
迅速な災害管理のための即時的,持続可能，かつ拡張
的なエッジコンピューティングの研究

言語: eng

出版者:

公開日: 2020-06-08

キーワード (Ja):

キーワード (En):

作成者: 徐, 建文

メールアドレス:

所属:

メタデータ

https://doi.org/10.15118/00010191URL

Establishing Swift, Sustainable and
Scalable Edge Computing for Agile

Disaster Management

Jianwen Xu

Department of Sciences and Informatics
Muroran Institute of Technology

This dissertation is submitted for the degree of
Doctor of Philosophy of Engineering

March 2020

Declaration

I hereby declare that this thesis is my own work and effort and that it has not been submitted
anywhere for any award. Wherever contributions of others are involved, every effort is
made to indicate this clearly, with due reference to the literature, and acknowledgement of
collaborative research and discussions.

Jianwen Xu
March 2020

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Mianxiong
Dong for the continuous support of my Ph.D. study and related research, for his patience,
motivation, and immense knowledge. I have learned so many things from you, including the
research process, writing papers, giving talks, and many more.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Jay
Kishigami, and Prof. Yukinori Suzuki, for their insightful comments and encouragement,
but also for the hard questions which encouraged me to widen my research from various
perspectives.

I want to thank for Prof. Kaoru Ota and Prof. Li. Their guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a better advisor
and mentor for my Ph.D study.

I also want to thank Prof. Wu for recommending me to Prof. Dong’s ENeS Lab, so that I
had the chance to start my Ph.D. study in Muroran IT. I will never forget your encouraging
words when I felt hesitant.

I would like to acknowledge the financial, academic and technical support of the Muroran
Institute of Technology, and the research fund from NEC C&C Foundation which has brought
me many opportunities to attend the international conferences and to publish our works in
journals.

I owe a debt of gratitude to Chaofeng, Wuyunzhaola, Liangzhi, Gaolei, Xi, Luyao, Axita
and all my friends and colleagues in ENeS Lab at Muroran IT. Thanks for everything you
have done.

Last but not the least, I would like to thank my family, my parents for supporting me
spiritually throughout writing this thesis and my life in general.

Jianwen Xu
March 2020

Abstract

Natural disasters have been threatening our life all the time. Nowadays, with the development
and advancement of ICTs, we are urgently demanding the timeliness of disaster management.
To achieve the goal of agile disaster management, I focus on applying edge computing in
providing emergency services for affected areas. However, the existed edge computing
architecture is not yet able to meet the needs of disaster scenarios. As a result, I come up with
the idea of combining related technologies to enhance edge computing. First, in case that the
original network falls, I propose the solution of fast networking based on Information-Centric
Networking (ICN) which can swiftly connect users together. Second, after rebuilding the
network topology, to extend its lifetime as long as possible, I design the energy-efficient
caching strategies to optimize network resource allocation. Third, to enlarge the coverage
and increase the scalability of the edge network, I choose UAVs as a solution to play the role
of network nodes in-the-air and discover survivors.

Table of contents

List of figures xi

List of tables xv

1 Introduction 1
1.1 Background . 1
1.2 System Outline and Challenges . 2

1.2.1 Emergency Networking . 2
1.2.2 Efficiency Optimization . 3
1.2.3 Coverage Expansion . 4

2 Information-Centric Fog Computing for Disaster Relief 5
2.1 Motivation . 5

2.1.1 The Difference between Fog Computing and Edge Computing . . . 5
2.1.2 Fog Computing and ICN . 6

2.2 Related Work . 6
2.3 Problem Formulation . 7

2.3.1 Access Points Placement Using ICN and BFS 7
2.3.2 Route Discovery Based on ICN and SDST 12

2.4 Algorithm Design . 14
2.4.1 Algorithm Design on Access Point Placement 14
2.4.2 Name-based Routing Using SDST 16

2.5 Performance Evaluation . 18

3 Energy Efficient Edge Caching for Emergency Communications 25
3.1 Motivation and Related Work . 25

3.1.1 Edge Computing and Edge Caching 25
3.1.2 In-Memory Storage and Processing 27
3.1.3 Hybrid Edge Caching in 5G Era 27

x Table of contents

3.2 Problem Formulation . 29
3.2.1 System Outline . 29
3.2.2 Performance Metrics . 31
3.2.3 In-network Content Caching . 32

3.3 Algorithm Design . 37
3.3.1 Hybrid Edge Caching Algorithm 38

3.4 Simulation and Analysis . 42
3.4.1 In-memory Edge Caching . 42
3.4.2 Hybrid Edge Caching . 48
3.4.3 Latency and Energy Consumption 49
3.4.4 Energy Efficiency and Cache Hit Ratio 52
3.4.5 Energy Efficiency of Each File in Zipf Distribution 53

4 UAV-assisted Network Coverage Expansion 57
4.1 Motivation and Related Work . 57

4.1.1 UAV-assisted Edge Computing . 59
4.2 Problem Formulation: Airborne Vision Based UAV Navigation 61

4.2.1 System Model . 61
4.2.2 Markov Chain Modeling . 62

4.3 Problem Formulation: UAV-assisted Edge Computing 65
4.3.1 System Model . 66
4.3.2 Performance Metrics . 68
4.3.3 Markov Chain Modeling . 71
4.3.4 Problem Formulation . 73

4.4 Algorithm Design . 74
4.4.1 Lightweight UAV Navigation Strategy Based on Airborne Vision . 74
4.4.2 Task Management Strategy for UAV-mounted MEC Using LoRaWAN 76

4.5 Performance Evaluation . 78
4.5.1 Airborne Visual Recognition . 78
4.5.2 UAV Lightweight Navigation Based on Airborne Vision 83
4.5.3 UAV-assisted Edge Computing for Disaster Management 86

5 Conclusions and Future Directions 93

References 95

List of figures

1.1 The outline of agile disaster management. 3

2.1 The ICN based network structure in disaster recovery scenario 8
2.2 The quasi-polygon made up of circular segments from signal range circles

of APs . 10
2.3 ICN based routing & forwarding strategy 11
2.4 A 2-tier information-centric fog network architecture. 12
2.5 The situation that AP can be placed when signal range is larger than circum-

scribed circle . 15
2.6 The situation that AP can not be placed when signal range is smaller than

circumscribed circle . 16
2.7 An example of distance truncation . 17
2.8 Results of name-based routing: Number of forwarding hops 19
2.9 Results of name-based routing: Number of update message 19
2.10 Results of name-based routing: Forwarding hops by replicas 20
2.11 Results of name-based routing: Update messages by replicas 20
2.12 Results of name-based routing: Forwarding hops by different k 22
2.13 Results of name-based routing: Update messages by different k 22
2.14 Results of name-based routing: Forwarding hops by replicas 23
2.15 Results of name-based routing: Update messages by replicas 23

3.1 Reaction time/latency of human sensing and different generations of wireless
communications . 28

3.2 Different types of proactive in-network caching schemes 29
3.3 A 3-tier heterogeneous network structure 30
3.4 A 3-tier heterogeneous network model for hybrid edge caching 33
3.5 End-to-end latency . 35
3.6 Total energy consumption of edge caching in TTL of Requested Times (TRT) 44

xii List of figures

3.7 Total energy consumption of edge caching in TTL of Caching Time (TCT) . 46
3.8 TTL of Requested Times (TRT) . 47
3.9 TTL of Caching Time (TCT) . 47
3.10 Simulation results of end-to-end latency: Different numbers of user requests 49
3.11 Simulation results of end-to-end latency: Average results of single request . 50
3.12 Simulation results of energy consumption: Different numbers of user requests 51
3.13 Simulation results of energy consumption: Average results of single request 51
3.14 Simulation results of energy efficiency . 52
3.15 Simulation results of cache hit ratio . 53
3.16 Requested times of files in Zipf distribution ranking 54
3.17 Results of non-hybrid edge caching . 54
3.18 Average energy efficiency of files in Zipf distribution ranking 55

4.1 A schematic of UAV-mounted MEC using LoRaWAN. 60
4.2 A lightweight UAV navigation system based on airborne vision for disaster

management . 61
4.3 Network architecture of LUNA . 62
4.4 UAV-mounted mobile edge computing network model using LoRaWAN . . 65
4.5 A sketch of UAV-mounted MEC service mode 69
4.6 An example of recognition result . 75
4.7 Three examples of airborne visual recognition results: High building 79
4.8 Three examples of airborne visual recognition results: Low building 80
4.9 Three examples of airborne visual recognition results: Base station tower . 81
4.10 ROC curves of airborne visual recognition results: (a) High building 82
4.11 ROC curves of airborne visual recognition results: (b) Low building 83
4.12 ROC curves of airborne visual recognition results: (c) Base station tower . . 84
4.13 UAV lightweight navigation results: (a) Three types of time cost per task . . 84
4.14 UAV lightweight navigation results: (b) An example of flight path 85
4.15 UAV lightweight navigation results: (c) An example of navigation procedure 85
4.16 Simulation results of time cost on UAV-based mobile edge computing using

LoRaWAN . 88
4.17 Simulation results of energy cost on UAV-based mobile edge computing

using LoRaWAN . 89
4.18 Simulation results of path loss on UAV-based mobile edge computing using

LoRaWAN . 90
4.19 Simulation results of SNR on UAV-based mobile edge computing using

LoRaWAN . 91

List of figures xiii

4.20 Simulation results of channel capacity on UAV-based mobile edge computing
using LoRaWAN . 91

List of tables

2.1 Notations in name-based routing using SDST for disaster relief. 7
2.2 Experimental settings of name based routing 18

3.1 Experimental settings of in-memory edge caching 43
3.2 Experimental settings of hybrid edge caching 48

4.1 Table of fly instructions . 63
4.2 Experimental settings of UAV-assisted edge computing 86

Chapter 1

Introduction

1.1 Background

Last year, a 6.6-magnitude earthquake occurred in Eastern Iburi Subprefecture, Hokkaido,
Japan. In Atsuma, a small town near the epicenter, Hokkaido Electric Power Company’s coal-
fired power plants were heavily damaged by the fires right after the main shock. The following
blackout spilled out multiple industries and public facilities in Eastern Hokkaido [82]. Many
areas even experienced completely network connectivity interruption and communication
service outage for more than 1 day. Under this situation, people in affected area were even
not able to receive the rescue information or send out safe-check messages.

Facing the above situation, what we usually do is to seek help from reserved power.
However, this limited electricity can only meet the demands at concentrated spots such as
shelters. As a result, rescue work will be extremely difficult before power being restored.
And for the rescue missions in the affected areas, if we do not know where survivors are,
time and manpower can be largely consumed, which may in turn further aggravate the power
shortage.

In this background, one of the research problems that I found is how to quickly restore the
network connections under the extreme situation of limited power supply. The main challenge
here is the speed, even during the blackout, if we are able to rebuild the communication
among survivors, most of them can be saved on-time.

To achieve this agile disaster management without considering the original network
architecture, in the thesis I focus on applying mobile edge computing (MEC) in providing
emergency services for affected areas. However, the existed MEC architecture is not yet able
to meet the needs of disaster scenarios. Thus, I come up with the idea of combining related
emerging technologies to design a next generation disaster response platform.

2 Introduction

Initially as an extension of cloud computing at the edge of the network, edge computing
enables cloud computing capabilities close to users which can save energy and time cost on
the backhaul transmission up to cloud servers. And mobile edge computing, in which we
pay attention to the case of mobile services, even our mobile phones can play the role of
edge server while providing computing resource to other devices nearby. And ever since first
raised by European Telecommunications Standards Institute (ETSI) in 2014 [63], we have
come to realize that MEC, as a new paradigm, fits well with the urgent needs of large-scale,
non-centralized distributed computing in the current Internet of Things (IoT) era. Moreover,
MEC is recognized by the European 5G Infrastructure Public Private Partnership (5G PPP)
research body as one of the key emerging technologies for 5G networks, with Network
Functions Virtualization (NFV) and Software-Defined Networking (SDN) [61].

And in the research field of disaster management, MEC is able to maximize its advantage
of decentralized structure. Especially when there exist no enough network resource, we
choose to focus on how to satisfy the user requests by local resources. That is, not only
the extra energy consumption on backhaul transmissions, but also the burden on backbone
network is shared. Moreover, once the the uplink connection is interrupted, edge devices can
still work on their own. For the case of user search, if one of users can communicate with
outside world, all the others within this sub-network can be rescued.

1.2 System Outline and Challenges

To build this disaster response platform, I divide all work into three parts. As shown in Fig.
1.1, first one is emergency networking. Before restoring services, the prime problem to solve
is how to rebuild the network connections.

1.2.1 Emergency Networking

When the original architecture is down led by natural disasters such as earthquakes, all our
devices relying on cellular network will be out of service just like we are in deep mountain
or on isolated island.

To retrieve the connections, first we need to find positions for placing access points (APs).
In consideration of the restricted available resources in post-disaster scenario, the number
of APs also exists a upper limit. That is, the first target in this part is to use as few APs
as possible to cover all users in the affected area. Then after the necessary number of APs
being placed, the next target is how to complete fast route discovery without former routing
information. The challenges in the first part are listed as follow:

1.2 System Outline and Challenges 3

Fig. 1.1 The outline of agile disaster management.

• Networking approaches based on traditional architecture may be limited due to failures
in base stations, etc.

• In case of communication resource shortage, there exist more demanding requirements
for transmission efficiency.

• Considering the users themselves, how to provide services to as many as possible in
different network topology is also a challenge.

1.2.2 Efficiency Optimization

After rebuilding a temporary network, to extend its life time as long as possible, energy
efficient strategy is needed for properly allocating the limited network resources. I come up
with the idea of edge caching which focuses on reusing data or contents being transmitted in
the network.

Edge devices are usually not selected for caching due to the limited performance. How-
ever, in the situation of disaster scenario, not only because the number of available devices is
restricted, but in the temporary emergency communication network, even secondary disasters
are taken into account, the burden on the backbone network needs to be shared urgently. As
a result, I take advantage of the decentralization in edge caching to optimize the resource
allocation of the fast-built network architecture and expand the life time considering of
energy cost.

For the caching strategy, the main two points are cache replacement policy and time-
to-live (TTL). The former one refers to the algorithm deciding which cached items to be

4 Introduction

discarded when capacity is full and new ones are coming. TTL here stands for the standard
to determine the timing of cache replacement. The challenges in the second part are listed as
follow:

• How to distribute files of different sizes to edge devices considering the maximum
utilization.

• For different Time-to-Live (TTL) designs, how to choose the most suitable cache
replacement policies.

• How to solve the tradeoff between existed files and new-coming ones in cache.

1.2.3 Coverage Expansion

The first two parts already complete the basic procedure of emergency networking. The last
part will be the work of expanding coverage of this temporary network. In fact, when natural
disasters happen, people may react and find places to take refuge. Up to now, my research
still stay at the stage of normal situation. That is, placing APs to cover users according to
their current positions. Once some of them move and come out of the signal range, the
connections may not continue any more. Moreover, there also may be urgent cases that
people are trapped in somewhere and can not approach positions within coverage of rebuilt
network.

As a result, in the third part, I put emphasis on how to continue user searching and expand
the existed network coverage. The challenges in the third part are listed as follow:

• How to find users without the help of network connection.

• Natural disasters may destroy the roads which can bring challenges in approaching to
the target area.

• The cost of manpower as well as available resources.

In summary, in this thesis, I will work from these three parts one by one to solve each
challenge and complete the construction of the entire disaster response platform.

Chapter 2

Information-Centric Fog Computing for
Disaster Relief

This chapter introduces the first phase of agile disaster management and its solutions. Right
after natural disaster happens, first we have to rebuild the network architecture before
considering the following phases.

2.1 Motivation

2.1.1 The Difference between Fog Computing and Edge Computing

Ever since being created by Cisco in 2012 [9], fog computing now has become a research
hotspot in both academia and industry. Just like fog’s actual appearance in nature, different
from cloud floating in the sky, fog is relatively near-earth and local. In fog computing, we
focus on the non central part of the network which can directly response to end users in low
delay and energy consumption. Fog computing can play the role of extending centralized
cloud services to end users in geographical distribution. We regard fog as a necessary part of
cloud, rather than an alternative.

In fact, except the definition from different organizations, there is no essential differences
between fog computing and edge computing. However, we still treat fog and edge differently
in researching. That is, for edge we usually refer to utilizing the end devices themselves to
help each other in providing computing services. And for the case of fog, we put emphasis
on introducing more available computing resources near edge, which may include routers
and other local area network (LAN) hardware, etc. Sometimes, we even may design both
edge and fog in the same framework to compose a cloud-fog-edge three-tier structure [87].

6 Information-Centric Fog Computing for Disaster Relief

And in this thesis, in summary, I use edge computing to express that my target is to let the
user devices at the edge of the network play the leading role in agile disaster management.
And for the first part in the system outline, fog is better to express my purpose in rebuilding a
temporary emergency network.

2.1.2 Fog Computing and ICN

Fog can provide a solution when we lose the connection to central servers. As one of the
future Internet models, Information-Centric Networking (ICN) aims to build up a novel data-
centric architecture providing receiver-driven data retrieval services. ICN is not constrained
by the traditional network structures and can be used for fast networking. As a result,
we believe that the Information-Centric Fog Computing (ICFC) fits the requirements of
emergency communication in disaster relief.

2.2 Related Work

In this section, I present related work about ICN, fog computing, disaster management, and
six degrees of separation theory.

As the current research hotspots, both fog computing and ICN are attracting extensive
attention from academia and industry. Li et al. focus on the concept of edge-centric
computing (ECC) to explore new possibilities in next generation wireless communication [42,
43]. Wu et al. combine fog computing and ICN, and propose a security service architecture
based on content-aware filtering [84] [85]. Li et al. apply fog computing and deep learning in
manufacture inspection to increase work efficiency [45]. Gai et al. present the framework of
privacy-preserving communication in Internet of Things for system security improvement [26–
28].

In the field of disaster management, there also have been many eye-catching research
results with the emerging technologies. Erdelj et al. put forward a blueprint of unmanned
aerial vehicles (UAV) assisted disaster management [20]. Han et al. pay attention to the
localization in wireless sensor networks (WSNs) without geo-location information [32]. Li
et al. focus on the distributed scene understanding by learning the depth images taken in
disaster area [48]. Ernst et al. discuss the collaborative properties in crowdsourcing for
emergency management [21]. Chung et al. put forward Peer-to-Peer cloud network services
to provide disaster information from distributed IoT devices [15].

With this theory, we can expect to connect between any two people by a six-segmented
(or less) path of ”a friend of a friend”. Besides the original application in social science, six

2.3 Problem Formulation 7

Table 2.1 Notations in name-based routing using SDST for disaster relief.

Symbol Meaning
F, f set of fog nodes in Fog Tier and one in it
U,u set of user nodes in User Tier and one in it

k number of edges built between neighbors in Watts-Strogatz model
β probability of edge rebuilt in Watts-Strogatz model

CL,cl content library and one file in it
nu,n f ,ncl number of users, fog nodes and files in CL

r popularity rank of cl in CL
s an exponent to characterize the Zipf distribution

nhop
r number of forwarding hops to get the rth file in CL

degrees of separation theory (SDST) has already inspired many cross-disciplinary researches
from mathematics to psychological analysis. Muldoon et al. discuss the small-world network
properties for weighted brain networks [55]. Modern SNSs including Facebook and LinkedIn
also apply SDST in designing some platform applications. In the field of computer networks,
related work on efficient message delivery through user relationship networks has been
around for a long time. Vespignani summarizes the development of network science in the
past 20 years since Watts and Strogatz first proposed the small world model [81] in 1998 [77].

2.3 Problem Formulation

In this section, I design the ICFC network model and formulate the problem to solve. Symbols
used in this thesis are listed in Table 2.1.

2.3.1 Access Points Placement Using ICN and BFS

I consider a two-dimension fixed x× x square range as a post disaster scenario. There exist
three types of nodes, each one using its name as unique identifier. User nodes Un and
server nodes Sn have fixed locations within scope. Access point nodes An own fixed signal
coverages, and only the Un staying in the radius of a nearest access point node are able to
send out packets. An can be set anywhere, even overlapping some Un as a trade-off choice.
Sn can be visited through An nearby, which means other remote An may have to rely on
forwarding work by neighbors. Here my first target is how to reduce the number of An and
make efficient usage of each one while ensuring that each Un has at least one An nearby to
keep connected. I use an example to further explain the details.

