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PAPER

A Note on Harmonious Coloring of Caterpillars

Asahi TAKAOKA†a), Member, Shingo OKUMA†, Nonmember, Satoshi TAYU†b), Member,
and Shuichi UENO†c), Fellow

SUMMARY The harmonious coloring of an undirected simple graph is
a vertex coloring such that adjacent vertices are assigned different colors
and each pair of colors appears together on at most one edge. The harmo-
nious chromatic number of a graph is the least number of colors used in
such a coloring. The harmonious chromatic number of a path is known,
whereas the problem to find the harmonious chromatic number is NP-hard
even for trees with pathwidth at most 2. Hence, we consider the harmo-
nious coloring of trees with pathwidth 1, which are also known as caterpil-
lars. This paper shows the harmonious chromatic number of a caterpillar
with at most one vertex of degree more than 2. We also show the upper
bound of the harmonious chromatic number of a 3-regular caterpillar.
key words: caterpillars, Eulerian trail, harmonious coloring, harmonious
chromatic number, pathwidth

1. Introduction

A proper coloring of an undirected simple graph G is an as-
signment of colors (or numbers) to the vertices of G such
that adjacent vertices are assigned different colors. A har-
monious coloring of a graph is a proper vertex coloring such
that each pair of colors appears together on at most one edge.
The harmonious chromatic number h(G) of a graph G is the
least number of colors used in such a coloring of G. The
harmonious coloring problem is to find h(G) of a graph G.

The harmonious coloring [13], [17], [18] was devel-
oped from the closely related concept of line-distinguishing
coloring [12], [14], and has been studied in the literature
(e.g. [10], [16] for surveys and [1], [2], [8] for recent re-
sults). The harmonious coloring has potential applications
to minimal perfect hash functions [9] and aviation guidance
systems [16]. The harmonious coloring problem is very dif-
ficult in general, and it is known to be NP-hard for several
restricted classes of graphs [3]–[5], [7], [11], [14], [15].

The harmonious chromatic number of a path is
known [14], [17], whereas the problem is NP-hard even for
trees with pathwidth at most 2 [11]. Hence, we consider the
harmonious coloring of trees with pathwidth 1, which are
also known as caterpillars. A caterpillar is a tree that has a
central path such that every vertex of the tree is on the path
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Fig. 1 A harmonious coloring of path P11 with 5 colors.

or adjacent to a vertex on the path.
This paper shows the harmonious chromatic number of

a caterpillar with at most one vertex of degree more than 2.
The class of such caterpillars can be partitioned into four
classes, the class of paths, stars, shooting stars, and comets.
For each class, we show the harmonious chromatic number
of a caterpillar in the class. In addition, we show the upper
bound of the harmonious chromatic number of a 3-regular
caterpillar.

The paper is organized as follows. Section 2 describes
our main results. Sections 3 to 6 are devoted to the proofs.
We conclude with some discussions and remarks in Sect. 7.

2. Harmonious Coloring of Caterpillars

In the rest of the paper, let V(G) and E(G) denote the set of
vertices and edges of a graph G, respectively. Also, let n =
|V(G)| and m = |E(G)|. If a graph G can be harmoniously
colored with k colors, then m ≤

(
k
2

)
. Let k(G) be the smallest

integer k fulfilling this inequality. We can express k(G) as
a function of m, namely k(G) =

⌈
(1 +

√
8m + 1)/2

⌉
. Since

every graph can be colored harmoniously with n colors, we
observe that for any graph G, k(G) ≤ h(G) ≤ n.

2.1 Paths and Stars

Let Pt = (v1, v2, . . . , vt) be a path on t vertices. The harmo-
nious coloring of a path with k colors is obtained from a trail
traversing edges of a complete graph Kk [14], [17]. The ver-
tices on the path can be colored harmoniously according to
the trail.

Theorem A.

h(Pt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k if k is odd,

k if k is even and m ≤
(

k
2

)
− k

2 + 1,

k + 1 otherwise,

where k = k(Pt). �

For example, path P11 in Fig. 1 can be colored harmo-
niously with 5 colors according to the Eulerian trail of K5.

A complete bipartite graph K1,Δ (Δ ≥ 1) is called a
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star. The following theorem shows the harmonious chro-
matic number of a star [10], [16]. The theorem is trivial
since the harmonious coloring of stars has to assign a unique
color to each vertex.

