X∗i ← X∗i ∪ {x∗ij};
21: end for

First, the algorithm sets X∗i as an empty set and
calculate each x∗ij with different task aij of user ui. For
each x∗ij of task aij , the algorithm uses a loop to find the
optimal value by binary searching. Before the searching
loop, the algorithm defines three temporary variables,
l′ij , lb and le, to denote the corresponding task workloads
with x∗ij , the highest and lowest inclusive workload
boundaries that are searched. The binary search is not
complex that the value of l′ij is set to the middle value
between the former value and the boundary value. If
the former value is more than the solution, new l′ij is
set to the middle value between the former value and
the highest boundary value otherwise the lowest if the
former value is less than the solution. After search loop,
the algorithm adds the solution of x∗ij to the set X∗i . The
optimal solution of user ui is generated after all tasks in
set Ai are processed.

5.2 Best Decision of the Controller in the First Stage

Now we begin to study the problem to find the best
decision of the cloud provider to maximize its payoff.
The provider can derive the optimal price pci and pgi
with the ui’s decision of the task ratio X∗i for GPU-

7

acceleration by solving the problem as
max
pc
i ,p

g
i

OP
i (p

c
i , p

g
i ;X

∗
i)

s.t., pm ≥ pci ≥ 0,

pgi ≥ 0,

X∗i is solved in (6),
i ∈ [1, |U |], j ∈ [1, |Ai|].

(11)

To simplify the problem, we only consider the ratio
xdij of user ui’s optimal strategy is in the range [0, 1].
Therefore, it is easy to check that (11) is also a convex
optimization. Hence, it admits an optional solution that
can be characterized by the method of Lagrange multi-
pliers.

Let hci (·) and hgi (·) denote the first-order derivatives of
the provider’s payoff functions from user ui with respect
to pci and pgi as

hci (p
c
i , p

g
i) =

∂OP
i

∂pc
i
= ∂Ci

∂pc
i
− ∂Ei

∂pc
i
=∑|Ai|

j=1
lij
sij
· ∂x

∗
ij

∂pc
i
· (pgi − eg)+

lij · (1−
∂x∗ij
∂pc

i
) · (1− ec)

(12)

and

hgi (p
c
i , p

g
i) =

∂OP
i

∂pg
i

= ∂Ci

∂pg
i
− ∂Ei

∂pg
i
=∑|Ai|

j=1
lij
sij
· ∂x

∗
ij

∂pg
i
(1− eg)+

−lij · (1−
∂x∗ij
∂pg

i
) · (pci − ec).

(13)

Further, we can get the constraint function set from
(8). We use pc∗i and pg∗i to denote the solutions of (5).
Therefore, as the value of oij(lij , x∗ij) ≡ 0, we can find
the optimal solutions with the equation set as{

hgi (p
c∗
i , p

g∗
i) = 0,

hci (p
c∗
i , p

g∗
i) = 0. (14)

We apply Newton’s method to solve the equation set.
Then, we need to define the functions in iterations with
(14). We use Hc

i (·) and Hg
i (·) to denote the iterative

functions for calculating pc∗i and pg∗i as

Hc
i (p

c
i , p

g
i) =

hc
i (p

c
i ,p

g
i)·h

′g
ig(p

c
i ,p

g
i)−h

g
i (p

c
i ,p

g
i)h
′c
ig(p

c
i ,p

g
i)

h′gic(p
c
i ,p

g
i)·h′cig(pc

i ,p
g
i)−h′cic(pc

i ,p
g
i)h
′g
ig(p

c
i ,p

g
i)
,

Hg
i (p

c
i , p

g
i) =

hg
i (p

c
i ,p

g
i)·h

′c
ic(p

c
i ,p

g
i)−h

c
i (p

c
i ,p

g
i)h
′g
ic(p

c
i ,p

g
i)

h′gic(p
c
i ,p

g
i)·h′cig(pc

i ,p
g
i)−h′cic(pc

i ,p
g
i)h
′g
ig(p

c
i ,p

g
i)

.