8 Information-Centric Fog Computing for Disaster Relief

Fig. 2.1 The ICN based network structure in disaster recovery scenario

2.3 Problem Formulation 9

As shown in Fig. 2.1, there are nine blue Un relying on four yellow An to contact with two
green Sn. Yellow circles stand for signal range of An, and gray dotted lines are direct relations
between Sn and An. The MIN OVERLAP area represents the shortest distance between An

to ensure interconnection. For instance, if U1 wants to visit S1, it only takes two hops via
A1. Then if it wants to send a Interest Packet to S2, the full path is U1→ A1→ A2→ S2.
Every An has to guarantee that a neighbor one can do a favor when it does not find any other
interfaces to forward in PIT.

In order to use less An to cover more Un, I prefer as dispersed as possible for placement
work. Besides the number of needed access points, I also pay attention to workload allocation
of each An, which means each An may share a similar workload on managing Un. Therefore
I keep two metrics, the new covered area and new covered Un number when deciding the
location to place the next An.

At first, each An has to make sure that at least one neighbor An stays in its coverage radius,
i.e. new covered area is the differential between areas enclosed by all circles of placed An

before and after placement.

SN⊙n = S⊙n−
(

SO⊙1n +SO⊙2n...SO⊙(n−1)n

)
︸ ︷︷ ︸

C1
n−1

+
(

SO⊙12n +SO⊙13n...SO⊙(n−2)(n−1)n

)
︸ ︷︷ ︸

C2
n−1

...

+(−1)n−1
(

SO⊙12···(n−2)n...SO⊙23···(n−1)n

)
︸ ︷︷ ︸

Cn−2
n−1

+(−1)nSO⊙123···(n−2)(n−1)n

(2.1)

New covered area (SN⊙n) can be calculated from Equation (2.1), in which S⊙ and SO⊙
respectively stands for circle area and overlap area of multiple circles. My problem turns into
a variant of the classical combined area of overlapping circles problem. There exist many
mature computing methods in both mathematics and engineering with different precisions
like polygon cutting, Simpson’s rule, Voronoi diagram and Monte Carlo algorithm. Since
what I prefer is a method focusing on circles of equal radii and new covered area individually,
inspired by the idea and rules of graphic union coverage, an improved equal circle coverage
method is designed to give solution.

10 Information-Centric Fog Computing for Disaster Relief

r

L

Signal ranges
of APs

Fig. 2.2 The quasi-polygon made up of circular segments from signal range circles of APs

Secondly, I will compute all the addends and sum them up. The overlapped parts
are actually specific quasi-polygons surrounded by circular segments other than irregular
patterns.

As shown in Fig. 2.2, each quasi-polygon I deal with can be divided into two parts,
several circular segments (Scir_seg) and a arbitrary convex polygon (Spol). Circular segments
are all minor parts of circles, whose area can be computed from the lengths of corresponding
chords in Fig. 2.2 and Equation (2.2).

Scir_seg =
n

∑
i=1

[
r2 ·arcsin(

Li

2r
)− rLi

2

]
(2.2)

2.3 Problem Formulation 11

Fig. 2.3 ICN based routing & forwarding strategy

The arbitrary convex polygon also can be easily calculated by Shoelace Formula as (2.3).
Here (xi,yi), i = 1,2, · · · ,n are vertices of the polygon.

Spol =
1
2
|(x1y2 + x2y3 · · ·xny1)− (y1x2 + y2x3 · · ·ynx1)| (2.3)

After determining the locations of all An, the next step is to establish connections among
three kinds of nodes. Each Un needs to find the upper An within scope and save their names
in its Forwarding Information Base (FIB). Correspondingly, An record the names of Un under
management in their Pending Interest Table (PIT). In the same way, An also exchange names
with Sn.

As the second target, I design a routing strategy to distribute two types of packets in
the fast organized Content-Centric Networking instance. Interest Packets have the names of
wanted contents, once any An or Sn can satisfy the requests, Data Packets will be sent back
in the reverse path. I use a flow chart to describe the routing strategy adopted by An.

12 Information-Centric Fog Computing for Disaster Relief

Fig. 2.4 A 2-tier information-centric fog network architecture.

At the beginning, Un generates an Interest Packet with the name of wanted content and
sends out to all Un that can hear it (similar to broadcast). As shown in Fig. 2.3, when the
Interest Packet reaches PIT of a An, firstly it needs to check if there exists a copy cached in
CS. Once no copy matches, secondly An will send the packet upstream to all connected Sn

and search for the wanted content by name. Either of the two cases is fulfilled, a Data Packet
will be returned to Un in reverse path. Otherwise, An has to forward it to neighbors to start a
new branch judgment procedure. In this way, Interest Packet can get to the right place as
soon as possible. Without worrying about address resolution work done by Domain Name
System (DNS) server, actually I can apply the idea of Breadth-First Search (BFS) from graph
theory into algorithm design.

2.3.2 Route Discovery Based on ICN and SDST

A 2-tier information-centric fog network architecture is shown in Fig. 2.4. Fog Tier is made
up of massive ICN nodes F = { f1, f2, ..., fn} providing limited services to users in User Tier
(U = {u1,u2, ...,un}). Here I use the Watts-Strogatz model [81] from SDST to describe the
properties of node distribution and relationship among them. In an undirected graph, a group
n nodes first form a regular ring lattice one by one. Second, each node builds edges to its
k (should be an even integer) neighbors, k/2 by left and right sides in a ring lattice. Third,
each edge created by the current node can be rebuilt with a probability of β . As a result, for
any two nodes ni and n j, there exists an edge if and only if

2.3 Problem Formulation 13

0 < |i− j|mod(n− k
2
−1)≤ k

2
(2.4)

A content library CL = {cl1,cl2, ...,cln} includes all the files for requesting which are
stored in Fog Tier. The popularity of files in CL obeys Zipf distribution. Zipf distribution
or Zipf’s law is an empirical law that states the relation between frequency of occurrence
of an event and its rank by this frequency with all events [68]. The idea of Zipf’s law has
long affected the design in the Internet such as content delivery networks and peer-to-peer
networks [1].

fzip f (r;s,ncl) =
1/rs

∑
ncl
i=1(1/is)

(2.5)

Equation (2.5) shows the normalized frequency of clr in a CL with ncl files in total. Here r
stands for the popularity rank of clr in CL. s is the value of the exponent which characterizes
the distribution. When any file is requested from User Tier for the first time, it has to be
downloaded from the original node. After any file is being forwarded back, a replica can be
left at any node it passes. Then from the second time, any ICN node has replicas also can
answer the request.

As a result, my target is to design name-based routing strategy to answer the requests
from users by finding out the suitable nodes having the wanted files or replicas with high
work efficiency. The first metric I choose is the number of forwarding hops in total. That is,
to cope with the same amount of user requests with as few forwarding hops as possible.

minimum
ncl

∑
r=1

nhop
r fzip f (r;s,ncl)

=
ncl

∑
r=1

nhop
r /rs

∑
ncl
i=1(1/is)

sub ject to s≥ 0,r ∈ {1,2, ...,ncl}

(2.6)

Besides the efficiency on transmission, I also consider the number of update mes-
sages [34]. As discuss in the introduction section, existed routing protocols have to rely on
frequent information exchange to ensure real-time mastery of network topology. Excessive
messages for updating may not only occupy the limited network resources in disaster relief,
but also bring the risk of losing effective information when encountering node changes.
Thus, my second target is to integrate the inter-node relationships with SDST and reduce the
number of update messages.

14 Information-Centric Fog Computing for Disaster Relief

2.4 Algorithm Design

In this section, I will set about solving the problems raised earlier in fast network organizing,
access point placement and package delivery. Two algorithms are designed in building up
the Content-Centric Network in disaster recovery scenario.

2.4.1 Algorithm Design on Access Point Placement

Algorithm 1 Access Point Placement Method
1: Un←User nodes within range
2: QU ←Queue of User nodes
3: An←Access point nodes
4: rA←cover radius of Access points
5: Cthis←Center of current circle
6: Clast ←Center of last circle
7: bubble sort all Un by dist to square center and push into QU
8: while QU == /0 do
9: if triangle circumradius of first three Un <= rA then

10: Cthis = triangle circumcenter
11: else if half of dist between first two Un <= rA then
12: Cthis = midpoint
13: else
14: Cthis = first Un
15: end if
16: if dist(Cthis,Clast)> rA then
17: truncate the dist to rA
18: end if
19: set an An at Cthis
20: bubble sort all Un in QU by dist to Cthis
21: pop out all Un that dist to Cthis <= rA
22: Clast =Cthis
23: end while

As shown in Algorithm 1, QU stands for a queue saving all names of uncovered Un,
rR is the signal coverage radius, Cthis and Clast are locations of An just placed and last one.
Algorithm 1 provides a method for placing the minimum required number of An to cover all
Un while each An should at least stay in signal radius of another An. Inspired by a proven
geometry theorem saying All regular simple polygons, all isosceles trapezoids, all triangles
and all rectangles are cyclic [39], which means three is the maximum number of nodes that

2.4 Algorithm Design 15

Fig. 2.5 The situation that AP can be placed when signal range is larger than circumscribed
circle

must exist a circumscribed circle passing through all vertices. In a word, I am going to place
a An at three cases in sequence.

• Case 1: Place at the circumcenter of the triangle composed of the first three Un in QU

(line 9-10 in Algorithm 1);

• Case 2: Place at the midpoint of the first 2 Un in QU (line 11-12);

• Case 3: Place at the first Un in QU (line 13-14).

Once the previous case mismatches the condition, next one will be considered, I use a
figure to describe Case 1, it is the same with the other two.

As shown in Fig. 2.5 and 2.6, since we can soon draw the sole circumscribed circle of an
arbitrary triangle, the second-to-last step before I determine the location of a new An is to
judge the length comparison between two circle radii. In fact, when distribution of Un in a
fixed range is dense enough, Case 1 can be easily satisfied, so does Case 2. And setting a
An at the location of a Un (Case 3) is never a good choice, I only treat it as a supplement to
maintain algorithm integrity.

Lastly, to satisfy the specific requirement of network organizing and routing, we need
each An capable of seeking help from neighbors when there is no connection to the right Sn.

16 Information-Centric Fog Computing for Disaster Relief

Fig. 2.6 The situation that AP can not be placed when signal range is smaller than circum-
scribed circle

As a result, I truncate the distance between current An (Cthis) and last one (Clast) by finally
placing it at the arc of last circle.

In Fig. 2.7, A1 is the last access point placed before, next I am going to choose location
for A2. The if statement in line 9-15 of Algorithm 1 first considers the gray one, then after a
distance truncation finally moves left. In the situation, connection status of Un is changed
partly: U2 involves in, U5 steps out, U3 and U4 stay the same and U1 now has two An to
request. In experiment simulation, according to different Un densities in setup, Un-out are
more than Un-in to a various extent. Nevertheless, we still have to pay more on covering
relatively isolated Un.

2.4.2 Name-based Routing Using SDST

In this section, I design a routing strategy using SDST for providing information-centric fog
services to users in affected area.

2.4 Algorithm Design 17

Fig. 2.7 An example of distance truncation

Algorithm 2 LRER: Limited Relationship Expansion Routing

f _next(fi,cl j)←the name of next node to forward for fi to find cl j, /0 means cli is
already cached in CS of fi

nre(cl j)←left number of replicas for each cl j
hop_count←record of forwarding hops in transmission

1: a user uthis send out a request to fi ask for cl j
2: fthis← fi, hop_count← hop_count +2
3: while f _next(fthis,cl j) ̸= /0 do
4: if f ind(fthis.CS = cl j) then
5: hop_count← hop_count +2
6: break
7: else
8: fthis← f _next(fthis,cl j)
9: end if

10: if nre(cl j)> 0 then
11: if ! f ind(fthis.CS = cl j) then
12: push cl j into fthis.CS
13: end if
14: end if
15: end while

18 Information-Centric Fog Computing for Disaster Relief

As shown in Algorithm 2, to achieve name-based routing in ICFC for disaster relief, I
minimize the conditions to be as close as possible to emergency communications in post-
disaster environment. When traditional facilities such as cellular networks are no longer
available, trapped users are in urgent need of getting in touch with the outside world, even
if it is one-way communication. To cope with this situation, I first cover all areas where
survivors may be present with multiple fog nodes. Instead of storing and managing a variety
of information in FIB from neighbor reports, I only need the name of next node to search for
file (f _next(fi,cl j)).

As a result, the only thing a fog node needs to do when receiving request is to forward it
to the next one. Update messages are being exchanged only when new node comes in. Even
when any file is cached in the CS of passed node (line 12 in Algorithm 2), I do not need
to update instantly. That is, I check the CS of each node if it has the wanted file (line 4) to
reduce extra forwarding. Some periodic overall updates are also helpful in adapting to the
topology changes of the network. When regarding the nodes as our own, to help deliver the
request to its destination, in the case of limited knowledge of outside information, I always
choose anyone most likely to be close to the target. Time complexity of Algorithm 2 is
O(n f).

2.5 Performance Evaluation

In this section, I evaluate the proposed routing strategy for disaster relief through simulation
experiments.

Table 2.2 Experimental settings of name based routing

Parameter Value
Number of files in CL 100

Number of users/fog nodes 200/50
β in Watts-Strogatz model 0.15/0.5
k in Watts-Strogatz model 2∼20

s in Zipf distribution 1
Number of available replicas 0∼4

2.5 Performance Evaluation 19

2 4 6 8 10 12 14 16 18 20

=0.15)

0

2

4

6

8

N
u
m

b
e
r

o
f
fo

rw
a
rd

in
g
 h

o
p
s
 i
n
 t
o
ta

l 10
4

DNRP(Replica=0)

DNRP(Replica=2)

DNRP(Replica=4)

LRER(Replica=0)

LRER(Replica=2)

LRER(Replica=4)

Fig. 2.8 Results of name-based routing: Number of forwarding hops

2 4 6 8 10 12 14 16 18 20

=0.15)

0

0.4

0.8

1.2

1.6

2

N
u
m

b
e
r

o
f
u
p
d
a
te

 m
e
s
s
a
g
e
s
 i
n
 t
o
ta

l 10
6

DNRP(Replica=0)

DNRP(Replica=2)

DNRP(Replica=4)

LRER(Replica=0)

LRER(Replica=2)

LRER(Replica=4)

Fig. 2.9 Results of name-based routing: Number of update message

20 Information-Centric Fog Computing for Disaster Relief

Fig. 2.10 Results of name-based routing: Forwarding hops by replicas

Fig. 2.11 Results of name-based routing: Update messages by replicas

2.5 Performance Evaluation 21

As shown in Table 2.2, in a open area after disaster, there are 200 users and 50 fog nodes.
Users are sending requests for one of the 100 files in CL. All the files are originally saved
in one of the fog nodes. When any file is delivered back to user, a replica can be left at the
passed nodes. I limit the number of available replicas for each file within [0∼ 4]. I repeat
the process from requesting to getting satisfied 2000 times for each set with different β . I
compare the metrics of forwarding hops and update messages with DNRP under the same
experimental setups.

DNRP is proposed in 2018 [35] by the research team led by J.J. Garcia-Luna-Aceves. As
one of the state-of-the-art name-based protocols, DNRP looks for current best path selection
by recording and comparing the link cost at each step of forwarding. That is to say, neighbors
know everything a node is doing under the premise of timely update. However, for emergency
communication in post-disaster scenario, stable connections are often not guaranteed. As a
result, how to make use of limited resources to complete minimal messaging is what LRER
aims to do.

Fig. 2.8 to 2.11 show the results of name-based routing for disaster relief when β is 0.15.
Here I use colors to indicate the number of different replicas allowed. Red is no replica, blue
is 2 replicas and green is 4. When the rebuilt probability is low, fog nodes here own the
similar degrees. Or I may look forward to a more regular network topology in which users
are evenly distributed everywhere waiting for communication and rescue. First in Fig. 2.8,
I calculate the number of forwarding hops for answering requests from 200 users. In the
case of the same number of replicas, LRER is always less frequently forwarded than DNRP.
LRER with 2 or 4 replicas can even stay almost the same when k is changing. Second in
Fig. 2.9, LRER cuts most the overhead on update messages. DNRP with no replica nearly
coincides with the results of LRER which can be explained that no frequent need to exchange
information between neighbors. Fig. 2.10 and Fig. 2.11 display the results by different
numbers of available replicas. Compared with DNRP, nearly all results in LRER are lower in
numerical values, which is consistent with the previous inferences.

22 Information-Centric Fog Computing for Disaster Relief

2 4 6 8 10 12 14 16 18 20

=0.5)

0

1

2

3

4

5
N

u
m

b
e
r

o
f
fo

rw
a
rd

in
g
 h

o
p
s
 i
n
 t
o
ta

l 10
4

DNRP(Replica=0)

DNRP(Replica=2)

DNRP(Replica=4)

LRER(Replica=0)

LRER(Replica=2)

LRER(Replica=4)

Fig. 2.12 Results of name-based routing: Forwarding hops by different k

2 4 6 8 10 12 14 16 18 20

=0.5)

0

0.4

0.8

1.2

1.6

2

N
u
m

b
e
r

o
f
u
p
d
a
te

 m
e
s
s
a
g
e
s
 i
n
 t
o
ta

l 10
6

DNRP(Replica=0)

DNRP(Replica=2)

DNRP(Replica=4)

LRER(Replica=0)

LRER(Replica=2)

LRER(Replica=4)

Fig. 2.13 Results of name-based routing: Update messages by different k

2.5 Performance Evaluation 23

Fig. 2.14 Results of name-based routing: Forwarding hops by replicas

Fig. 2.15 Results of name-based routing: Update messages by replicas

24 Information-Centric Fog Computing for Disaster Relief

In order to further simulate the adaptability of the proposed routing strategy in the Watts-
Strogatz model, I add another set of results with β = 0.5. Compared with Fig. 2.8∼2.11,
Fig. 2.12∼2.15 has higher randomness in network connectivity and may be closer to the
disordered state in the scenario of disaster relief. The trend of the polylines also confirms
this point. When each node only has a few connection options, not only will the nodes be
differentiated from each other by degree, but they together may form some single long paths.
Results of forwarding hops in Fig. 2.12 and Fig. 2.14 show more fluctuations. Especially
when k is small, DNRP with no replica even has an increasing overall trend. LRER maintains
high stability and does not receive too much influence from β . Finally in Fig. 2.13 and
Fig. 2.15, I do not observe any significant changes. Or I can say that under the current
experimental settings, the randomness of network connections is not a major factor affecting
the number of update messages in both strategies.

In summary, I compare the performance of the proposed LRER with the existing DNRP
in numbers of forwarding hops and update messages through two sets of experiments. The
results show that my strategy can achieve higher work efficiency and may be more suitable
as a technology for network reconstruction in disaster relief.

Chapter 3

Energy Efficient Edge Caching for
Emergency Communications

This chapter introduces second phase after the network topology being rebuilt, in which my
target is to extend its life time as long as possible. I design the energy saving and caching
strategies to optimize network resource allocation.

3.1 Motivation and Related Work

In this section, I present some related works about edge computing, edge caching, and then
introduce some researches on in-memory storage and processing.

3.1.1 Edge Computing and Edge Caching

Cloud services have long remained a part of people’s lives, ever since cloud computing
became known in 2005 and was quickly utilized in a wide variety of fields. Together with
the current IoT boom, in the come-at-able 2020, total amount of data created by any device
will reach 600 zettabytes (ZB) per year while annual global data center IP traffic will only be
15.3 ZB at the end of this decade [59]. As a result, in the near future, we are no longer able
to put all computing tasks on the cloud and pin our hopes on continuously updating hardware
levels, increasing the number of end equipments. I need edge devices to share the workload
and solve the bottleneck in data transmission and processing [73].

Edge computing, before attracting wide attention and extensively applied among research
institutions, is already studied by a number of technology companies, such as the key players
including Cisco Systems Inc. and HP, etc. Early in 2012, Bonomi et al. from Cisco start
from making clear the position of edge computing in IoT era and prove that fog owns the

26 Energy Efficient Edge Caching for Emergency Communications

characteristics of serving as platforms for IoT services from connected vehicle, smart grid to
smart city. They define the fundamental characteristics as low latency & location awareness,
widespread geographical distribution, mobility, large numbers of devices, predominant role of
wireless connection, streaming and real-time applications and heterogeneity [9]. Vaqueroet
al. from HP offer a comprehensive definition the fog to include cloud, sensor network,
peer-to-peer network, etc. They also combine Network Function Virtualization (NFV) and
Software-Defined Networking (SDN) together to achieve a new Softwareisation network
management [76]. Zhao et al. discuss the combination of Internet of Vehicles (IoV) in
designing cognitive routing method [93]. Li et al. come up with the idea of designing an
intelligent edge network function virtualization framework [46].