Theorem B. h(K1,Δ) = Δ + 1. �

2.2 Shooting Stars and Comets

Let Pt = (v1, v2, . . . , vt) be a path on t vertices. A shooting
star is a caterpillar obtained from a path Pt (t ≥ 4) and a star
K1,Δ (Δ ≥ 1) by identifying a vertex in {v2, vt−1} of Pt with
the degree-Δ vertex of K1,Δ. A comet is a caterpillar obtained
from Pt (t ≥ 5) and K1,Δ (Δ ≥ 1) by identifying a vertex in
{v3, v4, . . . , vt−2} of Pt with the degree-Δ vertex of K1,Δ. In
other words, a shooting star is a caterpillar obtained from
K1,Δ (Δ ≥ 3) by replacing an edge with a path of length at
least 2, and a comet is a caterpillar obtained from K1,Δ (Δ ≥
3) by replacing two edges with paths of length at least 2.
We denote by S t,Δ (Δ ≥ 3) the shooting star with the longest
path on t vertices and the maximum degree Δ, and we denote
by Ct,Δ (Δ ≥ 3) a comet with the longest path on t vertices
and the maximum degree Δ. Notice that a shooting star is
uniquely determined by t and Δ, whereas a comet is not.
Examples of shooting star and comet are shown in Figs. 2 (a)
and 2 (b).

We can see that the class of caterpillars with at most
one vertex of degree more than 2 can be partitioned into
four classes, the class of paths, stars, shooting stars, and
comets. The harmonious chromatic number of a path and
a star is shown in Theorems A and B, respectively. In the
following, we show the harmonious chromatic number of a
shooting star and a comet, which we prove in Sects. 4 and 5,
respectively.

The harmonious chromatic number of a shooting star is
shown by Marszakowska (as cited in [16, Theorem 7.10]).
We give here a simpler version of the theorem.

Theorem 1.

h(S t,Δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ + 1 if Δ ≥ h,

h if Δ < h, and

h is odd and m ≤
(

h
2

)
− �Δ−1

2 �, or

h is even and m ≤
(

h
2

)
− � h−Δ

2 �,
h + 1 otherwise.

where h = h(Pt). �

We also show the harmonious chromatic number of a
comet. Although the comet Ct,Δ is not uniquely determined
by t and Δ, we can express h(Ct,Δ) only with t and Δ.

Theorem 2.

h(Ct,Δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ + 1 if Δ ≥ h,

h if Δ < h, and

h is odd and m ≤
(

h
2

)
− �Δ−3

2 �, or

h is even and m ≤
(

h
2

)
− � h−Δ

2 �,
h + 1 otherwise.

Fig. 2 Examples of shooting star, comet, and 3-regular caterpillar.

where h = h(Pt). �

The difference between the harmonious chromatic
number of shooting star S t,Δ and comet Ct,Δ arises only
when Δ < h(Pt) and h(Pt) is odd. For example, comet
C9,4 can be colored harmoniously with h(P9) = 5 colors as
shown in Fig. 2 (b), since |E(C9,4)| ≤

(
5
2

)
− � 4−3

2 � = 10. On
the other hand, shooting star S 9,4 cannot be colored harmo-
niously with 5 colors, since |E(S 9,4)| >

(
5
2

)
− � 4−1

2 � = 9. We

note that S 8,4 can be colored harmoniously with 5 colors as
shown in Fig. 2 (a).

2.3 Three-Regular Caterpillars

A caterpillar is said to be 3-regular if every inner vertex
(vertex with degree more than 1) has degree 3. In other
words, a 3-regular caterpillar is obtained from a path by
adding a degree-1 vertex to each inner vertex. An exam-
ple of 3-regular caterpillar is shown in Fig. 2 (c). Let Tt be a
3-regular caterpillar with the longest path on t vertices, and
let Pt be the longest path of Tt. We have the upper bound of
the harmonious chromatic number of a 3-regular caterpillar,
which we prove in Sect. 6.

Theorem 3. h(Tt) ≤ h + �(h − 1)/2�, where h = h(Pt). �

3. Preliminaries

Let Kh be a complete graph with V(Kh) = {v1, v2, . . . , vh}.
We assume that each vi has color i. We consider the graph
KΔh (3 ≤ Δ < h) obtained from Kh by deleting edges
(v1, v2), (v1, v3), . . . , (v1, vΔ+1). See Fig. 3 for example. Triv-
ially, we have |E(KΔh )| =

(
h
2

)
− Δ. We define two subsets of

V(KΔh ) as follows:

A(KΔh ) = {v2, v3, . . . , vΔ+1};
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Fig. 3 Graph K4
5 . Dotted lines denote the edges deleted from K5.