(15)

where h′cic(p
c
i , p

g
i) =

∂hc
i (p

c
i ,p

g
i)

∂pc
i

, h′cig(p
c
i , p

g
i) =

∂hc
i (p

c
i ,p

g
i)

∂pg
i

,

h′gic(p
c
i , p

g
i) =

∂hg
i (p

c
i ,p

g
i)

∂pc
i

, and h′gig(p
c
i , p

g
i) =

∂hg
i (p

c
i ,p

g
i)

∂pg
i

.
As shown in Algorithm 3, we first define two tempo-

rary values p′ci and p′gi to denote the former calculated
solutions of pci and pgi . We first guess the values of pci
and pgi that hci (p

c0
i , p

g0
i) < 0 and hgi (p

c0
i , p

g0
i) < 0. Then,

the algorithm begins iterations to find solutions. We set
a value ε to denote the expected distance between the
iterated and the optimal solutions and the algorithm con-
tinue iterating until the values of hci (p

c
i , p

g
i) and hgi (p

c
i , p

g
i)

are no more than ε. After iterations, the algorithm can
find the solutions for the cloud provider’s strategy.

Algorithm 3 Strategy for the cloud provider

1: Find hci (p
c0
i , p

g0
i) < 0 and hgi (p

c0
i , p

g0
i) < 0 as a given

guess;
2: pci ← pc0i ;
3: pgi ← pg0i ;
4: p′ci ← 0;
5: p′gi ← 0;
6: while hci (p

c
i , p

g
i) > ε and hgi (p

c
i , p

g
i) > ε do

7: pci ← p′ci +Hc
i (p
′c
i , p
′g
i);

8: pgi ← p′gi +Hg
i (p
′c
i , p
′g
i);

9: p′ci ← pci ;
10: p′gi ← pgi ;
11: end while
12: pc∗i ← pci ;
13: pg∗i ← pgi ;

6 EVALUATION

In this section, we execute extensive simulations for
the pricing strategy evaluation. We first describe the
settings of the simulations then discuss the results of the
performance evaluation.

We use a workstation computer as the simulation
platform which equips a CoreTM i7 4770 (8M Cache, up
to 3.90GHz) CPU, 16GByte RAM and 2TByte HDD. We
use cloudsim 3.0.3 as the major simulator. We test each
simulation 20 times and record the average result.

For comparison, we use the static prices from Ama-
zone Elastic Compute Cloud (EC2)[14], Cirrascale [42]
and NIMBX JARVICE [43]. As these three companies
provide different hardware plans, we first choose the
instance g2.2xlarge as the standard instance with 1536
CUDA units from EC2. Then, we calculate the prices
of instances from other two providers with the same
CUDA units. As tasks have different speedup ratios,
we set the ratios according to the benchmark results
of Tesla K40 from the Nvidia company. For comparing
our solution with other dynamic algorithm, we also
perform the pricing and repurchasing algorithm in all
experiments, which focuses on the streaming processing
service pricing in cloud computing [44].

We first evaluate the payoff with different workloads
per each task. We set the number of workload units per
each workload is uniform distributed in [10, 30], [30, 50],
[50, 70] and [70, 100] in each step. And we set the number
of users is 10 and the number of tasks is uniformly
distributed in [10, 90]. Further, we set the cost of one
unit of the GPU resource is 0.4 dollar per hour. From
the results in Fig. 3(a), the payoff of the cloud provider
increases with more workloads per task. Obviously, our
pricing strategy brings higher payoff than other static
price strategies. Meanwhile, the payoff increases with
more unit prices. When the average task units become to
250 hours, the payoff with our pricing strategy becomes
nearly 3 times of the payoff with the default GPU price.

Then, we evaluate the payoff with different number
of users. We set the number of users from 10 to 30 and

8

20 40 60 80 100
Average number of workload units (hour)

0

2000

4000

6000

8000

10000

12000

P
a
y
o
ff

 (
d
o
lla

r)

Amazon EC2
Cirrascale
Nimbix JARVICE
Pricing and Repurchasing
Elastic GPU pricing

(a) Payoff with different average workloads of tasks

10 15 20 25 30
Number of users

0

1000

2000

3000

4000

5000

6000

P
a
y
o
ff

 (
d
o
lla

r)

Amazon EC2
Cirrascale
Nimbix JARVICE
Pricing and Repurchasing
Elastic GPU pricing

(b) Payoff with different number of users

50 100 150 200 250
Average number of tasks

0

2000

4000

6000

8000

10000

P
a
y
o
ff

 (
d
o
lla

r)

Amazon EC2
Cirrascale
Nimbix JARVICE
Pricing and Repurchasing
Elastic GPU pricing

(c) Payoff with different average number of tasks

0.40 0.45 0.50 0.55 0.60
Cost per GPU computing unit (dollar)

0

500

1000

1500

2000

2500

3000

3500

4000

P
a
y
o
ff

 (
d
o
lla

r)

Amazon EC2
Cirrascale
Nimbix JARVICE
Pricing and Repurchasing
Elastic GPU pricing

(d) Payoff with different cost per GPU computing unit

Fig. 3. Payoff results with different settings of workloads, users, tasks and GPU cost

increase 5 users per each step. And the number of work-
load units per task and tasks is uniformly distributed in
[10, 30] and [10, 90], respectively. The cost of one unit
of the GPU resource stays the same. From the results
show in Fig. 3(b), we can find the payoff increases with
more users rent the cloud services. Our pricing strategy
still performs better than the static prices. When the
number of users is less than 15, the difference between
our pricing strategy and the price of the Nimbix instance
is similar while the gap becomes larger with more users
in the cloud services.