Many works on edge computing in recent years focus on interdisciplinary researches and
try to find the relation with other fields to help promote common development. Liu et al.
design a device-to-device video recovery system based on heterogeneous network for picocell
edge users. In the paper they discuss the possibilities of achieving the video on demand
(VoD) application to improve the current performance [51]. As a branch discipline, mobile
edge computing pays more attention on wireless communication among smartphones, tablets
and other hand-held devices. Sardellitti et al. consider a multiple-input and multiple-output
(MIMO) multicell system and design a whole set of joint optimization algorithms for mobile
edge computing [69]. Research group from the European Telecommunications Standards
Institute (ETSI) regards mobile edge computing to an independent field of study and combine
with the fifth generation (5G) mobile networks. They also analyze the market drivers and
business value of mobile edge computing services [60].

In order to further utilize edge devices to balance the workload in the expanding network,
caching on edge can make a contribution on reducing bandwidth usage, server load and so
on. Researches on edge caching also have many different directions. Early in 2005 before
cloud computing entering the public consciousness and widely applied in production and
living, Ramaswamy et al. propose the idea of building cache clouds to deal with documents
in edge networks. In the paper they design a dynamic hashing scheme to improve document
placement in cache clouds [67]. Gabry et al. put forward a maximum-distance separable
(MDS) encoded caching scheme to achieve energy-efficient edge computing in heterogeneous
network [25]. In recent years, with fast development of wireless communication, caching on
mobile/wireless edge becomes a research hotspot. Liu et al. summarize the design aspects
and challenges of wireless edge caching. They focus on two key features of content delivery
traffic and compare the performance of caching at base stations and users [49].

3.1 Motivation and Related Work 27

3.1.2 In-Memory Storage and Processing

Compared by disk storage like HDD, flash memory and faster Solid-State Drive (SSD),
in-memory or main memory mainly refers to volatile RAM could spend the same amount
of time while reading/writing data regardless of physical location. Even though still limited
by fault-tolerance, consistent power supply and high manufacturing cost, from all kinds of
electronic equipments, personal computers, to large professional servers, I still can not rely
on main memory to store the data for long time. However, the last decade has witnessed
rapidly decreasing cost of main memory and growing demand of high-speed computing
which makes it possible for turning in-memory into the new disk.

Related works on in-memory storage and processing involve different levels from applica-
tion domain analysis, technical breakthrough to business development prospect. Zhang et al.
introduce the recent years’ development in in-memory big data management and processing.
In the paper they classify and summarize all existing commercial and academic management
systems for in-memory operations [91]. Beneventi et al. apply in-memory processing tools to
help do machine learning in High-Performance Computing (HPC) infrastructure models [6].

3.1.3 Hybrid Edge Caching in 5G Era

Since the fourth generation (4G) represented by Long-Term Evolution (LTE) entered the stage
of commercial deployment, both industry and academic community have been scrambling to
focus on the upcoming fifth generation (5G). And from the user’s point of view, everyone is
constantly thinking about what innovations the next generation of wireless communication
systems will bring to us. Besides faster connection speed, wider bandwidth range and larger
throughput, we also consider 5G’s performance in terms of user experience and environmental
sustainability. The concept of Tactile Internet has emerged as the times require.

Tactile Internet is first defined by the International Telecommunication Union (ITU) as
an network architecture that combines ultra low latency with extremely high availability,
reliability and security. As the name suggests, Tactile Internet aims to provide a reliable,
easy-to-use, low-power, real-time interactive network system just like how human tactile
experience be sensed.

As shown in Fig. 3.1, I compare the reaction time/latency of human sensing and different
generations of wireless communications. First I choose three traditionally recognized senses,
auditory (hearing), visual (seeing) and tactile (touching) as references of how long it takes
to sense the outside world through human organs. Red, green and blue bars respectively
stand for average reaction time of human sensing [74], ping latency of WiFi and wireless
systems from 2G to 4G. From the figure, 4G LTE has reached the comparative latency level

28 Energy Efficient Edge Caching for Emergency Communications

1ms

1ms

1 10 100 1000

5G(theoretical)

4G LTE

4G HSPA+

3G

2G

WiFi

tactile

visual

auditory

REACTION TIME OF HUMAN SENSING VS.

WIRELESS NETWORK LATENCY (MS)

ms

Fig. 3.1 Reaction time/latency of human sensing and different generations of wireless
communications

of auditory about 100 ms which means we have already achieved the so-called auditory
Internet. And for 5G, to reduce the latency of 4G by two orders of magnitude, we skip the
stage of visual Internet (10 ms) and set the final goal in Tactile Internet (1 ms).

Proactive in-network caching, which has been receiving great attention in related re-
searches on information centric networking (ICN), is assumed as one of the promising
candidate technologies for latency reduction in next generation wireless communication
systems [62] [72]. There are mainly four types of caching schemes, local caching, device-
to-device (D2D) caching, small base station (SBS) caching and macro base station (MBS)
caching.

Fig. 3.2 gives the four different in-network caching schemes. Local caching refers to
caching at the user devices themselves while being requested the same content from the
second time [8]. D2D caching bases on D2D communications within small cells [12]. SBS
caching and MBS caching are available in respective base stations [31]. Each scheme has its
own technical details and almost no overlap of four schemes exists in the actual application
scenarios. As a result, in this part, I try to propose a hybrid edge caching scheme to reduce
latency and optimize the overall energy efficiency of edge caching. Our target is to integrate
the four existing schemes taking effect in different parts of the network for performance
improvement and pave the way for Tactile Internet in the near future.

3.2 Problem Formulation 29

Local
Caching

MBS
SBS SBS

D2D
Caching

SBS
Caching

MBS
Caching

Smart
Devices

Vehicles

Fig. 3.2 Different types of proactive in-network caching schemes

3.2 Problem Formulation

In this section, I design a 3-tier heterogeneous network structure as the experimental scenario
for simulate in-memory edge caching for big data. As shown in Fig. 3.3, from top to bottom
a 3-tier network model can be described as follows.

• Server Tier: in this tier multiple servers play the tole of cloud data centers, each file is
only stored in one of the servers;

• Edge Tier: in this tier routers are used both as forwarders and edge devices which can
cache files in packets passed by;

• User Tier: a tier made of user nodes that keep moving randomly and requesting files
originally stored in servers or cached in routers.

3.2.1 System Outline

In my network structure design, user nodes are moving in the RWP model which is one
of the most popular mobility models applied in mobile ad hoc network (MANET) [7]. In
Fig. 3.3, user nodes (u1, u2, ..., un) in User Tier send packets to request files at random
time intervals and move to next positions under normal distribution before next sending.
Each file, in an unfixed size, is randomly saved in one of the servers (s1, s2, ..., sn) in Server
Tier. Then in Edge Tier, routers (r1, r2, ..., rn) as edge devices will check if the needed
files are already cached in storage before forwarding to neighbor r or upward to s. Since
information or contents are easy to be outdated, once the original files in Server Tier being

30 Energy Efficient Edge Caching for Emergency Communications

Fig. 3.3 A 3-tier heterogeneous network structure

3.2 Problem Formulation 31

modified or deleted, all cached copies become useless. That is to say, edge caching need to
consider Time to Live (TTL) to make sure that most requests be satisfied with unexpired
files [95]. Transmissions between User Tier & Edge Tier are wireless broadcasting, those
inside Edge Tier are wired broadcasting and those between Edge Tier & Server Tier are
wired point-to-point.

Normally RAM is associated with volatile types of memory whose data storage would be
lost when power is off. That is to say, in-memory may not support long time storage which
can be suitable for scenarios of edge caching. As a result, I consider both TTL for cached
data and consistency of in-memory storage in designing caching methods.

3.2.2 Performance Metrics

In face of mass date generated by billions of IoT devices, I always prefer less energy
consumption on data transmission and processing. For this reason, edge caching aims at
reducing repeated data transmission from original servers which means unnecessary energy
consumption on packet delivery between Edge Tier and Server Tier can be saved. Moreover,
caching itself also consumes extra energy while keeping RAM or disk memory running.
To determine and sum up the overall cost of the entire simulation on the 3-tier network
architecture, I consider 3 parts. The part to maintain all devices in 3 tiers is not expressed
in the equation since it is a fixed cost and can only be reduced by shutting down some
devices [25]. In summary, I use two equations to present the calculation of total energy
consumption.

Etotal = Ecache(t)+Etrans

Ecache(t) = ω

n

∑
i=1

(scache
i ti)

in which Ecache(t) and Etrans respectively stands for caching energy cost and transmission
energy cost. Ecache(t) is running time correlated and can be calculated by energy consumption
per byte ω . n represents the times when the current caching size of all r in Edge Tier is
changed. Thus I sum up the n products of variational caching sizes scache

i and their duration
ti.

Etrans =Esend +Erecv

=
x

∑
j=1

(msendstrans
i +bsend +mrecvstrans

i +brecv)

32 Energy Efficient Edge Caching for Emergency Communications

Comparatively, Etrans has no relation to time and only depends on size of data being
transmitted strans

i . Here I separately calculate the energy consumption while devices in
three tiers sending and receiving packets. Moreover, as a heterogeneous network model,
communications between User Tier & Edge Tier and among r inside Edge Tier are regarded as
wireless while those from Edge Tier to Server Tier and backward are Ethernet transmissions.
m and b are linear coefficients obtained from experimental results [23].

To figure out the total energy cost as close as possible to the practical situation, I take
some more details into consideration. First, different bit rates of wireless and Ethernet
transmissions. Second, the wave propagation speed, I respectively choose speed of light and
thick coax as the communication media for wireless and wired.

Besides energy consumption, I also pay attention to how edge caching help reduce
workload on end servers. I add a backhaul rate as another metric to test what is percentage
may in-memory edge caching takes in completing the task of fetching files from servers
across tiers.

3.2.3 In-network Content Caching

To deploy hybrid edge caching in a Tactile Internet network architecture, and achieve the
target of reducing end-to-end latency and improving energy efficiency, first I design a 3-tier
network model.

As shown in Fig. 3.4, from top to bottom there are Server Tier, MBS Tier and SBS Tier.
Server Tier is made up of central cloud servers and storage units. As the top tier, Server Tier
has the absolute advantage in processing and storage capabilities. Besides, Server Tier owns
a complete content library including all original files is the only tier that can handle user
requests without regard to in-network caching. MBS Tier consists of macrocells served by
cell sites with high signal transmission power. I use tower symbols to represent macro base
stations. The light red oval area is used only to identify the current tier which means that the
relative positions of MBSs in the figure does not equal to the actual distances. For SBS Tier,
I use multiple hexagons as small cells. Compared with MBSs, SBSs provide low-powered
cellular radio access. As mobile users (smart devices, vehicles), when I move across the
signal scope of small cells, our requests will then be answered by the current SBSs. Both
MBS Tier and SBS Tier can provide edge computing service to mobile users.

In this model, M = {m1,m2, ...} and S = {s1,s2, ...}, m and s respectively stands for single
MBS node and SBS node. Mobile users are U = {u1,u2, ...} who send out requests for files
within content library. Let content library and files in it be denoted by CL= {cl1,cl2, ...,clnCL}
which are sorted by popularity. nCL is the number of files in CL. As a result, the popularity
of one of the nCL files can be expressed as [64]

3.2 Problem Formulation 33

Server Tier

MBS Tier

SBS Tier SBSs

MBSs

Cloud Servers

Small Cell

Smart
Devices

Vehicles

Fig. 3.4 A 3-tier heterogeneous network model for hybrid edge caching

pclk(k,x,nCL) =
1/kx

∑
nCL
i=1(1/ix)

(3.1)

where k ∈ {1,2, ...,nCL} stands for the rank or we can say it is the kth popular file in CL. x is
value of the exponent which characterizes the Zipf distribution. Here I use it in describing
the popularity of files in content library which can help arrange the limited storage capacity
of each tier when designing the caching method. That is, we can obtain the popularity
(frequency of occurrence) of a given file in CL only from its rank (k) by Equation (3.1).

When ui sends a request for clk, firstly ui will check if clk already be cached locally. Then
within the current small cell, other users may also check if they have it. In the case that both
local caching and D2D caching can not come in handy, the current SBSs and MBS will take
turns to search clk in respective storage units. For local caching and MBS caching, I only
consider one edge node, the current user device itself and macro base station. D2D caching
needs to traverse all neighbor devices as edge nodes. And for the case of SBS caching, we
may get help from all the SBSs within the same MBS.

To calculate the probability that any ui can get clk from cache, I need to consider the
four caching methods separately. Here I use EN = {en1,en2, ...} to represent edge nodes in
one of the four methods. That is, the EN can be one of the {local, D2D, SBS, MBS} which

34 Energy Efficient Edge Caching for Emergency Communications

means edge nodes here include user device itself (local), user devices nearby (D2D), SBSs
and MBSs. AEN is the total coverage area of EN and CEN is the total storage capacity for
caching (or how many files can be cached at most), respectively. Assume the number of
occurrences that clk is not cached in EN within AEN follows a homogeneous Poisson point
process [4] [29], I have the cumulative distribution function (CDF) that clk is not cached in
any en

FEN
clk [no_cache] = e−λkAEN (3.2)

where λk is the intensity or arrival rate in homogeneous Poisson point process. Here λk

stands for the expected number of edge nodes that have the clk per unit area which means
λk = ρEN ·Pk. Pk is the probability that clk is cached in EN, and ρEN is the spatial density of
EN in AEN . As a result, the probability that clk is cached in at least one en should be

FEN
clk = 1−FEN

clk [no_cache] = 1− e−ρENPkAEN (3.3)

With Equation (3.1), the total probability that ui can be satisfied by edge caching is

FEN =
nCL

∑
k=1

pclk(k,x,n) ·F
EN
clk

=
nCL

∑
k=1

k−x(1− e−ρENPkAEN)

∑
n
i=1 i−x

(3.4)

nCL is number of files in CL. Thus, the probabilities of four different caching methods are

F local =
nCL

∑
k=1

k−x(1− e−PU
k)

∑
n
i=1 i−x (3.5)

where PU
k is the probability that clk is cached in U . Since I can use ρEN ·AEN to express the

number of en within the coverage area, in the case of local caching, the value of ρEN ·AEN

becomes 1.

FD2D =
nCL

∑
k=1

k−x(1− e−ρU PU
k AD2D)

∑
n
i=1 i−x =

nCL

∑
k=1

k−x(1− e−ρU PU
k πr2

U)

∑
n
i=1 i−x (3.6)

where ρU is the spatial density of U , AD2D is the signal coverage area of D2D communications
and rU is the coverage radius of a single user device, respectively.

3.2 Problem Formulation 35

SBSUser MBS Cloud

Lradio Lbackhaul2,3Lbackhaul2,3 Lbackhaul1,2Lbackhaul1,2

Fig. 3.5 End-to-end latency

FSBS =
nCL

∑
k=1

k−x(1− e−ρSBSPSBS
k AMBS)

∑
n
i=1 i−x

=
nCL

∑
k=1

k−x(1− e−ρSBSPSBS
k πr2

MBS)

∑
n
i=1 i−x

(3.7)

where ρSBS is spatial density of S. PSBS
k is probability that clk is cached in S. As shown in

Fig. 3.4, each user can have one MBS and multiple SBSs for service. After an SBS receiving
the original request from user, it will forward to other SBSs within the same MBS before
sending upwards. That is, AEN here equals to the coverage area of multiple SBSs under the
same MBS. Or we may say that a user can communicate with all the SBSs under one MBS,
but some of them undertake more forwarding hops.

FMBS =
nCL

∑
k=1

k−x(1− ePMBS
k)

∑
nCL
i=1 i−x (3.8)

where PMBS
k is the probability that clk is cached in M. Similar with local caching, since

AEN ·ρEN can express the number of en within the coverage area, for MBS caching, there is
only one MBS to provide service, then the value of ρMBS ·AMBS becomes 1.

The two main metrics I choose for performance evaluation are end-to-end latency and
energy efficiency. End-to-end latency includes the time cost on two-way transmission from
user to cloud server. And once the user request can be satisfied by one of the four caching
methods, the corresponding part can be saved. Energy efficiency is calculated by the total
size of the requested files divided by energy consumption.

Le2e = 2× (Lradio +Lbackhaul
2,3 +Lbackhaul

1,2) (3.9)

Le2e stands for the end-to-end latency. When no cache is found for user request under
the current network conditions, the results are shown in Fig. 3.5 and Equation (3.9). Lradio

36 Energy Efficient Edge Caching for Emergency Communications

and Lbackhaul respectively stands for transmission time between users/edge nodes (SBSs and
MBSs), and edge nodes/central cloud servers. For Lradio, the communications is wireless
broadcast. The case of Lbackhaul

2,3 between SBSs and MBSs is wireless point-to-point. The
case of Lbackhaul

1,2 is wired point-to-point. With edge caching, actually we can save part of
the latency on backhaul or routing. For example, the latency of MBS caching LMBS

e2e is
2× (Lradio +Lbackhaul

2,3).
As a result, the problem of reducing total latency in the 3-tier network model is

minimum E [FEN′LEN′]

sub ject to
nCL

∑
k=1

bEN
k |clk| ≤CEN

j

∀ j ∈ {1,2, ...,nEN}
bEN

k ∈ {0,1}

(3.10)

where FEN′ and LEN′ are probability and end-to-end latency in answering one user request.
The apostrophe after EN means that the case of requests not being answered by cache is
also considered in the calculation of latency. E stands for the expected value. Here I need
the results of end-to-end latency on the repetitions of user requests being satisfied by any
caching method. To pursue the minimum, we have to make sure that the total size of cached
files not exceeds the capacity CEN

j in any edge node. The absolute value notation here means
the size of clk in content library. I add a boolean variable bEN

k to denote that clk is cached in
en j, or not.

Energy cost on edge caching is another aspect I consider in performance evaluation. The
longer a user request travels, the more it may spend. Furthermore, the parts of forwarding
hops in the routing procedures need extra consumption. As a result, energy consumed in
end-to-end transmission during Le2e can be expressed as

Ee2e = Le2e(ptran/η + pstat) (3.11)

Ee2e is the energy consumption of end-to-end transmission. ptran and pstat respectively
represents transmission power and static power of all other circuit blocks in edge nodes as
transmitter and receiver [89] [11]. η is the efficiency of transmit power amplifier.

Then I can calculate total energy efficiency EE [88] as

EE =
R ·Le2e

total

∑
nt
r=1 FEN′Ee2e

r
=

R ·∑nt
r=1 Le2e

r

∑
nt
r=1 FEN′Le2e

r (ptran
r /η + pstat)

(3.12)

3.3 Algorithm Design 37

where R stands for the data rate of the overall network. nt stands for the number of user
requests. Thus, the product of R and Le2e

total is the total size of data generated in edge caching.
As a result, the second problem of improving energy efficiency in the 3-tier network

model is

maximum EE

sub ject to
nCL

∑
k=1

bEN
k |clk| ≤CEN

j

∀ j ∈ {1,2, ...,nEN}
bEN

k ∈ {0,1}

(3.13)

where EE is obtained by Equation (3.12). Limitation factors are the same with Equation
(3.10).

Besides end-to-end latency and energy efficiency, I also take into consideration cache hit
ratio. cache hit ratio here plays the role of showing how caching schemes can maximize the
number of cache hits and minimize the number of misses.

Cache hit ratio =
Cache hits

Cache hits+Cache misses
(3.14)

As shown in Equation (3.14), to calculate cache hit ratio, I need to respectively count the
times that cache hits and misses within a given period of time. High cache hit ratio can show
the probability that the user request is satisfied by cache.

3.3 Algorithm Design

In this section, I propose two caching methods based on different TTL designs, TTL of
requested times (TRT) and caching time (TCT).

TRT is counting how many times a cached file being requested by u in User Tier. When
the needed file being found at any s in Server Tier and sent back, each r in the full path may
check if it already has the copy of the file. If not, r will cache the file in its in-memory or
disk. Later once a r receives request and finds the needed file in cached data, it may send
back the copy and count the requested times of the cached file. If number of requested times
reaches the maximum value being set, the cached file will be dropped. Accordingly in the
calculation equation of Ecache(t) of last section, scache

i is changed and a scache
i+1 is needed.

Rather than counting requested times, the other caching method TCT keeps a timer for
each cached file. Caching and routing follow the same rules of the first method, similarly
when any timer reaches the maximum value, the cached file will be dropped.

38 Energy Efficient Edge Caching for Emergency Communications

In addition, both methods consider the volume of in-memory/disk storage, that is, if
the next file to be cached exceeds the memory volume of r, before caching the newcome
data I have to free up some space by popping out cached data. As result, to decide which
one to drop when the volume of disk or in-memory is full, I apply four common cache
replacement policies based on different ideas on how to improve the performance of edge
caching. Another point to note is, the drop behaviors in cache replacement policies have no
relation to TTL designs since both are needed to guarantee the usability of cached data, that
is, still alive and within the capacity of the current r.