B(KΔh ) = {vΔ+2, vΔ+3, . . . , vh}.
If KΔh is clear from the context, we denote them by A and B
instead of A(KΔh ) and B(KΔh ), respectively. Notice that some-
times B = ∅ as K4

5 in Fig. 3.
A vertex with odd degree is called an odd vertex, and

a vertex with even degree is called an even vertex. We have
that |A| = Δ and |B| = h−Δ−1. The degree of v1 is h−Δ−1,
the degree of vertices in A is h−2, and the degree of vertices
in B is h − 1. Hence, we have the following:

– If h is odd and Δ is odd, then the degree of v1 is odd, the
degree of vertices in A is odd, and the degree of vertices
in B is even, and hence, KΔh has Δ + 1 odd vertices;

– If h is odd and Δ is even, then the degree of v1 is even,
the degree of vertices in A is odd, and the degree of
vertices in B is even, and hence, KΔh has Δ odd vertices;

– If h is even and Δ is odd, then the degree of v1 is even,
the degree of vertices in A is even, and the degree of
vertices in B is odd, and hence, KΔh has h − Δ − 1 odd
vertices;

– If h is even and Δ is even, then the degree of v1 is odd,
the degree of vertices in A is even, and the degree of
vertices in B is odd, and hence, KΔh has h − Δ odd ver-
tices.

A trail of a graph is called Eulerian if it traverses ev-
ery edge of the graph. The following is a well-known fact.
The proof can be found in standard textbooks on graph the-
ory [6].

Theorem C. A connected graph G has an Eulerian trail if
and only if G has zero or two odd vertices. Moreover, if G
has two odd vertices, all Eulerian trails start at one of them
and end at the other. If G has no odd vertices, all Eulerian
trails are closed. �

4. Proof of Theorem 1

We prove Theorem 1 by a series of lemmas. Let Pt be the
longest path of S t,Δ, and let h = h(Pt). The following indi-
cates the first case of Theorem 1.

Lemma 4. If Δ ≥ h, then h(S t,Δ) = Δ + 1.

Proof. Since we have from Theorem B that h(S t,Δ) ≥ Δ+ 1,

it suffices to show that S t,Δ can be colored harmoniously
with Δ + 1 colors if Δ ≥ h. First, we color the vertices on Pt

harmoniously with colors 1, 2, . . . , h. Next, we recolor the
degree-Δ vertex with color Δ + 1 (Recall that Δ + 1 > h).
Finally, we color the remaining vertices, that is, the vertices
adjacent to the degree-Δ vertex, with colors 1, 2, . . . ,Δ. It is
straightforward to see that S t,Δ is colored harmoniously. �

Similarly, we have the following.

Lemma 5. If Δ < h, then h(S t,Δ) ≤ h + 1.

Proof. We show that S t,Δ can be colored harmoniously with
h + 1 colors if Δ < h. First, we color the vertices on
Pt harmoniously with colors 1, 2, . . . , h. Next, we recolor
the degree-Δ vertex with color h + 1. Finally, we color
the remaining vertices with colors 1, 2, . . . ,Δ (Recall that
Δ < h + 1). It is straightforward to see that S t,Δ is colored
harmoniously. �

Since Pt is a subgraph of S t,Δ, we have the following.

Lemma 6. h(S t,Δ) ≥ h. �

The following lemma completes the proof of Theo-
rem 1. The rest of the section is devoted to the proof of
the lemma.

Lemma 7. Suppose that Δ < h. S t,Δ can be colored harmo-
niously with h colors if and only if

– m ≤
(

h
2

)
− Δ−1

2 when h is odd and Δ is odd,

– m ≤
(

h
2

)
− Δ−2

2 when h is odd and Δ is even,

– m ≤
(

h
2

)
− h−Δ−1

2 when h is even and Δ is odd, and

– m ≤
(

h
2

)
− h−Δ

2 when h is even and Δ is even.

Proof. We assume w.l.o.g. that color 1 is assigned to the
degree-Δ vertex of S t,Δ, and colors 2, 3, . . . ,Δ + 1 are as-
signed to the vertices adjacent to it (Recall that Δ + 1 ≤ h).
See Fig. 2 (a) for example. Then, t − 3 vertices remains un-
colored, and they induce the path Pt−3 of S t,Δ. To prove
Lemma 7, it suffices to show that the remaining path can be
colored harmoniously with h colors if and only if the num-
ber of edges of S t,Δ satisfies the inequality in the lemma. We
assume without loss of generality that the end-vertex of the
path is adjacent to the vertex with color 2 (See Fig. 2 (a)).