As the task scale of users is an important issue to the
cloud provider’s payoff, we also evaluate the payoff with
different task scales per each user. We set the number of
tasks per user is uniformly distributed in [10, 90], [60,
140], [110, 190], [160, 240] and [210, 290] in each step.
The number of users is set 10. Other settings stay the
same with the previous simulation. From the results in
Fig. 3(c), we can find the payoff of the cloud provider

increases with the number of tasks. The difference be-
tween the price of our strategy and other prices is larger
than other simulations. With the average task number
of 50, the payoff of our pricing strategy is nearly 2000
dollars while the default price in Amazon EC2 brings no
more than 600 dollars. With the average task number of
250, the payoff of our strategy is near 4 times more than
the default price.

Furthermore, we evaluate the payoff with differen-
t cost of GPU resources since the GPU cost is also
important to the payoff of the cloud provider. We set
the cost of one unit GPU resource from 0.40 to 0.6
dollar and increase the 0.05 dollar in each step of the
simulation. The number of tasks is uniformly distributed
in [10, 90] and other settings stay the same with the
previous experiment. From the result shown in Fig. 3(d),
the payoff decreases obviously with the cost increasing.
With the price of 0.65 dollar per hour, the payoff of the
cloud provider is less than 500 dollars when the cost

9

1.0 1.2 1.4 1.6 1.8 2.0
Cost ratio of GPU to CPU

0.8

1.0

1.2

1.4

1.6

1.8

2.0
P
ri

ce
 r

a
ti

o
 o

f
G

P
U

 t
o
 C

P
U

0

2000

4000

6000

8000

10000

12000

14000

P
a
y
o
ff

 (
d
o
lla

r)

Fig. 4. Price ratio of GPU to CPU resources and payoff
with different cost ratio of GPU to CPU resources

increases to 0.6 dollar per hour, which is only one fifth
of the payoff with 0.4 dollar per hour. Our strategy still
performs better than other prices while the difference
between our strategy.

Since the GPU and CPU prices are very important to
our pricing strategy, we test the price ratio of GPU to
CPU resources and payoff with different cost ratio of
GPU to CPU resources. We set the cost ratio of GPU to
CPU from 1 to 2 and increase it by 0.1 in each step of the
simulation. As shown in Fig. 4, we find the price ratio
and payoff is relevant to the cost ratio between CPU and
GPU. When the GPU cost is controlled to the same level
of CPU cost, the payoff is maximized and the price of
GPU resources is lower than CPU resources. While the
cost of GPU resources increase, the payoff is decreased
with high GPU price. Therefore, if the cloud provider
wants to increase the revenue from GPU-accelerated
cloud services, it is very important to control the cost
of GPU resources with an attractive price.

Finally, we find that our pricing strategy can bring bet-
ter payoff than static prices of existing cloud providers
even with increased prices. As a result, the user require-
ment driven elastic price strategy is a better choice than
the general static pricing strategy. Furthermore, even
though we choose the prices from Amazon EC2, we
consider our pricing strategy is also appropriate for the
model that provides processing services directly.

7 CONCLUSION

In this paper, we propose an elastic pricing strategy
for multimedia processing services in GPU-accelerated
cloud environment. Unlike the static prices from exist-
ing cloud providers, the pricing strategy will provide
varying prices of GPU computing resources according
to the user’s requirement. To maximize the payoff of
both the cloud provider and users, we formulate the
elastic pricing strategy as a two-stage leader-follower

(Stackelberg) game, and analyze the game equilibrium.
We also evaluate our pricing strategy with extensive
simulations and compare the payoff with other pricing
strategies. From the result of performance evaluation, the
elastic pricing strategy brings more payoff to the cloud
provider than other methods.