First, First In First Out (FIFO) policy regards volume disk/in-memory as a FIFO queue
and drops the head of queue that gets pushed in the earliest when queue is full. Second, Least
Frequently Used (LFU) policy does not consider the order of cached files and chooses the
cached file with the least requested times currently. Third, similar to LFU, Least Recently
Used (LRU) also focus on the cached files which are not so popular but chooses the least
recently used one to drop. Last, the Random Replacement (RR) policy serves as a contrast to
compare the performance of TTL designs with the other policies.

3.3.1 Hybrid Edge Caching Algorithm

To reduce the total latency and improve energy efficiency of edge caching, I integrate four
existing schemes into a hybrid one which considers all the computing resources available
within the network. Moreover, since the capacities of edge devices are limited, we have to
discard parts of the cached data or files when memories are full. I need a suitable cache
replacement policy to help each cached file do its best in saving as much time as possible
on backhaul transmissions. My target is to ensure that files with high popularity can extend
TTL by migrating between cache segements instead of coming out. As a result, when we
reasonably occupy the cache capacity of each edge device, and improve the utilization of files
during their cache TTL as a whole, time cost required for upward transmission will be greatly
reduced. At the same time, energy efficiency given by Equation (3.12) and (3.13), which is
calculated as the total size of the requested files devided by total energy consumption. And
energy consumption (Equation (3.11)) is also calculed from time cost. Therefore, when I cut
down the latency, energy efficiency can be improved correspondingly.

In the design of caching scheme, cache replacement policies refers to the algorithms
choosing to keep or discard the cached items when cache capacity is full. As a result, each
item in cache may own a time-to-live (TTL) which indicates the length of time it can stay in
the cache memory. Actually, different cache replacement policies use different rules to define
and calculate TTL. As one of the most common policies, first in first out (FIFO) maintains a
FIFO queue and evicts the items entering first when any newcomer has no position. Least

3.3 Algorithm Design 39

recently used (LRU) monitors all the cached items and evicts the one used least recently.
Random replacement (RR) chooses item to evict without considering any information about
history or forecast. RR is often used as a benchmark for performance comparisons, but it can
also have unexpected results in some cases. That is, no cache replacement policy is always
the best. And what I want is to find the most suitable one for my caching scheme.

In the scenario of solving the two problems in the proposed 3-tier network model, to
minimize end-to-end latency and maximize energy efficiency I need a cache replacement
policy to distinguish the popularity of the files in CL and distribute limited capacities of edge
devices to the most popular ones that may be requested frequently.

As shown in Algorithm 3, req is the requested file from user and evict is the file to be
evicted from cache. Qseg1 and Qseg2 respectively stands for the queues of cached files in two
segments with different priorities. le f t means the rest of the cache capacity. size is the size of
request file. pop() and push() are the pop and push functions. head is the cached file at the
queue head. any() is the function telling whether a file is cached in the queue. Here I propose
a double segmented LRU cache replacement (S2LRU) policy for hybrid edge caching for
Tactile Internet. The motivation of Algorithm 3 is to design a optimized cache replacement
approach suitable for hybrid edge caching. Key idea of Algorithm 3 is that with more than
one cache segments, files of different popularity are treating separately. Popular files will
not be easily discarded, and relatively unpopular files will be replaced soon. I divide the
total cache capacity into two prioritized parts. The Qseg1 with low priority is checked first,
once the cache hits, the cached file will leave Qseg1 and move to higher Qseg2. Then I check
the Qseg2, once the cache hits, the cached file come to the queue’s tail. And for files cached
in Qseg2, once the left capacity (Cseg2.le f t) is not enough to accommodate any newcomer,
files at the queue’s head (Qseg2.head) may have to walk out of Qseg2 and come back to Qseg1.
When the same situation occurs in Qseg1, files will be evicted from the current en.

The proposed S2LRU takes advantage of several common policies. First, as shown in
the title, I extend the TTL of cached files that are recently used and correspondingly make
the files rarely used easy to expire. Second, least-frequently used (LFU) policy also plays a
role in S2LRU since only files being requested more than one time may enter Qseg2. Third, I
choose double segmented LRU rather than triple (S3LRU) or higher because of the limited
capacity of edge devices. Multiple segments may lead to fragmentation of the cache space,
making the efficiency drop dramatically when processing large files. Time complexity of
Algorithm 3 is O(nCL) which stands for the worst case that all the files in CL are cached in
this en and the requested one is found lastly.

Then I design a hybrid edge caching scheme based on the four types of methods shown
in Fig. 3.2. My target is to coordinate all the computing resources available in network

40 Energy Efficient Edge Caching for Emergency Communications

Algorithm 3 Segmented LRU for Hybrid Edge Caching
req,evict←requested file from user and evicted file from
cache
Qseg1,Qseg2←queues of two segmented cache capacity

1: if any(Qseg1 = req) then
2: Cseg1.le f t←Cseg1.le f t + req.size
3: Qseg1.pop(req)
4: while Cseg2.le f t < req.size do
5: evictseg2← Qseg2.head
6: Cseg2.le f t←Cseg2.le f t + evictseg2.size
7: Qseg2.pop()
8: while Cseg1.le f t < evictseg2.size do
9: Cseg1.le f t←Cseg1.le f t +Qseg1.head.size

10: Qseg1.pop()
11: end while
12: if Cseg1.le f t ≥ evictseg2.size && !any(Qseg1 = evictseg2) then
13: Qseg1.push(evictseg2)
14: Cseg1.le f t←Cseg1.le f t− evictseg2.size
15: end if
16: end while
17: if Cseg2.le f t ≥ req.size && !any(Qseg2 = req) then
18: Qseg2.push(req)
19: Cseg2.le f t←Cseg2.le f t− req.size
20: end if
21: else if any(Qseg2 = req) then
22: Qseg2.pop(req)
23: Qseg2.push(req)
24: else
25: while Cseg1.le f t < req.size do
26: Qseg1.pop()
27: end while
28: Qseg1.push(req)
29: end if

3.3 Algorithm Design 41

model in Fig. 3.4, and reasonably arrange the caching and discarding of files with different
popularities under the Zipf distribution.

Algorithm 4 HECT: Hybrid Edge Caching for Tactile Internet
u,u.in_sbs,u.in_sbs.in_mbs←current user, the SBS and
MBS beyond current user
nd2d ←number of other users within the signal scope of u
nsbs←number of SBSs within the same MBS

1: if f ind(u.cache = req) then
2: calculate L and EE by local caching
3: else
4: for i← 1 to nd2d do
5: if f ind(ud2d

i .cache = req) then
6: calculate L and EE by D2D caching
7: cache req at u
8: end if
9: end for

10: if f ind(u.in_sbs.cache = req) then
11: calculate L and EE by SBS caching
12: cache req at u
13: else
14: for j← 1 to nsbs // routing among all SBSs under the same MBS do
15: if f ind(sbsu.in_sbs.in_mbs

j .cache = req) then
16: calculate L and EE by SBS caching
17: cache req at u and all sbs in the forwarding route
18: end if
19: end for
20: if f ind(u.in_sbs.in_mbs.cache = req) then
21: calculate L and EE by MBS caching
22: cache req at u and u.in_sbs
23: else
24: calculate L and EE by no caching
25: cache req at u, u.in_sbs and u.in_sbs.in_mbs
26: end if
27: end if
28: end if

As shown in Algorithm 4, u is the current user sending out request. u.in_sbs and
u.in_sbs.in_mbs are the SBS first receiving the user request and the MBS. nd2d is the number
of other users that can communicate with the current user in D2D mode. nsbs is the number
of SBSs within the signal of the same MBS. f ind() is the function telling if the requested file
can be found in the cache, TRUE for found and FALSE for not. The motivation of Algorithm

42 Energy Efficient Edge Caching for Emergency Communications

4 is to set rules for caching on any of the four parts based on the replacement policy in
Algorithm 3. The key idea of Algorithm 4 is that from a global perspective, making full use
of each device in the network architecture that can provide cache storage.

After a user u sending out a request req, I may prepare for the time-saving and energy
efficient caching service from the perspective of the overall network provider. The most basic
priority principle is the relative physical distance from users. First, check if the wanted file is
already in local storage. Once it can be satisfied, I regard this case as no transmission latency.
Second, req will be forwarded to nearby users within the scope of D2D communication.
Third, when no cache can be found in any user, we may seek help from SBS Tier. Line 14
in Algorithm 4 includes the procedure of routing among SBSs under the signal range of
the same MBS. In this way I can limit the routing times and avoid meaningless multi-hop
forwarding. Fourth, once SBS caching is also failed, we need to upload the request to MBS
Tier. Finally, if user request can not be satisfied by cache, we have to seek help from cloud
server. Together with cache replacement policy shown in Algorithm 3, I may leave a copy
at the each node of the route while downloading the requested file. Time complexity of
Algorithm 4 is O(nd2d +nsbs).

3.4 Simulation and Analysis

3.4.1 In-memory Edge Caching

In the subsection, I carry out experimental simulations to compare the performance of edge
caching in in-memory and conventional disk memory under two TTL designs.

The simulation scenario is a 10 km2 square open area, and I set 2,000 user nodes in User
Tier with random initial positions. Each user node randomly moves to next position under
normal distribution after sending request packet to fetch one of the 200 files originally stored
in one of the five servers in Server Tier. I use 100 routers in Edge Tier as edge devices to
cache the files locally. Four cache replacement policies are applied in designing edge caching
methods.

As shown in Table 3.1, the setups of experiment include bit rate & wave propagation
speed of packet transmission, Edge Tier’s device settings and energy consumption coefficients
of both transmission and caching. As a result, to calculate the total energy consumption
Etotal , I have to count the number of packets and sum up their sizes, then compute the time
cost from transmission and reading/writing from disk/in-memory. I carry out 10 rounds of
simulations in two designed edge caching methods & four cache replacement policies. I

3.4 Simulation and Analysis 43

Table 3.1 Experimental settings of in-memory edge caching

Bit Rate of Transmission

Wireless (802.11ad) 6.8 Gbps

Ethernet 10 Gbps

Wave Propagation Speed of Transmission

Wireless (air) c (speed of light)

Ethernet (thick coax) 0.77 c

Device Settings of Edge Tier

MTR of Disk (SSD) 2500 MB/s

MTR of In-Memory (DDR3) 6400 MB/s

Disk Volume 256 MB

In-Memory Volume 25 MB

Energy Consumption Coefficients

10−8 J/MB 10−6 J

Broadcast Send 2.1 × size + 272

Point-to-Point Send 0.48 × size + 431

Broadcast Receive 0.26 × size + 50

Point-to-Point Receive 0.12 × size + 316

Power Consumption of Caching 8 ×10−3 W/MB

repeat the part of each method & policy 10 times and get the average results. The simulation
environment is MATLAB R2017b.

Fig. 3.6 shows the simulation result of total energy consumption of TRT method in four
cache replacement policies. Blue, red, green and yellow represent the policies of FIFO, LFU,
LRU and RR. The solid lines and dotted lines respectively stand for caching in in-memory
storage and disk storage. From the patterns of eight broken lines, I can know that the overall
energy consumption of traditional disk caching is larger than in-memory caching. In the 10
rounds of simulation, the trends of disk and in-memory methods are also different. Energy
consumption of disk in TRT varies like a checkmark symbol which firstly falls down a little
and then after a smooth transition period increases rapidly to a high value. My in-memory
method in TRT shows a similar trend at the first half from round 1 to 5 but become steady

44 Energy Efficient Edge Caching for Emergency Communications

1 2 3 4 5 6 7 8 9 10

Round of Request Sending

310

320

330

340

350

360

370

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

FIFO In-Memory

FIFO Disk

LFU In-Memory

LFU Disk

LRU In-Memory

LRU Disk

RR In-Memory

RR Disk

Fig. 3.6 Total energy consumption of edge caching in TTL of Requested Times (TRT)

3.4 Simulation and Analysis 45

after then which means energy consumption on edge caching may finally turns into a stable
state. The differences of the trends are in line with my expectation since disk which own
larger storage volumes and lower MTR call for more unit energy consumption and longer
operation time. The positive correlation of the two factors lead to the continuing growth of
total consumption.

Different cache replacement policies also have respective functions on the results of total
energy cost. From the four lines of disk caching in the top half of the figure I can see three
of them, LFU, LRU and RR fluctuate until coinciding in the end. Only blue line of FIFO
policy shows a slight advantage in total energy consumption which means a simpler rule
maybe more suitable for disk caching by TRT. Then from the other four colorful lines of
in-memory caching, although still some changes in order of energy cost values, I may get
the overall order of four policies as RR, LRU, FIFO and LFU. RR policy does suffer from
random choice of dropping cached files which costs more energy in total. The special case
of round 4 when LRU exceeds RR may be explained by some occasional error when RR
just drops the right files which are not requested much later. LFU policy seems to own the
optimal performance in in-memory caching by TRT because of the most suitable dropping
choice which focuses on reserving popular files probably from the server directly connected
to the current router with only one hop and dropping a most unpopular one which may come
from a remote server after several hops of forwarding. Green line applying LRU also pays
attention to the popularity of cached files but directly considers the caching time and drops
the one not being requested of the longest interval. However, compared to LFU, the practice
of LRU may face exceptions like some popular files being dropped due to the timing that the
other files are just being cached or requested.

The experimental result of the other TTL design is shown in Fig. 3.7. In comparison
with TRT, the trend of disk’s four colorful lines of different cache replacement policies is
relatively smoother, gaps between each two of the policies are visible. However, the order of
lines in different policies us some kind of abnormal. Green line applying LRU shows the
highest total energy consumption and RR policy even achieve high performance in value. In
my point of view, since disk have far larger storage volume than in-memory, although more
files are cached live for enough time, not many of them finally waited for a request or even
get a remote request which may save no time than fetching the original file from servers. As
a result, replacement policies trying to delay the time for dropping popular files may in turn
cause more energy cost.

The patterns of in-memory by TCT are similar with TRT. RR policy fluctuates more
violent. LRU seems to improve its performance compared to TRT and even shows a certain
degree of convergence with FIFO. In my point of view, replacement policy here share the

46 Energy Efficient Edge Caching for Emergency Communications

1 2 3 4 5 6 7 8 9 10

Round of Request Sending

310

320

330

340

350

360

370

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

FIFO In-Memory

FIFO Disk

LFU In-Memory

LFU Disk

LRU In-Memory

LRU Disk

RR In-Memory

RR Disk

Fig. 3.7 Total energy consumption of edge caching in TTL of Caching Time (TCT)

same method with TCT by dropping cached files by keeping check the their timestamps. The
collective effect may lead to some promotion in efficiency.

To make clear how TRT and TCT methods may help reallocate the whole workload and
achieve energy efficient caching, I add the experimental results of backhaul rates. As the
values of results in different cache replacement policies are similar to each other, here I
choose FIFO as an example. I change the set maximum requested times & caching time
of each single file being cached in routers as edge devices and get two 3-D surface graphs
(values of maximum caching time are corresponding values in simulation).

Under the same coordinate axis, Fig. 3.8 and 3.9 show the variation of backhaul rates
by rounds of packet sending and maximum requested times/caching time. First in Fig. 3.8,
when number of requested times is small, regardless of which round of packet sending, about
more 70 percent of requests still have to reach Server Tier to get needed files. The other side,
numerical range of the same maximum times in 10 rounds changes not so great which means
although stay high in value with small requested times number, backhaul rate of TRT method
can rapidly reach steady state as number increases. Finally more than 70 percent of requests
can be satisfied by in-memory edge caching.

3.4 Simulation and Analysis 47

Maximum Requested TimesRound of Request Sending

20

30

0

40

50

0

B
a

c
k
h

a
u

l
R

a
te

 (
%

)

60

70

2

80

24 4
6 6

8 8
10 10

20

30

40

50

60

70

80

Fig. 3.8 TTL of Requested Times (TRT)

Round of Request Sending Maximum Caching Time

20

30

0

40

50

B
a

c
k
h

a
u

l
R

a
te

 (
%

)

60

0

70

2

80

24 46 6
8 8

10 10
20

30

40

50

60

70

80

Fig. 3.9 TTL of Caching Time (TCT)

48 Energy Efficient Edge Caching for Emergency Communications

Table 3.2 Experimental settings of hybrid edge caching

Parameter Value

Simulation area 950
√

3×1300 m2

Number of files in CL 200

Number of users/SBSs/MBSs 1000/100/4

Cache capacity of users/SBSs/MBSs 2/10/50 MB

Signal scope radius of D2D/SBS 20/100 m

Date rate in 5G 10 Gbps

Wave propagation speed c (speed of light)

User power in D2D communication 100 mW

SBS/MBS power 2/100 W

Distance between adjacent SBSs 100
√

3 m

Then in Fig. 3.8, the main difference of the pattern is the variation when I continue to
send packets. That is, no matter how long the caching time is set, Server Tier still has to
take charge of most workload at the first rounds. However, with more and more files being
fetched originally from end servers and then cached in in-memory of passed routers, TCT
method also can reach a comparatively ideal low backhaul rate, though higher in value than
TRT as well as some fluctuations.

3.4.2 Hybrid Edge Caching

In this subsection, I carry out experimental simulations to compare and analyze the per-
formance of my proposed cache replacement policy and hybrid edge caching scheme with
existing methods.

As shown in TABLE 3.2, there are 1000 users, 100 small cells and 4 macro cells in a
rectangular open area. In CL there are 200 files. The cache capacities of users, SBSs and
MBSs are 2, 10, 50 MB. Sizes of the files in CL are uniformly distributed random numbers
in the interval (0,1) MB. Signal range radius of D2D communication between users is 20 m,
and radius of small cell is 100 m. According to the IMT-2020 5G specifications [71] which
gives the peak data rate of 20 Gbps and user experienced data rate of 1Gbps in enhanced
Mobile Broadband (eMBB) scenario, I set the 5G data rate in the simulation as 10Gbps. User
power in D2D communication is 100 mW, which equals to 20 dBm. For SBS and MBS, 2 W
and 100 W repectively equals to power level of 33 dBm and 50 dBm.

3.4 Simulation and Analysis 49

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

1

2

3

4

5

6

7

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

s
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.10 Simulation results of end-to-end latency: Different numbers of user requests

As comparison, I choose FIFO, Random Replacement (RR) and a NoHybd cache scheme.
FIFO plays the role of a low-overhead replacement policy, which can be easily achieved by
setting FIFO queues. RR is considered as a simple one which discards randomly and requires
no access history. NoHybd stands for the traditional edge caching scheme. Regardless of
the combination of the basic methods, NoHybd only caches during the vertical forwarding
procedure. That is, no packet delivery happens among devices with the same network location
including users and SBSs. I hope to use some extreme settings to evaluate the performance
of cache replacement policies and cache schemes through multiple metrics, and provide
valuable references for the realization of Tactile Internet in the near future.

3.4.3 Latency and Energy Consumption

Fig. 3.10 and 3.11 give the simulation results of end-to-end latency. In Fig. 3.10, I add
together end-to-end latency of the ten groups in different user request numbers. First from
the overall polyline trends of matches between replacement policy and cache scheme, the
gaps are not large. Especially when number of requests is small, we can hardly judge the pros
and cons of different methods through current experimental conditions. And as the number
of user requests increases, there are gradually subtle changes. Caching schemes in S2LRU

50 Energy Efficient Edge Caching for Emergency Communications

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

60

62

64

66

68

70

72

74
A

v
e

ra
g

e
 e

n
d

-t
o

-e
n

d
 l
a

te
n

c
y
 (

s
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.11 Simulation results of end-to-end latency: Average results of single request

policy have certain advantages in numerical values. Actually my designed hybrid scheme is
at a slight disadvantage in terms of latency which may be explained by the extra attempts
looking for cached copies. That is, there exists no consumption on D2D communication and
routing among SBSs under the same MBS.

Some further evaluation can be made from the Fig. 3.11. I average the results of Fig.
3.10 by single request. As shown in this subfigure, polylines of NoHybd_RR, NoHybd_FIFO
and HECT_FIFO are in a state of fluctuation as well as high value. HECT_RR is relatively
stable, and lower in the overall value. Both schemes in S2LRU first decline and then stabilize
as the number of user requests increases. As a result, I may judge that S2LRU can achieve
better performance in reducing latency than regular replacement policies, especially when
facing large request number.