In the future, we will plan to design and implement
a cloud framework to support multimedia processing
services with GPU-acceleration. Meanwhile, it is signifi-
cant to find the combined optimization on the resource
scheduling and pricing since the virtual GPU is a very
different resource from the general virtual processors.
A deeper experiment with more real world testbed is
also needed to evaluate the efficiency of GPU-accelerated
cloud computing.

ACKNOWLEDGMENTS

This work is sponsored by JSPS KAKENHI Grant Num-
ber 15K15976, 26730056, 16K00117, JSPS A3 Foresight
Program, and Research Fund for Postdoctoral Program
of Muroran Institute of Technology.

REFERENCES

[1] Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong, “Steganalysis
of lsb matching using differences between nonadjacent pixels,”
Multimedia Tools and Applications, vol. 75, no. 4, pp. 1947–1962,
2016.

[2] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillip-
s, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, May 2008.

[3] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting
gpu sharing in cloud environments with a transparent runtime
consolidation framework,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing, ser. HPDC
’11. New York, NY, USA: ACM, 2011, pp. 217–228.

[4] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud comput-
ing,” IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69,
May 2011.

[5] J. Yin, X. Lu, C. Pu, Z. Wu, and H. Chen, “Jtangcsb: A cloud
service bus for cloud and enterprise application integration,” IEEE
Internet Computing, vol. 19, no. 1, pp. 35–43, Jan 2015.

[6] M. Dowty and J. Sugerman, “Gpu virtualization on vmware’s
hosted i/o architecture,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3,
pp. 73–82, Jul. 2009.

[7] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara,
“Vmm-independent graphics acceleration,” in Proceedings of the
3rd International Conference on Virtual Execution Environments, ser.
VEE ’07. New York, NY, USA: ACM, 2007, pp. 33–43.

[8] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Di-
matos, G. Hamilton, M. McCabe, and J. Owens, “Quantifying
the performance isolation properties of virtualization systems,” in
Proceedings of the 2007 Workshop on Experimental Computer Science,
ser. ExpCS ’07. New York, NY, USA: ACM, 2007.

[9] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu, “Burse: A bursty
and self-similar workload generator for cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 3, pp.
668–680, March 2015.

[10] X. Zhang and Y. Dong, “Optimizing xen VMM based on intel
virtualization technology,” in Proceedings of 2008 International Con-
ference on Internet Computing in Science and Engineering (ICICSE
’08), Jan 2008, pp. 367–374.

[11] A. Herrera, “Nvidia grid: Graphics accelerated vdi with the visual
performance of a workstation,” Nvidia Corp, 2014.

[12] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Proceedings of the Fifth International Joint
Conference on INC, IMS and IDC, 2009. NCM ’09., Aug 2009, pp.
44–51.

10

[13] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of
graphics processing units for scientific computing,” in Proceedings
of the 2009 IEEE International Symposium on Parallel Distributed
Processing (IPDPS 2009), May 2009, pp. 1–8.

[14] I. Amazon Web Services, “Ec2 instance pricing amazon web
services (aws),” https://aws.amazon.com/ec2/pricing/, accessed
Janurary, 2016.

[15] M. Dong, H. Li, K. Ota, L. T. Yang, and H. Zhu, “Multicloud-
based evacuation services for emergency management,” IEEE
Cloud Computing, vol. 1, no. 4, pp. 50–59, Nov 2014.

[16] C. NVIDIA, “Tesla gpu accelerators for servers—nvidia,”
http://www.nvidia.com/object/tesla-servers.html, accessed Ja-
nurary, 2016.

[17] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, 2011.

[18] S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: A
compiler framework for automatic translation and optimization,”
in Proceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’09. New York,
NY, USA: ACM, 2009, pp. 101–110.

[19] D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for gpg-
pu stream architectures,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’10. New York, NY, USA: ACM, 2010, pp. 545–546.

[20] P. Karger and D. Safford, “I/o for virtual machine monitors:
Security and performance issues,” IEEE Security Privacy, vol. 6,
no. 5, pp. 16–23, Sept 2008.

[21] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-
performance computing in virtual machines,” IEEE Transactions
on Computers, vol. 61, no. 6, pp. 804–816, June 2012.

[22] K. Suttisirikul and P. Uthayopas, “Accelerating the cloud backup
using gpu based data deduplication,” in Proceedings of the IEEE
18th International Conference on Parallel and Distributed Systems
(ICPADS 2012), Dec 2012, pp. 766–769.

[23] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa,
and T. Narumi, “Ds-cuda: A middleware to use many gpus in the
cloud environment,” in Proceedings of the 2012 SC Companion:High
Performance Computing, Networking, Storage and Analysis (SCC ’12),
Nov 2012, pp. 1207–1214.