Fig. 3.12 and 3.13 show the results of energy consumption. Compared with Fig. 3.10 and
3.11, energy cost on processing requests from 1000 users show different patterns. HECT with
three replacement policies saves more energy than NoHybd, respectively. HECT_FIFO still
performs poorly, which can be explained that for fast-accumulated copies, always discarding
the ones first coming in is not only unable to take care of the popular files, but may also be
counterproductive. In particular, as edge devices do not have much capacity for caching,

3.4 Simulation and Analysis 51

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

0

20

40

60

80

100

120

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.12 Simulation results of energy consumption: Different numbers of user requests

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

A
v
e

ra
g

e
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.13 Simulation results of energy consumption: Average results of single request

52 Energy Efficient Edge Caching for Emergency Communications

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

30

40

50

60

70

80
E

n
e

rg
y
 e

ff
ic

ie
n

c
y
 (

M
B

/J
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.14 Simulation results of energy efficiency

files prioritized in Zipf distribution may be thrown away before giving preferential treatment.
HECT_RR shows unexpected fair performance. Random eviction here gives the same level
of TTLs to files with different popularities from the aspect of cache replacement.

3.4.4 Energy Efficiency and Cache Hit Ratio

According to Equation (3.12) and (3.14), Fig. 3.14 and 3.15 show the results of energy
efficiency (EE) and cache hit ratio.

In pursuit of doing the most with the least amount of energy, we need to make reasonable
scheduling of limited resources. For the problem of edge caching, I leave the copies on
the file delivery route back to users and make efforts on finding needed copies for each
user as near as possible. In Fig. 3.14, the maximal gap exists between HECT_S2LRU and
NoHybd_RR/NoHybd_FIFO. In numerical value, for each Joule we may expect delivering
30 more MB with HECT_S2LRU than NoHybd_RR/NoHybd_FIFO. Since EE is in relation
to latency and energy consumption, I can obtain some similar analysis results. FIFO shows
small difference in two edge caching schemes.

I add cache hit ratio to show the percentage that requests are satisfied by cache. The order
of combinations of two cache schemes and three replacement policies is about the same with

3.4 Simulation and Analysis 53

1 2 3 4 5 6 7 8 9 10

Number of user request 10
4

70

75

80

85

90

95

C
a

c
h

e
 h

it
 r

a
ti
o

 (
%

)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.15 Simulation results of cache hit ratio

EE. The exception happens when request number is no more than 30,000, HECT_RR and
HECT_S2LRU are numerically close to each other in EE. This may be explained by the
greater uncertainty of RR with small number of repeated trials. As a result, for HECT_S2LRU
under the current experimental settings, more than 90% of user requests can be satisfied by
cache.

3.4.5 Energy Efficiency of Each File in Zipf Distribution

After the discussion of latency, energy consumption, efficiency and cache hit ratio in the face
of different numbers of user requests, lastly I focus on the EE of each file in CL that obeys
Zipf distribution.

Fig. 3.16 gives the total number of times each file requested in simulation. We set x in
Equation (3.1) to 1 which is the classic version. And to display the values more intuitively,
I change the y-axis to an exponential coordinate with a base of 10. Files in the top of Zipf
ranking account for most of the total number (550,000) of requests. And files in bottom of
ranking are close to each other.

Then I calculate the energy efficiency results different matches of replacement policies
and edge cache schemes. Fig. 3.17 gives the EE of all 200 files in Zipf ranking. Two

54 Energy Efficient Edge Caching for Emergency Communications

0 20 40 60 80 100 120 140 160 180 200

Files in Zipf distribution ranking

10
3

10
4

10
5

10
6

R
e

q
u

e
s
te

d
 t

im
e

s

Fig. 3.16 Requested times of files in Zipf distribution ranking

0 20 40 60 80 100 120 140 160 180 200

Files in Zipf distribution ranking

10
0

10
1

10
2

10
3

10
4

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

M
B

/J
)

NoCoop_RR

NoCoop_FIFO

NoCoop_S2LRU

Fig. 3.17 Results of non-hybrid edge caching

3.4 Simulation and Analysis 55

0 20 40 60 80 100 120 140 160 180 200

Files in Zipf distribution ranking

10
0

10
1

10
2

10
3

10
4

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

M
B

/J
)

HECT_RR

HECT_FIFO

HECT_S2LRU

Fig. 3.18 Average energy efficiency of files in Zipf distribution ranking

polylines of RR and FIFO are almost completely coincident. S2LRU in green achieve higher
EE for the first 50 files in the front which may explain why the green solid line representing
NoHybd_S2LRU can be ahead of the other three in Fig. 3.14. Lastly Fig. 3.18 displays
the results of HECT. The order of three replacement policies is S2LRU, RR and FIFO,
however, the first 30 files in the front obtains higher EE in RR. For each cached file, I win
the opportunity to extend the TTL in segmented LRU. And this may partly lead to some
uniformization of the treatment of files in the Zipf distribution. That is, the copies of a file in
the top 30 may live no much longer than a top 31∼60 (here I discuss the TTL of any single
file copy). As a result, together with the hybrid edge caching scheme, S2LRU is able to give
more attention to the files not in the front.

In summary, in this section, I prove through simulation results that the proposed replace-
ment policy and cache scheme can improve the network performance in latency, energy
consumption and energy efficiency from multiple aspects.

Chapter 4

UAV-assisted Network Coverage
Expansion

This chapter introduces the third phase in which I plan to enlarge the coverage and increase
the scalability of the edge network. I choose UAVs as solution to play the role of network
nodes in-the-air and discover survivors.

4.1 Motivation and Related Work

In this section, I introduce some related work about UAV-aided disaster management and
deep learning for robotics.

Nowadays, with the development of civilian UAV manufacturing which led by DJI,
researchers in various fields have regarded UAV as a flexible and practical technology for
many different application scenarios. In the field of disaster management, UAVs mainly play
the role of carriers or relay nodes for wireless connection. As an emerging topic, existed
researches mainly are about using UAVs as supporting roles in emergency networking or
rescue jobs. In fact, today’s UAVs already have some onboard processing capacity with little
attention. In my opinion, the reason why it is often neglected is that UAVs have restricted
performance even as edge devices under the harsh power supply and load conditions. And in
this thesis, I decide to take advantage of this unique onboard processing capacity to realize
the autonomous control of UAVs based on image recognition using deep learning. Mozaffari
et al. focus on the D2D (device-to-device) communications with UAV. In their work, UAVs
are regarded as base stations on the air, and with their help, D2D can enjoy the convenience
brought by the wireless access from above. They also carry out studies on UAV’s performance
issues when assisting in wireless networking including hovering time as well as antenna

58 UAV-assisted Network Coverage Expansion

array gain [54]. Motlagh et al. present a MEC & UAV-based platform for providing Internet
of Things (IoT) services. They demonstrate the potential of UAV technology in wireless
communication networks and solve the problem of computation offloading in video stream
processing to achieve face recognition based crowdf surveillance [53]. Dong et al. present a
protocol for clone detection in cyber-physical systems (CPS) [19]. Sekander et al. evaluate
the practicability of applying multi-tier UAV cellular networking in 5G and beyond 5G (B5G)
and obtain the results of the spectral efficiency of transmission in the designed terrestrial
network model through simulation [70]. Al-Hourani et al. focus on the problems of path-loss
terrestrial and aerial covering in a real-world suburban area. They collect the reference signal
received power (RSRP) from Long-Term Evolution (LTE) signal as the metric to test the
performance in different propagation distances [2]. Hu et al. settle the problem of limited
bandwidth assignment in UAV-assisted cellular networks [38].

In all aspects of disaster management (prevention, preparedness, relief and recovery [83]),
UAVs play an essential role in taking work that is difficult for manpower to complete. Ota
et al. propose a game theory model in crowd sensing applications to make sure that all
participants can be satisfied [58]. Naqvi et al. try to implement a UAV-aided resilient
wireless network infrastructure with a cross-layer resource allocation strategy for multiple
application scenarios including IoT service and disaster relief [56]. Erdelj et al. combine
traditional wireless sensor network (WSN) and UAV-assisted disaster management into a
mixed development scenario [20]. Dong et al. propose a data gathering approach using
UAV as platform [18]. Hayajneh et al. come up with the idea of post-disaster recovery
cellular networks in which a statistical framework using stochastic geometry is designed to
improve the performance of UAV enabled communications [33]. Sánchez-García et al. pay
attention to the problems of generating optimal UAV trajectories to help survivors in disaster
scenarios [75].

Ever since AlexNet designed by Alex Krizhevsky won the ImageNet Large Scale Visual
Recognition Challenge in 2012 [40], deep learning has ushered in an explosive growth period
that continues to this day. Together with ever-improving hardware performance, many ideas
used to be impracticable in the early history of deep learning are becoming reality. And
with UAVs, there are many existed studies about how to apply deep learning in decision
making. Giusti et al. use a Deep Neural Network (DNN) in designing supervised image
classifier for robots and drones [30]. Ota et al. survey the studies and application on mobile
multimedia [57]. Chen et al. apply UAV and image recolonization in smart agriculture.
They draw support from deep learning in counting the fruits by photos taken by gimbal
cameras [14]. Li et al. come up with the idea of realizing the learning at the edge of
the network which paves the way for lightweight deep learning implementation [43, 44].

4.1 Motivation and Related Work 59

Zhang et al. discuss the solution of high-resolution UAV image classification by stacked
auto-encoder (SAE) and stacked denoising auto-encoder (SDAE) networks [92]. Wang
et al. design a tensor-based computation and optimization model for data processing in
Cyber-Physical System (CPS) [86, 80, 79] which can be applied on UAVs. Li et al. work
on the three-dimension robotic perception based on a view-invariant Convolutional Neural
Network (CNN) model designed for disaster scenarios [48, 47]. Zhao et al. design an
emergency network in which UAVs are transceivers in realizing multi-hop device-to-device
(D2D) communication [94]. Existed studies on deep learning and robotics are mainly about
the ground robots. That is, in consideration of the demand on both real-time and computing
power, there is little room for UAVs to undertake the tasks in deep learning. In this thesis, I
make use of the onboard processing modules and offloading devices as auxiliary equipment
to realize the light-weighting of UAV operations.

4.1.1 UAV-assisted Edge Computing

Existed studies in post-disaster networking and emergency communication mainly focus
on how to increase the robustness of network structures and expand the scope of wireless
signals, etc. However, similar practices may be costly on implementation, and strategies,
as well as schemes, also have to consider a variety of actual situations including network
topology, user density, and device configuration. As a result, my target is to propose some
approaches with high applicability and can be quickly deployed. Moreover, we also need
countermeasures to cope with the failure of the original network infrastructure.

First, in the face of rapid deployment and high applicability, I choose UAVs as carriers
to provide mobile edge services to users in affected areas. Unmanned aerial vehicle (UAV),
or we used to call it a drone, refers to an aircraft without a pilot. UAV technology has
been a new research hotspot in a number of areas and disciplines after rapid development
in the past decade. The relatively low cost and flexible mobility instantly activate the
internal potential of civilian UAVs. Especially for wireless communication and other fields,
it offers many possibilities and scalability of turning the ideas that used to exist only in
the concept stage into reality. The leader of UAV manufacturers, DJI [16], has provided a
complete set of solutions for multiple disciplines and fields such as agriculture, energy, public
safety, construction, and infrastructure. And mobile edge computing (MEC), created by the
European Telecommunications Standards Institute (ETSI) [63] with computing capacities
and services implemented at the edge of the networks. MEC’s decentralization attribute may
enrich the structure of network topology that edge nodes can be deployed according to actual
needs in disaster scenarios. As a result, with the help of UAV-mounted MEC, we are able to

60 UAV-assisted Network Coverage Expansion

Users Devices in

Affected Area

Wireless Communication Range

1m 100m 10km

LoRaWAN

Gateways

UAV-mounted

Mobile Edge Nodes

Fig. 4.1 A schematic of UAV-mounted MEC using LoRaWAN.

achieve fast networking regardless of the topographic factors such as mountains or damaged
roads.

Second, after finding the suitable service and its carrier, there still remains the issue of
how to establish connections in the disaster environment. That is, for emergency communi-
cation, I prefer low-cost long-range transmission methods in the case of resource shortage
including electrical energy. To settle this issue, I choose LoRaWAN (Long Range Wide Area
Networking) as my solution [65]. Working on the license-free radio frequency from 433
MHz (Europe), 915 MHz (North America) to 923 MHz (Asia), LoRa enables long-distance
wireless connection up to 10 km with ultra-low power consumption [52]. As the IoT-oriented
lightweight communication architecture other than the QoS awareness next-generation com-
munication system, LoRa can just undertake the connection job between UAV-mounted
mobile edge nodes and the remote control center.

A schematic of UAV-mounted MEC using LoRaWAN is shown in Fig. 4.1. Here I use
a coordinate scale in the front to indicate the wireless communication range among user
devices in the affected area, mobile edge nodes, and LoRa gateways. Here I make full
use of the high mobility and unconstrained features of the UAVs and apply LoRa’s long-
distance low-power transmission in sending control information to achieve fast networking
and emergency communication. In my vision, the UAV-mounted MEC using LoRaWAN
(UML) system can realize the big data on the fly, that is, collecting and processing data in the

4.2 Problem Formulation: Airborne Vision Based UAV Navigation 61

Visual recognition module
(with trained CNN model)

Fly control

module

Task schedule

module

Recognized

result

Fly

instruction

On-board
Offloading

devices

Path

adjusts

Image

inputs

Disaster scenarios

captured by UAV camera

Fig. 4.2 A lightweight UAV navigation system based on airborne vision for disaster manage-
ment

air by means of aerial vehicles and long-distance transmission, so as to offer new technical
support for disaster management.

4.2 Problem Formulation: Airborne Vision Based UAV Nav-
igation

In this section, I design the system model of lightweight UAV navigation based on the
airborne vision for disaster management, and formulate the problems to solve.

4.2.1 System Model

The navigation system is made up of two parts, UAV and offloading devices. And there
are three modules, visual recognition module, task schedule module and fly control module
working cooperatively.

As shown in Fig. 4.2, a complete process from image sampling to flight path adjustment
is as follow. Firstly, the image captured through the UAV camera is sent to the visual
recognition module. This module is made up of both on-board and offloading devices. The
trained CNN model is embedded at the offloading device to help find out the targeted object
in the image. Then after task schedule module receiving the recognized result, it makes the
decision on instructions of flying and sends to control module. The recognized result here
refers to the array of structures which stores the targeted object in percentage within the

62 UAV-assisted Network Coverage Expansion

Captured

image

(Y UV420p)

Camera

lens
Neurons of

pre-trained model

Pre-treat to

m×n×3 (RGB)

LUNA

model

Fig. 4.3 Network architecture of LUNA

image. Lastly, knowing the position of the targeted object, fly control module may adjust the
direction or move close while the camera shot changes.

Image captured by gimbal camera is in Y’UV420p format which luma Y ′ stands for non-
linear perceptual brightness after gamma compression and U,V are chrominance components.
Here I need to transfer it to RGB for next steps.

(R,G,B) =Conv(Y ′,U,V) (4.1)

where conversion function needs to split and reorganize three values first, then perform
recoding in pixels. As a result, the data structure size I used for model training is m×n×3
in which m,n are the size of captured image.

The network architecture is shown in Fig. 4.3. I choose MobileNet [37] as the neural
network platform to work on. MobileNet applies depth-wise separable convolution instead
of traditional ones to support small but still efficient CNN models. In consideration of
both supply from UAV on-board and demand on disaster environment, MobileNet is the
architecture that helps us most right now.

I also add the design of transfer learning during the model training process. That is, there
exists an urgent need in an emergency situation and the actual difficulty of collecting training
data in complex disaster scenarios. And it can be costly for coping with incomplete or
damaged objects, such as collapsed houses, submerged vehicles, etc. In my system model, I
use a pre-trained model to continue training with collected image data from disaster scenarios.
This practice may greatly save time on UAV moving or patrolling, as well as processing
power, which all being supplied by the airborne battery.

4.2.2 Markov Chain Modeling

Here I use a discrete-time Markov chain to model the process of path-finding based on the
airborne vision in task schedule module and fly control module. Suppose a UAV is already

4.2 Problem Formulation: Airborne Vision Based UAV Navigation 63

Table 4.1 Table of fly instructions

Fly instructions Value

None 000

Forward/Backward (001) 001

Left/Right (010) 010

Forward/Backward (001)+Left/Right (010) 011

Ascend/Descend (100) 100

Forward/Backward (001)+Ascend/Descend (100) 101

Left/Right (010)+Ascend/Descend (100) 110

All 111

near the position of a task to be performed. Since my work is based on visual recognition,
the long-distance movement before the UAV camera can capture the target still requires
positioning methods such as GPS. In the following part, I consider the discussion about First
I denote time-slot as τ . Within a time-slot, a recognized result is sent to the task schedule
module. And I have the state of r(τ) ∈ {0,1}. 1 or 0 stands for whether the target is found or
not.

Then for the fly instructions, I have three basic ones according to the operation commands
of UAV manual control as move forward/backward, change direction, ascend/descend. Here
I use positive and negative values to distinguish between the two opposite cases of each
command. For example, 30 stands for turning left 30 degrees while -30 for right 30 degrees.
I denote fly instruction by f i. A fly instruction being sent to the control module can include
any of the basic commands. I give the different binary values to the three commands: move
forward/backward (001), change direction (010), and ascend/descend (100). Each one appear
once at most, then I have the table of fly instructions as

Table 4.1 gives the range of fly instruction value. There exist seven possible values which
can be calculated in only one way. In other ways, I have the scope of fly instruction of
S f i = {000,001, ...,111} and fly instruction in the current time-slot f i(τ) ∈ S f i.

Then I define the work state of UAV as ws, 0 means the state of hovering and waiting for
the next instruction. While I have the work state of UAV in the current ws(τ), the work state
in the next time-slot will be

ws(τ +1) = [1− r(τ)]ws(τ)+ r(τ) · f i(τ) (4.2)

64 UAV-assisted Network Coverage Expansion

As shown in Equation (4.2), if no wanted object be found in the image, fly control module
then continues its former work state. And when r(τ) = 1 that a recognized result with the
targeted object being sent to schedule module, a new fly instruction enters control module.
At this time, to ensure that the current flight path is based on the newest airborne vision, UAV
then turns to work state based on the newest vision of its current position.

Besides recognized result and fly instruction, I also consider the situation that the former
task is completed and UAV then restarts a new one. I denote this situation as tc(τ) ∈
{0,1,2, ...} that when tc(τ) > 0, ws(τ +1) = 1000 and tc(τ +1) = tc(τ)−1. That is, the
numerical value here refers to the number of time-slots before UAV reaching the next spot
and restart visual navigation. 1000 means an exceptional work state for the movement until
new spot. Instead, I have the expression of ws(τ +1) with tc(τ)

ws(τ +1) =

{
[1− r(τ)]ws(τ)+ r(τ) · f i(τ), i f tc(τ) = 0
1000, i f tc(τ) => 0, tc(τ +1) = tc(τ)−1

(4.3)

As a result, I denote the state space of the UAV navigation system is by Ss that

Ss(τ) = {r(τ),ws(τ), tc(τ)} (4.4)

As shown in Equation (4.4), within a given area, the time cost on long distance movement
is finite. Suppose the maximum numerical value of tc is Mtc, this discrete state space can be
a three-dimensional matrix with 2 by sizeo f (S f i)+1 by Mtc.

In order to realize the light-weighting of UAV navigation, the target is to reduce the
necessary time cost while accomplishing the same quantity of tasks. First I denote the
available UAVs by U = {u1,u2, ...,unu} in which nu stands for the number in total. Then for
one ui, in time-slot τ , I have the three parts of time cost

tF/B
i (τ) =Pr{ws(τ)&001=001,tc(τ)=0}(τ) · lτ

tL/R
i (τ) =Pr{ws(τ)&010=010,tc(τ)=0}(τ) · lτ

tA/D
i (τ) =Pr{ws(τ)&100=100,tc(τ)=0}(τ) · lτ

ttc
i (τ) =Pr{tc(τ)>0}(τ) · lτ

(4.5)

where tF/B
i (τ), tL/R

i (τ), and tA/D
i (τ) are time cost on forward/backward, change direction,

and ascend/descend, respectively. Pr stands for probability while the conditions in braces are
satisfied. For example, to calculate tF/B

i (τ), through a bitwise AND operation I can figure
out whether forward/backward fly instruction is included in the work state ws(τ). _τ is the
length of time-slot. As an exception, ttc

i (τ) refers to the situation of the period that the former
task is completed and UAV is on the way to restart a new one. By minimizing the time cost

4.3 Problem Formulation: UAV-assisted Edge Computing 65

Affected area

Takeoff &
charge station

Central
server

LoRa
concentrator

UAV-mounted

mobile edge nodes

Fig. 4.4 UAV-mounted mobile edge computing network model using LoRaWAN

on three basic commands in UAV flying, I are able to cut down any unnecessary energy
consumption. That is, a lightweight navigation strategy here can make use of results from
visual recognition in providing a set of agile and effective UAV path-finding methods for
post-disaster scenarios.

4.3 Problem Formulation: UAV-assisted Edge Computing

Here I design a UAV-mounted mobile edge network model using LoRaWAN and formulate
the problems to solve.

In Fig. 4.4, I design a 3-tier network model using MEC and UAVs. First for User Tier, in
an open area R2 there are trapped users which follow spatial homogeneous Poisson point
process [5]. Suppose the density of users is ρu which stands for the user number per unit
area. As a result, the probability of nu users existing in the unit area is

66 UAV-assisted Network Coverage Expansion

P(nu) =
ρu

nu

nu!
e−ρu (4.6)

Then for Service Tier, to provide MEC services to User Tier, I need UAVs as carriers to
take edge devices including Raspberry Pi, LoRa module while patrolling above the affected
area. When any UAV-mounted edge node m j receives a request from user ui, it will switch
to fly mode and draw near the sender by GPS coordinates {φ ,λ ,h}. In my model design, I
focus on the horizontal flight of UAVs, and the h is mainly for calculation of path loss. As a
result, the distance between the current UAV node and hover position suitable for rendering
MEC service is

di, j =
√

(φi−φ j)2 +(λi−λ j)2 +(hi−h j)2 (4.7)

where {φi,λi,hi} and {φi,λi,hi} are GPS coordinates of UAV node m j and hover position
for user ui.

Lastly, the top Control Tier, as shown in Fig. 4.4, there exist central server, LoRaWAN
gateway and takeoff & charge station for UAVs. The central server includes the data storage
needed by disaster relief and responds to uplink messages sent back by UAV nodes according
to the proposed task management strategy. Gateways in LoRaWAN are also known as
concentrators, which play the role of signal relay equipment to build connections between
the server and end devices as LoRaWAN nodes. The takeoff & charge station is for UAVs.

4.3.1 System Model

After introducing the three tiers of the network model, first, I model the connection between
Service Tier in the air and User Tier on the ground. There exist two-path loss models in case
of the line-of-sight (LoS) and non-line-of-sight (NLoS) in the air-to-ground part [13].

Pllos(di, j) = Pl f s(d f s)+10γloslog10di, j +X los
g (4.8)

vcxPlnlos(di, j) = Pl f s(d f s)+10γnloslog10di, j +Xnlos
g (4.9)

Equations (4.8) and (4.9) show the results of LoS path loss and NLoS in in Decibel
(dB). γ and Xg are path loss exponent and Gaussian random variable with zero-mean. d f s is
reference distance of free-space model. Pl f s stands for the free-space path loss which is (in
dB)

4.3 Problem Formulation: UAV-assisted Edge Computing 67

Pl f s(d) = 20log10(
d f 4π

c
)

= 20log10d +20log10 f −147.55
(4.10)

where f stands for the frequency (Hz) and c as the speed of light. d as the distance between
the antennas of UAV node and user device. I have d≫ c/ f and both antennas are in the
far-field of each other. Then according to the actual situation in which the occlusion may
occur, I have the probability of LoS [3]

Plos(θ) =
1

1+αe−β (θ−α)
(4.11)

where α and β refer to the parameters of this Sigmoid function. θ is the elevation angle
calculated by

θ = sin−1(
|hi−h j|

di, j
) (4.12)

And the probability value of NLoS is

Pnlos(θ) = 1−Plos(θ) (4.13)

As a result, I have the path loss model of the first air-to-ground part

Platg(di, j,θ) = Plos(θ)Pllos(di, j)+Pnlos(θ)Plnlos(di, j) (4.14)

Using the result of path loss, then we calculate the signal-to-noise ratio (SNR)

SNRatg =
ptran

m

100.1Platg(di, j,θ) ·σ2
g

(4.15)

where ptran
m is the transmission power of UAV node. σ2

g stands for the power of Gaussian
noise. Lastly, I have the channel capacity between UAV node m j and user device ui which
means the tight upper bound on the transmission rate (bits/s)

CCatg =
bm

nu
log2(1+SNRatg) (4.16)

As shown in Equation (4.16), bm is the bandwidth of UAV node.
Second, I model the communication between LoRaWAN concentrator in Control Tier

and UAV-mounted mobile edge nodes in Service Tier. Based on the LoRaWAN technology,
we are able to build connections between the remote concentrator and UAV nodes. Different

68 UAV-assisted Network Coverage Expansion

from the air-to-ground part, I choose the log-distance path loss model to figure out the path
loss here [10].

Plrta(d j) = Pl(d0)+10γldlog10(d j/d0)+X ld
g (4.17)

where d j is the distance between UAV node m j and LoRa concentrator. Pl(d0) refers to the
path loss at the reference distance d0. γld & X ld

g respectively stands for path loss exponent
and Gaussian random variable with zero-mean. The SNR of remote-to-air part is given by

SNRrta =
ptran

c

100.1Plrta(d j) ·σ2
g

(4.18)

where ptran
c stands for the transmission power of concentrator. And channel capacity between

the concentrator and UAV node m j is

CCrta =
bc

nm
log2(1+SNRrta) (4.19)

where bc is the bandwidth of LoRa concentrator, and nm is the number of UAV nodes.

4.3.2 Performance Metrics

To achieve efficient task management in UAV-mounted mobile edge computing using Lo-
RaWAN, I choose two main metrics, service time and energy consumption for performance
evaluation.

First, to calculate service time, I consider three parts, that is, patrol time, fly time and
hover/transmission time.

tserv
i, j = t ptl + t f ly

i, j + thov (4.20)

As shown in Fig. 4.5 and Equation (4.20), after taking off from ground station, UAV
nodes first may switch to patrol mode. I regard this mode as a preparation phase that enables
UAV nodes to surround the affected area according to the specified route within the signal
coverage of the LoRaWAN concentrator. Patrol time t ptl can be calculated by vp.

When a m j receives a request from the user device, it then may temporarily suspend
the patrol mode and determine the hovering position based on the GPS information being
uploaded. And to get close to the target as quickly as possible, UAV nodes need to speed up.

t f ly
i, j = tac + tun + tde (4.21)

4.3 Problem Formulation: UAV-assisted Edge Computing 69

LoRa
concentrator

Takeoff

Patrol Route
Emergency

communication

Hover for
service

Patrol mode

Fly mode

Hover mode

Fig. 4.5 A sketch of UAV-mounted MEC service mode

where tac, tun, tde respectively stands for the time cost on the process of acceleration, uniform
speed and deceleration. In case the maximum speed vmax is reached, we have

di, j =dac +dun +dde

=vptac +
1
2

aact2
ac + vmaxtun +

1
2

adet2
de

(4.22)

where dac, dun and dde are distances traveled during acceleration, uniform speed and deceler-
ation. vp is the patrol speed. aac and ade are acceleration and deceleration values.

Last and most important, the time cost on inter-tier emergency communications. After
switching to the hover mode, UAV nodes actually play the role of signal relay equipment.
That is, sharing LoRa signals transmitted over long distances to user devices.

thov =tatg + trta

=spkt/ratg
bit + spkt/rrta

bit +(di, j +d j,s)/c
(4.23)

As shown in Equation (4.23), I calculate the transmission time cost on both two parts, air-
to-ground and remote-to-air. Both parts need to consider transmission delay and propagation
delay. For the former, the size of the packet to be transmitted spkt and data transmission rate
rbit are needed. For the latter, di, j & d j,s (distances between ui, m j and central server), and c
(the speed of light) are needed.

70 UAV-assisted Network Coverage Expansion

According to the demand of users, sometimes we do not need help from Control Tier, the
request can be answered by UAV nodes, such as uploading the injury report. In other cases,
users may want to send messages to the outside world, thus I have to consider trta.

Secondly, the energy consumption of UAV-mounted MEC using LoRaWAN in three
modes. Here I focus on is the energy cost of UAV nodes, that is, the part provided by the
UAV onboard batteries. Under current manufacturing technology, battery capacity is still one
of the bottlenecks limiting the work performance of UAVs. As a result, in this thesis, I am
committed to maximizing the utilization of battery power when processing requests from
User Tier with a suitable task management strategy.

eserv = eptl(t ptl)+ e f ly
i, j (t

f ly
i, j)+ ehov(thov) (4.24)

Similar to time cost, I consider three parts of power consumption on UAV batteries. e f ly
i, j

stands for the part on movement from the where m j is to the hover position for ui. The reason
why I do not consider the part on transmission using LoRaWAN is that comparing with the
cost of flying, transmission cost almost can be negligible. For example, DJI Matrice 100 as
the UAV model for development can hover for 22 min with the standard 4500 mAh TB47D
battery [17], and LoRa module RAK811 which can be embedded on UAV has the maximum
transmit power of 20 dBm/100 mW [RAK].

eptl+ f ly(t ptl + t f ly
i, j)

=
∫ t ptl+t f ly

i, j

0
[µ1v(t)3 +

µ2

v(t)
(1+

ac(t)2

g2
0

)]dt

+
1
2

m[v(t f ly
i, j)

2− v(0)2]

(4.25)

As shown in Fig. 4.25 [41] [90], according to some principles in helicopter aerodynamics,
I use v(t) to indicate the speed which can be changed in acceleration and deceleration. g0

stands for the gravitational acceleration and m refers to the mass of UAV node. µ1 and µ2 are
two parameters given by

µ1 =
1
2

ρairCD,0Ap

µ2 =
2(mg0)

2

πe0rasρairAp

(4.26)

where ρair stands for the air density and CD,0 is the zero-lift drag coefficient which relates
to UAV’s size, speed, and flying altitude. Ap is the area of the propellers on UAV, ras is the
aspect ratio of propellers.

4.3 Problem Formulation: UAV-assisted Edge Computing 71

Since the procedure of e f ly
i, j is switched from patrol mode and ending at hover mode while

fly speed drops to zero. As a result, the right half of Equation (4.25) can be

1
2

m[v(t f ly
i, j)

2− v(0)2] =
1
2

m[02− v2
p] =−

1
2

mv2
p (4.27)

In addition, ac in Equation (4.25) means the centrifugal acceleration which refers to an
inertial force directed away from the axis of rotation.

ac(t) =

√
a(t)2− (aT (t)v(t))2

v(t)2 (4.28)

where aT and v are acceleration and speed in vector form. Energy consumption on UAV
hovering is given by [24]

ehov(t) = eatg + erta = phov(tatg + tatg) (4.29)

4.3.3 Markov Chain Modeling

After modeling the UAV flying and metrics for performance evaluation, in this subsection, I
present a time-homogeneous Markov chain for modeling the procedure of task management.
First, I define a task queue Qt to collect in the central server all the requests from user devices
which are forwarded by UAV nodes through LoRa connections. And for the process of the
task at the head of Qt , I denote it as one time-slot. That is, in the current τ my target is to
handle the task of the queue header. Then for τ , there exist two results that the current task
can be finished, by UAV nodes in Service Tier or by the central server in Control Tier [50].

xm
i (τ),x

s
i (τ) ∈ {0,1} (4.30)

Equation (4.30) shows the results in time-slot τ . xm
i (τ) = 1 means the ui is asking for

service from UAV nodes, and xm
i (τ) = 0 means not, the same with xs

i (τ) of central server.
That is, {xm

i (τ),x
s
i (τ)} = {1,1} stands for the case that ui asks for help from either of the

two tiers. And {xm
i (τ),x

s
i (τ)}= {0,0} is for the case that ui does out send request. I use an

FIFO (First In First Out) Qt(τ) to display the number of requests still not finished in τ . As a
result, in τ +1 we have

Qt(τ +1) =

{
Qt(τ)− f (τ)+η(t), i f Qt(τ)+η(τ)≤CQ

CQ− f (τ), i f Qt(τ)+η(τ)>CQ
(4.31)

72 UAV-assisted Network Coverage Expansion

where CQ stands for the maximum capacity of the queue. In my design, UAV nodes can
collect user requests and upload to LoRa concentrator no matter they are patrolling, flying
or hovering for service. And η(τ) stands for the number of new tasks being pushed into Qt

within this τ . f (τ) is a function given by

f (τ) =
nu

∑
i=1

fi(τ) =
1
2

nu

∑
i=1

[xm
i (τ)+ xs

i (τ)+ |xm
i (τ)− xs

i (τ)|] (4.32)

Equation (4.32) gives the results of requests sent by all nu user devices in τ . In the case
that task needs the help of both tiers {xm(τ),xs(τ)} = {1,1}, I expect the output to be no
more than 1. Next, I determine the work state of Service Tier and Control Tier.

ym(τ),ys(τ) ∈ Z, 0≤ ym(τ)≤ nm, 0≤ ys(τ)≤Cs (4.33)

Similar with Equation (4.30), numerical values in Equation (4.33) stand for the number
of tasks occupying this tier, 0 stands for idle state. For Service Tier, each UAV node can
only serve for one user device, that is ym(τ) = nm means all nm UAV nodes are busy. And
for Control Tier, ys(τ) =Cs means central server is reaching the capacity of computational
resource in τ .

ym(τ +1) =
ym(τ)+

nu
∑

i=1
xm

i (τ)−ξ m(τ), i f ym(τ)+
nu
∑

i=1
xm

i (τ)≤ nm

nm−ξ m(τ), i f ym(τ)+
nu
∑

i=1
xm

i (τ)> nm

(4.34)

ys(τ +1) =
ys(τ)+

nu
∑

i=1
xs

i (τ)−ξ s(τ), i f ys(τ)+
nu
∑

i=1
xs

i (τ)≤Cs

Cs−ξ s(τ), i f ym(τ)+
nu
∑

i=1
xm

i (τ)>Cs

(4.35)

As shown in Equations (4.34) and (4.35), in the next time-slot τ + 1, xm
i (τ) and xs

i (τ)

newly come into the processing unit of two tiers. ξ (τ) stands for the number of tasks
finishing. Here I use SS to denote the state space of the UML system in Markov chain.

SS(τ) = {Qt(τ),ym(τ),ys(τ)} (4.36)

As a result, the discrete state space is finite and can be shown as a three-dimensional
matrix with CQ by nm by Cs.

4.3 Problem Formulation: UAV-assisted Edge Computing 73

4.3.4 Problem Formulation

First, according to Equations (4.20) and (4.23), the problem on service time in total is given
by

nτ

∑
τ

tserv
τ =

nτ

∑
τ

nu

∑
i=1

[Pxi
1,0(τ)(t

atg,i + t ptl
i + t f ly

i)

+(Pxi
0,1(τ)+Pxi

1,1(τ))(t
atg,i + trta,i + t ptl

i + t f ly
i)]

(4.37)

where tserv
τ denotes the service time generated in τ . Px

0,0(τ), Px
0,1(τ), Px

1,0(τ) and Px
1,1(τ)

are probabilities of four cases in Equation (4.30). That is, within this time-slot, some of
requests/tasks sent by user devices in front of the Qt get answered. The ones on Control Tier
enter the processing unit of central server, and the ones on Service Tier are being allocated to
the UAV nodes nearby. Thus, together with Equation (4.6), my target of reducing time cost
in UML system is

minimum P(nu)
nτ

∑
τ

tserv
τ

sub ject to C1 : Px
0,0(τ)+Px

0,1(τ)+Px
1,0(τ)+Px

1,1(τ) = 1

C2 : 0≤Πi ≤ 1, ∑
i∈SS

= 1, Πi = ∑
j∈SS

Π j pri, j

(4.38)

C2 in (4.38) is the steady-state condition in time-homogeneous Markov chain [78]. Π

stands for the stationary distribution and pri, j is the transition probability from Π j to Πi.
Second, according to Equation (4.25), the problem of energy cost on UAV batteries is

given by

nτ

∑
τ

eptl+ f ly
τ =

nτ

∑
τ

nu

∑
i=1
{
∫ t ptl

i +t f ly
i

0
[µ1v(t)3 +

µ2

v(t)
(1+

ac(t)2

g2
0

)]dt

+
1
2

m[v(t ptl
i + t f ly

i + τlτ)2− v(τlτ)2]}
(4.39)

where l stands for the length of a single time-slot, that is, I calculate the part energy con-
sumption from the end of the current τ to arrival at hover position.

nτ

∑
τ

ehov
τ =phov

nτ

∑
τ

nu

∑
i=1
{Pxi

1,0(τ)t
atg,i

+[Pxi
0,1(τ)+Pxi

1,1(τ)](t
atg,i + trta,i)}

(4.40)

Similarly, together with Equations (4.6) and (4.24), my target of reducing energy con-
sumption in UML system is

74 UAV-assisted Network Coverage Expansion

minimum P(nu)
nτ

∑
τ

(eptl+ f ly
τ + ehov

τ)

sub ject to C1 : Px
0,0(τ)+Px

0,1(τ)+Px
1,0(τ)+Px

1,1(τ) = 1

C2 : 0≤Πi ≤ 1, ∑
i∈SS

= 1, Πi = ∑
j∈SS

Π j pri, j

(4.41)

In consideration of the uncertainty in calculating different parts in Equations (4.38) and
(4.41), there may even exist difference in order of magnitude. As a result, in the design of
task management strategies, I focus on taking care of each part from a global perspective and
looking for multi-objective solutions.

4.4 Algorithm Design

4.4.1 Lightweight UAV Navigation Strategy Based on Airborne Vision

In this section, I design a lightweight UAV navigation strategy based the visual recognition
results from images captured by gimbal camera.

To realize the lightweight control of UAV, firstly I need to learn the valid information
from the recognition results including the position of the targeted object and its size within
the image.

As shown in Fig. 4.6, here I cope with an example of recognized object in post-disaster
scenario. Through the frame drawn by visual recognition module supported by both onboard
computer and offloading devices. I obtain the information of where the object is and how
large is it. (xrt ,yrt) and (xlb,ylb) are two points at the right top and left bottom, respectively.
As a result, I have the size of target as width w (xrt− xlb)× height h (yrt− ylb). Then I can
obtain the center of the target in the image as {1

2(xrt + xlb),
1
2(yrt + ylb)}. As a result, the

center offset oc and offset angle oa are

oc =

√
1
4
(xrt + xlb)2 +

1
4
(yrt + ylb)2 (4.42)

oa =

{
arccos(xrt+xlb

2oc
)(rad), i f yrt + ylb ≥ 0

−arccos(xrt+xlb
2oc

)(rad), i f yrt + ylb < 0
(4.43)

Thus, fly control module can take steps in turning around and approaching. Moreover,
my strategy is enabled with feedback. That is, facing complex disaster scenarios, UAVs
often cannot lock the target by following the above steps once. Sometimes it is necessary to
modify the path multiple times. As a result, I not only can reduce cost on manpower decision

4.4 Algorithm Design 75

Height

Width

Center offset

Offset angle

(xrt, yrt)

(xlb, ylb)

Fig. 4.6 An example of recognition result

making, but also avoid possible human errors. Even the simple situation shown in Fig. 4.6
may face the time cost on the fly adjustment. That is, during the period of changing direction
or moving, new fly instruction can also take effect. I apply this dynamic on-air feedback to
accurately grasp the conditions of disaster environment. Especially when accidents such as
the movement of object or appearance of obstacle happen, UAVs can respond accordingly.
As a result, I design a lightweight UAV navigation algorithm to help obtain the flight paths
based on visual recognition results.

As shown in Algorithm 5, W and H are the size of the image with targeted object.
α ∈ (0,1) is a ratio used for deciding whether to get close to the object or stay away. In
the current loop of time-slot, task schedule module gives fly instructions by judging the
location information of the target in the image being captured by gimbal camera. While there
exist multiple UAVs ready for missions, I take turns in checking and updating the newest
instructions. Changing directions & ascending/descending (line 6-18) are different from
moving forward/backward (line 19-23) in practice. The former two can be done by oc and
oa, and the latter one needs the comparison between w/h and αW/αH. The analysis of
computational complexity is as follows. First for time complexity in Algorithm 5, without

76 UAV-assisted Network Coverage Expansion

Algorithm 5 LUNA: Lightweight UAV Navigation Strategy
Input: oc,oa // results obtained from visual recognition module
Output: f ii // fly instructions made by task schedule module

1: loop
2: τ ← τ +1
3: for i = 1 to nu do
4: if ri(τ) = 1 then
5: f ii(τ)← 000
6: if oc ̸= 0 then
7: if |oa|= 0 or π then
8: f ii(τ)← f ii(τ)+010
9: Turn left once |oa|< π

2 , right once |oa|> π

2
10: else if |oa|= π

2 then
11: f ii(τ)← f ii(τ)+100
12: Ascend once oa < 0, descend once oa > 0
13: else
14: f ii(τ)← f ii(τ)+110
15: Turn left once |oa|< π

2 , right once |oa|> π

2
16: Ascend once oa < 0, descend once oa > 0
17: end if
18: end if
19: if w < αWi(τ) && h < αHi(τ) then
20: f ii(τ)← f ii(τ)+001, forward
21: else if w > αWi(τ) || h > αHi(τ) then
22: f ii(τ)← f ii(τ)+001, backward
23: end if
24: end if
25: end for
26: end loop

the regard of the loop for time-slot, there exist only one f or loop, then I have the O(nu).
Second for space complexity, since nu of ri and f ii are needed, I have O(nu).