[24] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S. Quintana-Ortı́,
and F. Silla, “An efficient implementation of gpu virtualization in
high performance clusters,” in Proceedings of Euro-Par 2009–Parallel
Processing Workshops. Springer, 2010, pp. 385–394.

[25] D. Li, X. Liao, H. Jin, B. Zhou, and Q. Zhang, “A new disk i/o
model of virtualized cloud environment,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1129–1138, June
2013.

[26] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia,
V. Talwar, and P. Ranganathan, “Gvim: Gpu-accelerated virtual
machines,” in Proceedings of the 3rd ACM Workshop on System-
level Virtualization for High Performance Computing, ser. HPCVirt
’09, New York, NY, USA, 2009, pp. 17–24.

[27] I. AMD, “O virtualization technology (iommu) specification,”
AMD Pub, vol. 34434, 2007.

[28] R. Hiremane, “Intel virtualization technology for directed i/o
(intel vt-d),” Technology@ Intel Magazine, vol. 4, no. 10, 2007.

[29] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rcuda:
Reducing the number of gpu-based accelerators in high perfor-
mance clusters,” in Proceedings of 2010 International Conference on
High Performance Computing and Simulation (HPCS 2010), June
2010, pp. 224–231.

[30] H. Li, H. Jin, and X. Liao, “Graphic acceleration mechanism for
multiple desktop system based on virtualization technology,” in
Proceedings of the IEEE 14th International Conference on Computa-
tional Science and Engineering (CSE 2011), Aug 2011, pp. 447–452.

[31] C. Microsoft, “Pricing - cloud services — microsoft azure,”
https://azure.microsoft.com/en-us/pricing/details/cloud-
services/, accessed Janurary, 2016.

[32] I. Google, “Google compute engine pricing — google cloud
platform,” https://cloud.google.com/compute/pricing, accessed
Janurary, 2016.

[33] M. Dong, X. Liu, Z. Qian, A. Liu, and T. Wang, “Qoe-ensured
price competition model for emerging mobile networks,” IEEE
Wireless Communications, vol. 22, no. 4, pp. 50–57, August 2015.

[34] X. Liu, M. Dong, K. Ota, P. Hung, and A. Liu, “Service pricing
decision in cyber-physical systems: Insights from game theory,”
IEEE Transactions on Services Computing, vol. 9, no. 2, pp. 186–198,
March 2016.

[35] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. T-
safrir, “Deconstructing amazon ec2 spot instance pricing,” ACM
Trans. Econ. Comput., vol. 1, no. 3, pp. 16:1–16:20, Sep. 2013.

[36] M. Hadji, W. Louati, and D. Zeghlache, “Constrained pricing
for cloud resource allocation,” in Proceedings of the 10th IEEE
International Symposium on Network Computing and Applications
(NCA 2011), Aug 2011, pp. 359–365.

[37] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and
R. Buyya, “Pricing cloud compute commodities: A novel financial
economic model,” in Proceedings of the 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (Ccgrid
2012), ser. CCGRID ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 451–457.

[38] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on fed-
erated clouds,” in Proceedings of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid 2010),
May 2010, pp. 513–517.

[39] C. S. Yeo, S. Venugopal, X. Chu, and R. Buyya, “Autonomic
metered pricing for a utility computing service,” Future Generation
Computer Systems, vol. 26, no. 8, pp. 1368–1380, 2010.

[40] J. Kephart and R. Das, “Achieving self-management via utility
functions,” IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, Jan
2007.

[41] N. Paton, M. A. De Aragão, K. Lee, A. A. Fernandes, and
R. Sakellariou, “Optimizing utility in cloud computing through
autonomic workload execution,” Bulletin of the Technical Committee
on Data Engineering, vol. 32, no. 1, pp. 51–58, 2009.

[42] C. Cirrascale, “Plans - cirrascale cloud services,”
http://www.cirrascale.com/cloud/plans.aspx, accesed January,
2016.

[43] I. Nimbix, “Jarvice is the cloud platform for big data,” http-
s://www.nimbix.net/jarvice/, accessed January, 2016.

[44] H. Li, M. Dong, K. Ota, and M. Guo, “Pricing and repurchasing
for big data processing in multi-clouds,” IEEE Transactions on
Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1, 2016.

He Li received the B.S., M.S. degrees in Com-
puter Science and Engineering from Huazhong
University of Science and Technology in 2007
and 2009, respectively, and Ph.D. degree in
Computer Science and Engineering from The
University of Aizu in 2015. He is currently a
Postdoctoral Fellow with Department of Informa-
tion and Electronic Engineering, Muroran Insti-
tute of Technology, Japan. His research interests
include cloud computing and software defined
networking. He has received the best paper

award from IEEE VTC2016-Fall. Dr. Li is a guest associate editor of
IEICE Transactions on Information and Systems. He is the recipient of
IEEE TCSC Outstanding Dissertation Award 2016.

11

Kaoru Ota was born in Aizu-Wakamatsu, Japan.
She received M.S. degree in Computer Science
from Oklahoma State University, USA in 2008,
B.S. and Ph.D. degrees in Computer Science
and Engineering from The University of Aizu,
Japan in 2006, 2012, respectively. She is cur-
rently an Assistant Professor with Department
of Information and Electronic Engineering, Muro-
ran Institute of Technology, Japan. From March
2010 to March 2011, she was a visiting scholar
at University of Waterloo, Canada. Also she was

a Japan Society of the Promotion of Science (JSPS) research fellow
with Kato-Nishiyama Lab at Graduate School of Information Sciences at
Tohoku University, Japan from April 2012 to April 2013. Her research
interests include Wireless Networks, Cloud Computing, and Cyber-
physical Systems. Dr. Ota has received best paper awards from ICA3PP
2014, GPC 2015, IEEE DASC 2015, and IEEE VTC 2016-Fall. She is
an editor of IEEE Communications Letters, Peer-to-Peer Networking
and Applications (Springer), Ad Hoc & Sensor Wireless Networks,
International Journal of Embedded Systems (Inderscience) and Smart
Technologies for Emergency Response & Disaster Management (IGI
Global), as well as a guest editor of ACM Transactions on Multimedia
Computing, Communications and Applications (leading), IEEE Commu-
nications Magazine, and IEEE Wireless Communications.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an As-
sociate Professor in the Department of Informa-
tion and Electronic Engineering at the Muroran
Institute of Technology, Japan. Prior to joining
Muroran-IT, he was a Researcher at the Nation-
al Institute of Information and Communications
Technology (NICT), Japan. He was a JSPS Re-
search Fellow with School of Computer Science
and Engineering, The University of Aizu, Japan

and was a visiting scholar with BBCR group at University of Waterloo,
Canada supported by JSPS Excellent Young Researcher Overseas Visit
Program from April 2010 to August 2011. Dr. Dong was selected as a
Foreigner Research Fellow (a total of 3 recipients all over Japan) by
NEC C&C Foundation in 2011. His research interests include Wireless
Networks, Cloud Computing, and Cyber-physical Systems. He has
received best paper awards from IEEE HPCC 2008, IEEE ICESS 2008,
ICA3PP 2014, GPC 2015, IEEE DASC 2015 and IEEE VTC 2016-Fall.
Dr. Dong serves as an Editor for IEEE Communications Surveys and
Tutorials, IEEE Network, IEEE Wireless Communications Letters, IEEE
Cloud Computing, IEEE Access, and Cyber-Physical Systems (Taylor
& Francis), as well as a leading guest editor for ACM Transactions
on Multimedia Computing, Communications and Applications (TOMM),
IEEE Transactions on Emerging Topics in Computing (TETC), IEEE
Transactions on Computational Social Systems (TCSS). He is the
recipient of IEEE TCSC Early CareerAward 2016.

Athanasios V. Vasilakos is recently Profes-
sor with the Lule University of Technology. He
served or is serving as an Editor for many tech-
nical journals, such as the IEEE Transactions on
Network and Service management; IEEE Trans-
actions on Cloud Computing, IEEE Transaction-
s on Information Forensics and Security, IEEE
Transactions on Cybernetics; IEEE Transactions
on Nanobioscience; IEEE Transactions on Infor-
mation Technology in Biomedicine; ACM Trans-
actions on Autonomous and Adaptive Systems;

the IEEE Journal on Selected Areas in Communications. He is also Gen-
eral Chair of the European Alliances for Innovation (http://www.eai.eu).

Koji Nagano is a professor of Department of
Information and Electronic Engineering, Faculty
of Engineering, Muroran Institute of Technology
since 2010. He received a Dr. degree from To-
hoku University in 1989. From 1989-91 he was a
fellow of the Japan Society for the Promotion of
Science for Japanese Junior Scientists. His re-
cent research activities are on signal processing,
acoustic wave propagation, and methodologies
for environmental footprints.