4.4.2 Task Management Strategy for UAV-mounted MEC Using Lo-
RaWAN

In this subsection, I design task management strategies for UAV-mounted MEC service using
LoRaWAN in a post-disaster scenario.

To solve the two problems shown in (4.38) and (4.41), I design two algorithms in handling
task assignment and task queue management during the operation of the UML system. First,
I propose an algorithm for allocating the tasks collected by the LoRa concentrator to UAV

4.4 Algorithm Design 77

nodes in Service Tier. The central server plays the role of a backup service provider to take
over the tasks in need of high computational resource consumption.

Algorithm 6 STAS: Single Task Assignment Strategy
1: this_task // the current task from ui

2: d∗min // the shortest distance between ui and any idle m j

3: {xm(τ),xs(τ)} // the results whether the task can be assigned to Server Tier and Control Tier
4: loop
5: τ = τ +1
6: this_task(from ui)← Qt .pop()
7: if this_task.xm(τ) = 1 || this_task.xs(τ) = 1 then
8: if f ind(m j|m j.state = 0 && dist(m j,ui) = d∗min) then
9: if this_task.xm(τ) = 1 then

10: m j.state← 0, this_task.xm(τ)← 0, this_task.xs(τ)← 0
11: else if Cs <Cmax then
12: Cs←Cs +1, this_task.xs(τ)← 0
13: end if
14: end if
15: end if
16: end loop

Algorithm 6 describe the process of one task this_task being assigned to one of the UAV
nodes or server according to decision parameters [xm(τ),xs(τ)] with the current time-slot.
Assuming that the user who sends this_task is ui, I start by finding the nearest UAV node
to ensure a stable connection. Line 9 judges if this_task is {1,1} or {1,0}. That is, I aim at
using UAV nodes at the edge as much as possible when computing resources are sufficient in
the UML system. m j.state stands for the work status indicator, 1 for occupied and 0 for idle.
Time complexity of Algorithm 6 is O(nτ).

Second, to manage the FIFO task queue defined in Equation (4.31), I propose TQMS as
shown in Algorithm 7.

Follow the steps in Algorithm 6, when this_task does not find an idle UAV node within
this τ , this_task will be pushed into Qt again to wait for the chance in next τ (line9). Then as
shown in line 12-17, I push the new tasks newtask into Qt until reaching maximum capacity
CQ. In my design in UML, besides performing the tasks assigned by STAS, UAV nodes can
receive nearby user requests containing GPS position information at any time. The time
complexity is O(nτ(n_task+n_newtask)).

With the help of STAS and TQMS, I am able to manage the requests collected by UAV
nodes, and select service provider for each of them considering the time & energy cost as
well as the work state of nodes and server.

78 UAV-assisted Network Coverage Expansion

Algorithm 7 TQMS: Task Queue Management Strategy
1: newtask // new tasks received within the current τ

2: loop
3: τ = τ +1
4: n_task = Qt .size
5: for i = 1 to n_task do
6: this_task← Qt .pop()
7: task assignment
8: if this_task.xm(τ) = 1 || this_task.xs(τ) = 1 then
9: Qt .push(this_task)

10: end if
11: end for
12: for i = 1 to newtask.size do
13: if Qt .size <CQ then
14: Qt .push(newtask(i))
15: else
16: break
17: end if
18: end for
19: end loop

4.5 Performance Evaluation

In this section, I carry out simulations and experiments for lightweight UAV navigation.
There are two parts, airborne visual recognition test, and path-finding simulations based on
recognition results.

4.5.1 Airborne Visual Recognition

First, in model training, the model is obtained from ssd_mobilenet_v1_coco after retraining.
I would like to use this existed model acquired from MobileNet as a pre-model. I first build
a post-disaster scenario by miniature models with 1/150 scale and take 658 photos as data
for second training. I use a server with the configuration of Intel Core i7-7700, NVIDIA
GTX 1080, 16 GB memory, for training 100,000 steps. As a result, I put a trained model
of 22.75 MB at the offloading device. Compared with the pre-model of 29.11 MB, here I
re-train by images after compression and further realize the lightweight of the deep learning
model itself.

Fig. 4.7∼4.9 are three examples of airborne visual recognition results, in this part, I
consider three kinds of targeted objects in disaster scenarios, high building, low building, and
base station tower. Each one has different external features that can be collected, classified

4.5 Performance Evaluation 79

Fig. 4.7 Three examples of airborne visual recognition results: High building

80 UAV-assisted Network Coverage Expansion

Fig. 4.8 Three examples of airborne visual recognition results: Low building

and combined through trained model. Thus, visual recognition module then can give the
judgment on whether the wanted object is in the captured image.

Next, I take 224 more photos as test dataset which include all three types of objects. The
actual appearance and number of objects appearing within the test images are both random.
I calculate the receiver operating characteristic (ROC) curves of three types to show the
diagnostic ability of the model when serving as binary classifiers to judging if one or more
instances are existing.

In Fig. 4.10∼4.12, the ROC curves of high building, low building, and base station
tower show different results. ROC curves can show the performance of binary classifiers
in the prediction experiment. AUC (area under the curve) refers to the probability that
binary classifiers rank positive instances (targeted objects exist) higher than negative ones
(no targeted object) [22]. The value of AUC can serve as an indicator of the pros and cons of
the model.

The x-axis is the false positive rate (FPR) or fall-out that refers to how many objects
being wrongly recognized while there exists no instance in the test. And the y-axis is true
positive rate (TPR) or recall that refers to how many objects being correctly recognized while
there exist instances. The calculations of FPR and TPR are as follows

4.5 Performance Evaluation 81

Fig. 4.9 Three examples of airborne visual recognition results: Base station tower

82 UAV-assisted Network Coverage Expansion

Fig. 4.10 ROC curves of airborne visual recognition results: (a) High building

FPR =
FP

FP+T N
(4.44)

T PR =
T P

T P+FN
(4.45)

where FP, TN, TP, and FN are short for false positive, true positive, true negative, and false
positive, respectively.

Blue curves (LUNA-TL) are the proposed lightweight method with the consideration of
transfer learning, while green ones (LUNA) are without that. I also draw the yellow curves
(LUNA’) which are obtained by reversing the decisions of green ones as comparisons. Red
dotted lines are baselines for random guessing.

First in Fig. 4.10, without the consideration of the mixed model, the blue curve is even
below the baseline which means the performance is worse than random guessing. By drawing
its mirrored curve across the baseline, I can see that although sometimes LUNA-TL and
LUNA’ fluctuate high and low, I achieve a larger AUC in the mixed model. Then in Fig. 4.11,
the gap between LUNA-TL and LUNA (LUNA’) becomes larger. And in Fig. 4.12, LUNA
without transfer learning bypasses its mirrored curve. In summary, for the recognition of

4.5 Performance Evaluation 83

Fig. 4.11 ROC curves of airborne visual recognition results: (b) Low building

three objects, the model shows better performance in finding base station towers from the
airborne vision. This can be explained by the object itself that base station tower has a big
difference against the other two. The features of Fig. 4.12 are easy to distinguish on the outer
contour.

Next, I verify the effectiveness of my proposed navigation algorithm based on the
recognized results.

4.5.2 UAV Lightweight Navigation Based on Airborne Vision

Through the recognized results, the fly control module can obtain the instructions on changing
directions, etc. I assume that there exists a 3-D simulation scenario with 1000×1000×200
m3. Once receiving a request with the position of the target spot, a UAV embedded with the
navigation system will take off from (0, 0, 0) and head to the destination. After arriving in
the nearby area of the target, once line 19-22 in Algorithm 5 is satisfied, UAV then starts the
next task. I repeat the procedure of request 10000 times and calculate the average time cost
on following different fly instructions.

84 UAV-assisted Network Coverage Expansion

Fig. 4.12 ROC curves of airborne visual recognition results: (c) Base station tower

0.6 0.65 0.7 0.75 0.8 0.85
0

2

4

6

8

10

T
im

e
 c

o
s
t
p
e
r

ta
s
k
 (

s
)

t_forward/backward

t_left/right

t_ascend/descend

Fig. 4.13 UAV lightweight navigation results: (a) Three types of time cost per task

4.5 Performance Evaluation 85

Task1

Task2

Task3

Task4

Task5

Fig. 4.14 UAV lightweight navigation results: (b) An example of flight path

Fig. 4.15 UAV lightweight navigation results: (c) An example of navigation procedure

86 UAV-assisted Network Coverage Expansion

Table 4.2 Experimental settings of UAV-assisted edge computing

Parameter Value Parameter Value
Number of users 100 d f s,d0 5, 100 m

Number of UAVs 50 γlos,γnlos 2, 2.5

Flight altitude of UAVs 100 m X los
g ,Xnlos

g 5, 20 dB

Bit rate of LoRa 50 kbps α,β 15.27, -0.88

Frequency of LoRa 1 GHz γld 2

Bandwidth of LoRa 500 kHz X ld
g 0 dB

Transmit Power of LoRa 100 mW σ2
g -100 dBm

As shown in Fig. 4.13, here I compare the results of different α . Blue, red and yellow
bars stand for the time cost on moving forward/backward, turning left/right and ascend-
ing/descending. A larger α means the distance of judging whether to approach or apart from
target. Compared with forward/backward and left/right, the time cost on adjustments of
flight altitude changes not much. To further demonstrate the principles of the lightweight
navigation strategy, I add Fig. 4.14 and 4.15. Fig. 4.14 gives an example that one UAV is
assigned to complete five tasks at different places. From the figure, I can know that before
reaching in front of the target, UAV constantly fine-tuning the flight posture based on the
recognition of captured images. And for each movement, Fig. 4.15 gives the overlayed result
showing how a UAV is flying near the target while receiving feedback from the camera lens.
Boxes 1 to 5 are targets been found out in five in time order. For example, from box 1 to box
2, I need a fly instruction 011 according to Fig. 4.1 that turning left and approaching. Then
after several rounds of feedback, from box 4 to box 5, I can judge that a right-and-forward is
sent to fly control module. As a result, in this way, I can realize the lightweight navigation
based on airborne vision.

In summary, I carry out experiments of testing the UAV onboard visual recognition and
simulate the procedure of autonomous navigation according to the real-time recognition. The
results show that my design on visual recognition can increase the performance and solution
on UAV lightweight navigation is feasible.

4.5.3 UAV-assisted Edge Computing for Disaster Management

Here I evaluate my proposed strategies by simulation experiments in achieving UAV-mounted
mobile edge computing for disaster management.

4.5 Performance Evaluation 87

As shown in TABLE 4.2, there exist 100 users in a square affected area R2 after the
disaster. I have 50 UAVs as carriers for providing MEC services to users in need. UAVs fly at
an altitude of 100 m and receive requests from user devices at any time. LoRa concentrator at
the center of the area plays the role of collecting user requests and handing them over to the
central server for task management and assignment. I set the carrier frequency, bandwidth
and maximum transmit power of LoRa to 1 GHz, 500 kHz and 100 mW (20 dBm). And
for communication in the air-to-ground part, I use the parameters in 802.11n. I choose
the suburban environment model [36] for α and β used in calculating the probability of
LoS/NLoS path loss.

In each τ , devices in User Tier send requests to UAV nodes in the patrol model or passing
by. With the help of long-range low-cost LoRa connection, UAV nodes can forward requests
up to concentrator immediately together with the work state information ym(τ). Central
server decides the task performers of each task in queue according to the users’ locations
{φ ,λ ,h} and specific requirements xm(τ). Central server also participates in task processing
when xs(τ) = 1. At last, the tasks can not find idle UAV nodes or available computational
resources in the server will be pushed back into Qt with new ones received in this τ . I set
different lτ from 100 ms to 1 s and repeat each group 10000 times. The results are as follows.

The reason I choose lτ as a variable in performance evaluation is that, as I choose the
Markov chain model to describe the system state transition, it is especially important when
defining discrete time-slot. In the case that the other experiment settings are the same, the
length of τ may affect the overall state change frequency and then determine performance
parameters such as SNR and channel capacity under different conditions. In addition with
the situation that user density ρu changes in x-axis while the total number stays the same, I
would like to explore what kind of increase in burden may be brought to UAVs in use, and
how LoRa can enhance the UML system such as no excessive fluctuations in time or energy
consumption.

Fig. 4.16 shows the time cost on each task being solved in the UML system. First, in
Fig. 4.16a, four colored polylines stand for the average patrol time with different lengths of
τ . In order to take advantage of the high mobility of UAVs, patrol mode is able to make use
of the idle UAV nodes. The average time cost on this mode is consistent with lτ from high
to low in numerical value. Purple line with lτ = 1000 ms is far higher than the results under
other conditions. And there exist significant fluctuations as the user density changes. In my
system model design, large lτ may reduce the system state transition speed. And in relation
to the time spent on UAV patrolling, it is possible to perform multiple task assignments
within the same time (such as flying to an area that has not been visited and then picking up
new tasks), and only a few commands can be executed when lτ is large. Fluctuations here

88 UAV-assisted Network Coverage Expansion

500 1000 1500 2000 2500 3000

Length of square affected area (m)

0

5

10

15

20

25

A
v
e

ra
g

e
 t

p
tl
 (

s
)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(a) UAV patrolling

500 1000 1500 2000 2500 3000

Length of square affected area (m)

0

50

100

150

200

A
v
e

ra
g

e
 t

fl
y
 (

s
)

{x
m

(),x
s
()}={1,1}

{x
m

(),x
s
()}={1,0}

{x
m

(),x
s
()}={0,1}

(b) UAV flying (lτ = 100 ms)

500 1000 1500 2000 2500 3000

Length of square affected area (m)

1.2

1.4

1.6

1.8

2

A
v
e

ra
g

e
 t

a
tg

 (
s
)

10-4

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(c) Air-to-ground communication

500 1000 1500 2000 2500 3000

Length of square affected area (m)

0.6

0.8

1

1.2

1.4

A
v
e

ra
g

e
 t

rt
a
 (

s
)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(d) Remote-to-air communication

Fig. 4.16 Simulation results of time cost on UAV-based mobile edge computing using
LoRaWAN

4.5 Performance Evaluation 89

500 1000 1500 2000 2500 3000

Length of square affected area (m)

2000

4000

6000

8000

10000

12000

A
v
e

ra
g

e
 e

p
tl
 (

J
)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(a) UAV patrolling

500 1000 1500 2000 2500 3000

Length of square affected area (m)

1

2

3

4

5

6

7

8

A
v
e

ra
g

e
 e

fl
y
 (

J
)

104

{x
m

(),x
s
()}={1,1}

{x
m

(),x
s
()}={1,0}

{x
m

(),x
s
()}={0,1}

(b) UAV flying (lτ = 100 ms)

Fig. 4.17 Simulation results of energy cost on UAV-based mobile edge computing using
LoRaWAN

can be explained that when the affected is small, there may be no obvious differences in
responsibility areas among UAVs. m1 may have done what m2 should have done, and m2 has
to stay in patrol mode longer, similar situations like this will bring uncertainty to the results.

Fig. 4.16b gives the average fly time of a single task being solved. I choose task indicators
of two tiers as variable for t f ly, that is, task with {xm

i (τ),x
s
i (τ)}= {1,1}, {1,0} and {0,1}.

As user density decreases, the UAV flying time required for each task increases linearly.
Moreover, the overlapped results indicate that my UML system treats tasks of different needs
equally.

Since the time costs on air-to-ground (802.11n) and remote-to-air (LoRa) are in the same
order of magnitude, I divide the results of thov into Figs. 4.16c and 4.16d. As shown in
the figures, tatg and trta under the current experimental settings are relatively stable. It only
needs about 0.17 ms for a single task in air-to-ground communication and about 1 s for
remote-to-air. As a result, I can get the ratio of time cost between two parts as 1.7 × 10−4.

Second, I obtain the results of energy consumption in different modes. First, the part of
eptl , lτ = 1000 ms in purple line keep the similar pattern. Especially when the user density ρu

= 400 km−2, each task costs about 12000 J on UAV patrolling averagely. Situations of the
other lτ show some irregularity. That is, compared to time cost, energy consumption may be
weaker in correlation with different lengths of time-slot.

Then in the case of UAV flying, energy consumption also appears different from time Fig.
4.16. As shown in Fig. 4.17b, the result of {xm

i (τ),x
s
i (τ)} = {1,1} in green line behaves

significant fluctuations when length of square area is 500/1000 m. Since tasks of {1,1} can
be satisfied by either UAV nodes in Service Tier or central server in Control Tier, they may

90 UAV-assisted Network Coverage Expansion

500 1000 1500 2000 2500 3000

Length of square affected area (m)

10

15

20

25

A
v
e

ra
g

e
 P

la
tg

 (
d

B
)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(a) Air-to-ground communication

500 1000 1500 2000 2500 3000

Length of square affected area (m)

88

92

96

100

104

A
v
e

ra
g

e
 P

lrt
a
 (

d
B

)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(b) Remote-to-air communication

Fig. 4.18 Simulation results of path loss on UAV-based mobile edge computing using
LoRaWAN

not have advantages in the priority of task assignment. According to Equation (4.29), since
eatg and erta only relate respective time cost, I skip this part of results.

Besides two main metrics, I also consider the path loss (dB), SNR (dB) and channel
capacity (Mbit/s) of air-to-ground and remote-to-air communications.

Figs. 4.18a and 4.18b show the path losses of two parts. ∗ marker in Figs. 4.18a
stands for the modification in setting y-axis. I calculate the original numerical values by
(Plorg−105.4109117583)×1012. As a result, the path loss in LoS/NLoS model of air-to-
ground communication stays at 105.41 dB. And for remote-to-air part in log-distance model
of LoRaWAN, path loss increases with sparser user density and larger lτ

The same with Fig. 4.18a, I calculate the original values by (SNRorg−14.58908824167)×
1013. The SNR of air-to-ground also stays at 14.59 dB. For remote-to-air part of LoRaWAN,
SNR decreases with sparser user density.

Lastly, I calculate the channel capacity by Equations (4.16) and (4.19). Air-to-ground
part in 802.11n has larger but unstable channel capacity as user density or lτ changes. And
remote-to-ground of LoRa shows regular variation that channel capacity decreases with
sparser user density and larger lτ .

In summary, through the simulation results of time and energy cost, path loss, SNR
and channel capacity, my proposed task management strategies can provide low-cost MEC
services based on UAV and LoRaWAN to users in the affected area after a disaster.

4.5 Performance Evaluation 91

500 1000 1500 2000 2500 3000

Length of square affected area (m)

75

80

85

A
v
e

ra
g

e
 S

N
R

a
tg

 (
d

B
)

l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(a) Air-to-ground communication

500 1000 1500 2000 2500

Length of square affected area (m)

2

6

10

14

18

A
v
e

ra
g

e
 S

N
R

rt
a
 (

d
B

) l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(b) Remote-to-air communication

Fig. 4.19 Simulation results of SNR on UAV-based mobile edge computing using LoRaWAN

500 1000 1500 2000 2500 3000

Length of square affected area (m)

16

16.5

17

17.5

18

18.5

A
v
e

ra
g

e
 C

C
a

tg
 (

M
b

it
/s

) l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(a) Air-to-ground communication

500 1000 1500 2000 2500 3000

Length of square affected area (m)

0.5

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 C

C
rt

a
 (

M
b

it
/s

) l = 100 ms

l = 200 ms

l = 500 ms

l = 1000 ms

(b) Remote-to-air communication

Fig. 4.20 Simulation results of channel capacity on UAV-based mobile edge computing using
LoRaWAN

Chapter 5

Conclusions and Future Directions

This chapter draws the conclusions of this thesis and give some future works. Through
Chapter 2 4, I introduce my solutions of applying different emerging technologies in building
the next generation disaster response system.

In the first part of emergency networking, I design an information-centric fog computing
architecture to fast build a temporary emergency network while the original ones can not
be used. I focus on solving name-based routing for disaster relief by applying the idea
from six degrees of separation theory. I first put forward a 2-tier information-centric fog
network architecture under the scenario of post-disaster. Then I model the relationships
among ICN nodes based on delivered files, and propose a name-based routing strategy to
enable fast networking and emergency communication. I compare with DNRP under the
same experimental settings and prove that my strategy can achieve higher work performance.

In the second part of efficiency optimization, I introduce the idea of edge caching in
prolong the lifetime of rebuilt network. I focus on how to improve energy efficiency of
edge caching using in-memory storage and processing. Here I build a 3-tier heterogeneous
network structure and propose two edge caching methods using different TTL designs &
cache replacement policies. I use total energy consumption and backhaul rate as the two
metrics to test the performance of in-memory caching method and compare with conventional
method based on disk storage. The simulation results show that in-memory storage and
processing can help save more energy in edge caching and share considerable workload in
percentage.

In the third part of coverage expansion, I apply UAV technology and real-time image
recognition in user search and autonomous navigation. I focus on the problem of designing a
navigation strategy based on the airborne vision for UAV disaster relief. After the survey
of related works on UAV fly control in disaster management, I find that in consideration
of the current UAV manufacturing technology and actual demand on unmanned search &

94 Conclusions and Future Directions

rescue, a lightweight solution is in urgent need. As a result, I design a lightweight navigation
strategy based on visual recognition using transfer learning. In the simulation part, I evaluate
my solutions using 1/150 miniature models and test the feasibility of the navigation strategy.
The results show that my design on visual recognition has the potential for a breakthrough
in performance and the idea of UAV lightweight navigation can realize real-time flight
adjustment based on feedback. There exist some drawbacks in my work such as the precision
in navigation, and the lack of real-world verification. In the future, since my work still stays
in the experimental stage, I am going to consider more technical details and make efforts to
achieve the implementation of UAV autonomous navigation in disaster management.

References

[1] Adamic, L. A. and Huberman, B. A. (2002). Zipf’s law and the internet. Glottometrics,
3(1):143–150.

[2] Al-Hourani, A. and Gomez, K. (2018). Modeling cellular-to-uav path-loss for suburban
environments. IEEE Wireless Communications Letters, 7(1):82–85.

[3] Al-Hourani, A., Kandeepan, S., and Lardner, S. (2014). Optimal lap altitude for maxi-
mum coverage. IEEE Wireless Communications Letters, 3(6):569–572.

[4] Andrews, J. G., Baccelli, F., and Ganti, R. K. (2011). A tractable approach to coverage
and rate in cellular networks. IEEE Transactions on Communications, 59(11):3122–3134.

[5] Baccelli, F. and Blaszczyszyn, B. (2010). Stochastic geometry and wireless networks:
Volume ii applications. Foundations and Trends in Networking, 4(1-2):1–312.

[6] Beneventi, F., Bartolini, A., Cavazzoni, C., and Benini, L. (2017). Continuous learning
of hpc infrastructure models using big data analytics and in-memory processing tools. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pages 1038–
1043.

[7] Bettstetter, C., Resta, G., and Santi, P. (2003). The node distribution of the random
waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile
Computing, 2(3):257–269.

[8] Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., and Popovski, P. (2014). Five
disruptive technology directions for 5g. IEEE Communications Magazine, 52(2):74–80.

[9] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role
in the internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA. ACM.

[10] Bor, M. C., Roedig, U., Voigt, T., and Alonso, J. M. (2016). Do lora low-power
wide-area networks scale? In Proceedings of the 19th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’16, pages
59–67, New York, NY, USA. ACM.

[11] Buzzi, S., I, C., Klein, T. E., Poor, H. V., Yang, C., and Zappone, A. (2016). A survey
of energy-efficient techniques for 5g networks and challenges ahead. IEEE Journal on
Selected Areas in Communications, 34(4):697–709.

96 References

[12] Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., and Humar, I. (2016). Mobility-aware
caching and computation offloading in 5g ultra-dense cellular networks. Sensors (Basel,
Switzerland), 16(27347975):974.

[13] Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., and Hong, C. S. (2017).
Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for
optimized quality-of-experience. IEEE Journal on Selected Areas in Communications,
35(5):1046–1061.

[14] Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., Taylor, C. J.,
and Kumar, V. (2017). Counting apples and oranges with deep learning: A data-driven
approach. IEEE Robotics and Automation Letters, 2(2):781–788.

[15] Chung, K. and Park, R. C. (2016). P2p cloud network services for iot based disaster
situations information. Peer-to-Peer Networking and Applications, 9(3):566–577.

[16] DJI. Dji - the future of possible.

[17] DJI. Matrice 100 specs.

[18] Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., and Zhu, H. (2014). Uav-assisted data
gathering in wireless sensor networks. The Journal of Supercomputing, 70(3):1142–1155.

[19] Dong, M., Ota, K., Yang, L. T., Liu, A., and Guo, M. (2016). Lscd: A low-storage clone
detection protocol for cyber-physical systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(5):712–723.

[20] Erdelj, M., Natalizio, E., Chowdhury, K. R., and Akyildiz, I. F. (2017). Help from the
sky: Leveraging uavs for disaster management. IEEE Pervasive Computing, 16(1):24–32.

[21] Ernst, C., Mladenow, A., and Strauss, C. (2017). Collaboration and crowdsourcing in
emergency management. International Journal of Pervasive Computing and Communica-
tions, 13(2):176–193.

[22] Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters,
27(8):861 – 874. ROC Analysis in Pattern Recognition.

[23] Feeney, L. M. and Nilsson, M. (2001). Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213),
volume 3, pages 1548–1557 vol.3.

[24] Franco, C. D. and Buttazzo, G. (2015). Energy-aware coverage path planning of uavs.
In 2015 IEEE International Conference on Autonomous Robot Systems and Competitions,
pages 111–117.

[25] Gabry, F., Bioglio, V., and Land, I. (2016). On energy-efficient edge caching in heteroge-
neous networks. IEEE Journal on Selected Areas in Communications, 34(12):3288–3298.

[26] Gai, K., Choo, K. R., Qiu, M., and Zhu, L. (2018a). Privacy-preserving content-
oriented wireless communication in internet-of-things. IEEE Internet of Things Journal,
5(4):3059–3067.

References 97

[27] Gai, K. and Qiu, M. (2018). Blend arithmetic operations on tensor-based fully homo-
morphic encryption over real numbers. IEEE Transactions on Industrial Informatics,
14(8):3590–3598.

[28] Gai, K., Qiu, M., Xiong, Z., and Liu, M. (2018b). Privacy-preserving multi-channel
communication in edge-of-things. Future Generation Computer Systems, 85:190 – 200.

[29] Ge, X., Yang, B., Ye, J., Mao, G., Wang, C., and Han, T. (2015). Spatial spectrum and
energy efficiency of random cellular networks. IEEE Transactions on Communications,
63(3):1019–1030.

[30] Giusti, A., Guzzi, J., Cireşan, D. C., He, F., Rodríguez, J. P., Fontana, F., Faessler, M.,
Forster, C., Schmidhuber, J., Caro, G. D., Scaramuzza, D., and Gambardella, L. M. (2016).
A machine learning approach to visual perception of forest trails for mobile robots. IEEE
Robotics and Automation Letters, 1(2):661–667.

[31] Gregori, M., Gómez-Vilardebó, J., Matamoros, J., and Gündüz, D. (2016). Wireless
content caching for small cell and d2d networks. IEEE Journal on Selected Areas in
Communications, 34(5):1222–1234.

[32] Han, G., Yang, X., Liu, L., Guizani, M., and Zhang, W. (2018). A disaster management-
oriented path planning for mobile anchor node-based localization in wireless sensor
networks. IEEE Transactions on Emerging Topics in Computing, pages 1–1.

[33] Hayajneh, A. M., Zaidi, S. A. R., McLernon, D. C., Di Renzo, M., and Ghogho, M.
(2018). Performance analysis of uav enabled disaster recovery networks: A stochastic
geometric framework based on cluster processes. IEEE Access, 6:26215–26230.

[34] Hemmati, E. and Garcia-Luna-Aceves, J. J. (2015). A comparison of name-based
content routing protocols. In 2015 IEEE 12th International Conference on Mobile Ad Hoc
and Sensor Systems, pages 537–542.

[35] Hemmati, E. and Garcia-Luna-Aceves, J. J. (2018). Making name-based content routing
more efficient than link-state routing. CoRR, abs/1804.02752.

[36] Holis, J. and Pechac, P. (2008). Elevation dependent shadowing model for mobile
communications via high altitude platforms in built-up areas. IEEE Transactions on
Antennas and Propagation, 56(4):1078–1084.

[37] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile
vision applications.

[38] Hu, Z., Zheng, Z., Song, L., Wang, T., and Li, X. (2018). Uav offloading: Spectrum
trading contract design for uav-assisted cellular networks. IEEE Transactions on Wireless
Communications, 17(9):6093–6107.

[39] Kimberling, C. (1994). Central points and central lines in the plane of a triangle.
Mathematics Magazine, 67(3):163–187.

98 References

[40] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[41] Leishman, G. J. (2006). Principles of helicopter aerodynamics with CD extra. Cam-
bridge university press.

[42] Li, H., Ota, K., and Dong, M. (2018a). Eccn: Orchestration of edge-centric com-
puting and content-centric networking in the 5g radio access network. IEEE Wireless
Communications, 25(3):88–93.

[43] Li, H., Ota, K., and Dong, M. (2018b). Learning iot in edge: Deep learning for the
internet of things with edge computing. IEEE Network, 32(1):96–101.

[44] Li, H., Ota, K., and Dong, M. (2019). Deep reinforcement scheduling for mobile
crowdsensing in fog computing. ACM Trans. Internet Technol., 19(2):21:1–21:18.

[45] Li, L., Ota, K., and Dong, M. (2018c). Deep learning for smart industry: Efficient
manufacture inspection system with fog computing. IEEE Transactions on Industrial
Informatics, pages 1–1.

[46] Li, L., Ota, K., and Dong, M. (2018d). Deepnfv: A lightweight framework for intelligent
edge network functions virtualization. IEEE Network, 33(1):136–141.

[47] Li, L., Ota, K., and Dong, M. (2018). Human in the loop: Distributed deep model for
mobile crowdsensing. IEEE Internet of Things Journal, 5(6):4957–4964.

[48] Li, L., Ota, K., Dong, M., and Borjigin, W. (2017). Eyes in the dark: Distributed scene
understanding for disaster management. IEEE Transactions on Parallel and Distributed
Systems, 28(12):3458–3471.

[49] Liu, D., Chen, B., Yang, C., and Molisch, A. F. (2016). Caching at the wireless
edge: design aspects, challenges, and future directions. IEEE Communications Magazine,
54(9):22–28.

[50] Liu, J., Mao, Y., Zhang, J., and Letaief, K. B. (2016). Delay-optimal computation task
scheduling for mobile-edge computing systems. In 2016 IEEE International Symposium
on Information Theory (ISIT), pages 1451–1455.

[51] Liu, Z., Dong, M., Zhou, H., Wang, X., Ji, Y., and Tanaka, Y. (2016). Device-to-device
assisted video frame recovery for picocell edge users in heterogeneous networks. In 2016
IEEE International Conference on Communications (ICC), pages 1–6.

[52] LoRa Alliance Technical Committee (2017). Lorawan 1.1 specification.

[53] Motlagh, N. H., Bagaa, M., and Taleb, T. (2017). Uav-based iot platform: A crowd
surveillance use case. IEEE Communications Magazine, 55(2):128–134.

[54] Mozaffari, M., Saad, W., Bennis, M., and Debbah, M. (2018). Communications and
control for wireless drone-based antenna array. IEEE Transactions on Communications,
pages 1–1.

References 99

[55] Muldoon, S. F., Bridgeford, E. W., and Bassett, D. S. (2016). Small-world propensity
and weighted brain networks. Scientific Reports, 6:22057.

[56] Naqvi, S. A. R., Hassan, S. A., Pervaiz, H., and Ni, Q. (2018). Drone-aided communi-
cation as a key enabler for 5g and resilient public safety networks. IEEE Communications
Magazine, 56(1):36–42.

[57] Ota, K., Dao, M. S., Mezaris, V., and Natale, F. G. B. D. (2017). Deep learning
for mobile multimedia: A survey. ACM Trans. Multimedia Comput. Commun. Appl.,
13(3s):34:1–34:22.

[58] Ota, K., Dong, M., Gui, J., and Liu, A. (2018). Quoin: Incentive mechanisms for crowd
sensing networks. IEEE Network, 32(2):114–119.

[59] Paper, C. W. (2018). Cisco global cloud index: Forecast and methodology, 2016–2021
white paper. Technical report, Cisco Systems, Inc.

[60] Paper, E. W. (2015). Mobile edge computing: A key technology towards 5g. Technical
report, European Telecommunications Standards Institute (ETSI).

[61] Paper, G. W. (2016). 5g vision-the 5g infrastructure public private partnership: the
next generation of communication networks and services. Technical report, The 5G
Infrastructure Public Private Partnership (5G PPP).

[62] Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., and Dai, H. (2018). A survey on low
latency towards 5g: Ran, core network and caching solutions. IEEE Communications
Surveys Tutorials, 20(4):3098–3130.

[63] Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al. (2014).
Mobile-edge computing introductory technical white paper. White paper, mobile-edge
computing (MEC) industry initiative, pages 1089–7801.

[64] Powers, D. M. W. (1998). Applications and explanations of Zipf’s law. In New Methods
in Language Processing and Computational Natural Language Learning.

[65] Prajzler, V. (2015). Lora, lorawan and loriot.io.

[RAK] RAK. Lora module rak811.

[67] Ramaswamy, L., Ling Liu, and Iyengar, A. (2005). Cache clouds: Cooperative caching
of dynamic documents in edge networks. In 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05), pages 229–238.

[68] Rousseau, R. (2002). George kingsley zipf: life, ideas, his law and informetrics.
Glottometrics, 3:11–18.

[69] Sardellitti, S., Scutari, G., and Barbarossa, S. (2015). Joint optimization of radio and
computational resources for multicell mobile-edge computing. IEEE Transactions on
Signal and Information Processing over Networks, 1(2):89–103.

[70] Sekander, S., Tabassum, H., and Hossain, E. (2018). Multi-tier drone architecture
for 5g/b5g cellular networks: Challenges, trends, and prospects. IEEE Communications
Magazine, 56(3):96–103.

100 References

[71] Series, M. (2015). Imt vision–framework and overall objectives of the future develop-
ment of imt for 2020 and beyond. Recommendation ITU, pages 2083–0.

[72] Shao, X., Asaeda, H., Dong, M., and Ma, Z. (2019). Cooperative inter-domain cache
sharing for information-centric networking via a bargaining game approach. IEEE Trans.
Network Science and Engineering, 6(4):698–710.

[73] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 3(5):637–646.

[74] Simsek, M., Aijaz, A., Dohler, M., Sachs, J., and Fettweis, G. (2016). 5g-enabled
tactile internet. IEEE Journal on Selected Areas in Communications, 34(3):460–473.

[75] Sánchez-García, J., Reina, D., and Toral, S. (2019). A distributed pso-based exploration
algorithm for a uav network assisting a disaster scenario. Future Generation Computer
Systems, 90:129 – 148.

[76] Vaquero, L. M. and Rodero-Merino, L. (2014). Finding your way in the fog: Towards a
comprehensive definition of fog computing. SIGCOMM Comput. Commun. Rev., 44(5):27–
32.

[77] Vespignani, A. (2018). Twenty years of network science. Nature, 558:528–529.

[78] Wan, L., Lou, W., Abner, E., and Kryscio, R. J. (2016). A comparison of time-
homogeneous markov chain and markov process multi-state models. Communications in
Statistics: Case Studies, Data Analysis and Applications, 2(3-4):92–100.

[79] Wang, X., Yang, L. T., Kuang, L., Liu, X., Zhang, Q., and Deen, M. J. (2019). A tensor-
based big-data-driven routing recommendation approach for heterogeneous networks.
IEEE Network, 33(1):64–69.

[80] Wang, X., Yang, L. T., Liu, H., and Deen, M. J. (2018). A big data-as-a-service
framework: State-of-the-art and perspectives. IEEE Transactions on Big Data, 4(3):325–
340.

[81] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.
Nature, 393:440.

[82] Wikipedia (2018). 2018 hokkaido eastern iburi earthquake.

[83] World Confederation for Physical Therapy (2016). What is disaster management?

[84] Wu, J., Dong, M., Ota, K., Li, J., and Guan, Z. (2017). Fcss: Fog computing based
content-aware filtering for security services in information centric social networks. IEEE
Transactions on Emerging Topics in Computing, pages 1–1.

[85] Wu, J., Dong, M., Ota, K., Li, J., Yang, W., and Wang, M. (2019). Fog-computing-
enabled cognitive network function virtualization for an information-centric future internet.
IEEE Communications Magazine, 57(7):48–54.

[86] Yang, L. T., Wang, X., Chen, X., Han, J., and Feng, J. (2017). A tensor computation and
optimization model for cyber-physical-social big data. IEEE Transactions on Sustainable
Computing, pages 1–1.

References 101

[87] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong,
J., and Jue, J. P. (2019). All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture, 98:289 – 330.

[88] Zappone, A., Björnson, E., Sanguinetti, L., and Jorswieck, E. (2017). Globally op-
timal energy-efficient power control and receiver design in wireless networks. IEEE
Transactions on Signal Processing, 65(11):2844–2859.

[89] Zappone, A. and Jorswieck, E. (2015). Energy Efficiency in Wireless Networks via
Fractional Programming Theory. now.

[90] Zeng, Y. and Zhang, R. (2017). Energy-efficient uav communication with trajectory
optimization. IEEE Transactions on Wireless Communications, 16(6):3747–3760.

[91] Zhang, H., Chen, G., Ooi, B. C., Tan, K., and Zhang, M. (2015). In-memory big data
management and processing: A survey. IEEE Transactions on Knowledge and Data
Engineering, 27(7):1920–1948.

[92] Zhang, X., Chen, G., Wang, W., Wang, Q., and Dai, F. (2017). Object-based land-cover
supervised classification for very-high-resolution uav images using stacked denoising
autoencoders. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 10(7):3373–3385.

[93] Zhao, C., Dong, M., Ota, K., Li, J., and Wu, J. (2019). Edge-mapreduce-based
intelligent information-centric iov: Cognitive route planning. IEEE Access, 7:50549–
50560.

[94] Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. R., and Wong, K. (2019). Uav-
assisted emergency networks in disasters. IEEE Wireless Communications, 26(1):45–51.

[95] Zhou, Z., Ota, K., Dong, M., and Xu, C. (2017). Energy-efficient matching for resource
allocation in d2d enabled cellular networks. IEEE Transactions on Vehicular Technology,
66(6):5256–5268.

Publications

Journals
1. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Fast Networking for Disaster Recov-

ery," IEEE Transactions on Emerging Topics in Computing (TETC), In Press.

2. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "A Real Plug-and-Play Fog: Implementa-
tion of Service Placement in Wireless Multimedia Networks," China Communications,
vol. 16, no. 10, pp. 191-201, October 2019.

3. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Energy Efficient Hybrid Edge Caching
Scheme for Tactile Internet in 5G," IEEE Transactions on Green Communications and
Networking (TGCN), vol. 3, no. 2, pp. 483-493, June 2019.

4. Jianwen Xu, Kaoru Ota, Mianxiong Dong, Anfeng Liu and Qiang Li, "SIoTFog:
Byzantine Resilient IoT Fog Networking," Frontiers of Information Technology &
Electronic Engineering (FITEE), vol. 19, no. 12, pp. 1546-1557, December 2018.
(Highlight Article)

5. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Real-Time Awareness Scheduling
for Multimedia Big Data Oriented In-Memory Computing," IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3464-3473, October 2018.

6. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Saving Energy on the Edge: In-Memory
Caching for Multi-Tier Heterogeneous Networks," IEEE Communications Magazine,
vol. 56, no. 5, pp. 102-107, May 2018.

Proceeding of International Conference
1. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "LUNA: Lightweight UAV Navigation

Based on Airborne Vision for Disaster Management," The 12th IEEE International
Conference on Cyber, Physical and Social Computing (CPSCom 2019), Atlanta, GA,
USA, July 14-17, 2019. (Best Paper Award)

2. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Information-Centric Fog Computing
for Disaster Relief," The 3rd International Conference on Smart Computing and
Communication (SmartCom 2018), Tokyo, Japan, December 10-12, 2018. (Best
Innovative Paper Award)

104 References

3. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Plug-and-Play for Fog: Dynamic
Service Placement in Wireless Multimedia Networks," IEEE/CIC International Confer-
ence on Communications in China (ICCC 2018), Beijing, China, August 16-18, 2018.
(Best Paper Award)

Under Review
1. Jianwen Xu, Kaoru Ota and Mianxiong Dong, "Big Data on the Fly: UAV-mounted

Mobile Edge Computing for Disaster Management," IEEE Transactions on Network
Science and Engineering (IEEE TNSE), Major Revision