We use the graph KΔh defined in Sect. 3. Recall that
V(KΔh ) = {v1, v2, . . . , vh} and that each vi has color i. Notice
that the edges of KΔh denote the pair of colors which we can
use for the harmonious coloring of the remaining path, and
the non-edges of KΔh denote the pair of colors used for the
harmonious coloring of the star K1,Δ in S t,Δ. Coloring the re-
maining path of S t,Δ harmoniously is equivalent to obtaining
a trail of KΔh with length t−3 starting at v2. For example, K4

5
in Fig. 3 has trail (v2, a, v3, b, v4, c, v5, d, v2, e, v4) of length 5.
As shown in Fig. 2 (a), the remaining path of S 8,4 can be col-
ored harmoniously according to the trail. Then, the follow-
ing claim proves Lemma 7 (Recall that |E(KΔh )| =

(
h
2

)
− Δ).
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Claim 8. KΔh has a trail starting at v2 if and only if the length
of the trail is at most

–
(

h
2

)
− Δ − Δ−1

2 when h is odd and Δ is odd,

–
(

h
2

)
− Δ − Δ−2

2 when h is odd and Δ is even,

–
(

h
2

)
− Δ − h−Δ−1

2 when h is even and Δ is odd, and

–
(

h
2

)
− Δ − h−Δ

2 when h is even and Δ is even.

Proof of the “if” part of Claim 8. We distinguish four cases
with respect to the parity of h and Δ.

Case 1 h is odd and Δ is odd: Let GΔh be the sub-
graph of KΔh obtained by deleting edges (v3, v4), (v5, v6), . . . ,
(vΔ, vΔ+1). Since every vertex in V(GΔh ) \ {v1, v2} has even de-
gree, GΔh has an Eulerian trail from v2 to v1. Hence, KΔh has

the trail of length
(

h
2

)
− Δ − Δ−1

2 .

Case 2 h is odd and Δ is even: Let GΔh be the sub-
graph of KΔh obtained by deleting edges (v4, v5), (v6, v7), . . . ,
(vΔ, vΔ+1). Since every vertex in V(GΔh ) \ {v2, v3} has even de-
gree, GΔh has an Eulerian trail from v2 to v3. Hence, KΔh has

the trail of length
(

h
2

)
− Δ − Δ−2

2 .

Case 3 h is even and Δ is odd: Let GΔh be the subgraph
of KΔh obtained by deleting edges (vΔ+2, vΔ+3), (vΔ+4, vΔ+5),
. . . , (vh−1, vh). Since every vertex of GΔh has even degree,
GΔh has an Eulerian closed trail. Hence, KΔh has the trail of

length
(

h
2

)
− Δ − h−Δ−1

2 .

Case 4 h is even and Δ is even: Let GΔh be the subgraph
of KΔh obtained by deleting edges (vΔ+2, vΔ+3), (vΔ+4, vΔ+5),
. . . , (vh−2, vh−1), and (vh, v1) (Recall that the degree of v1 is
odd, and hence, at least 1). Since every vertex of GΔh has
even degree, GΔh has an Eulerian closed trail. Hence, KΔh has

the trail of length
(

h
2

)
− Δ − h−Δ

2 .
This completes the proof of the “if” part of Claim 8.

�

Proof of the “only-if” part of Claim 8. We distinguish two
cases.

Case 1 h is odd: If Δ is odd [resp., even], KΔh has
Δ + 1 [resp., Δ] odd vertices. Since v2 is an odd vertex, we
have from Theorem C that v2 and one more vertex can be
remained odd vertices in the subgraph of KΔh that has an Eu-
lerian trail starting at v2, and all the other odd vertices must
be made into even vertices. Hence, at least (Δ+1)−2

2 [resp.,
Δ−2

2 ] edges must be deleted from KΔh to obtain the subgraph,

and it has at most
(

h
2

)
− Δ − Δ−1

2 [resp.,
(

h
2

)
− Δ − Δ−2

2 ] edges.

Case 2 h is even: If Δ is odd [resp., even], KΔh has
h−Δ− 1 [resp., h−Δ] odd vertices. Since v2 is even vertex,
we have from Theorem C that all the odd vertices must be
made into even vertices in the subgraph of KΔh that has an
Eulerian trail starting at v2. Hence, at least h−Δ−1

2 [resp.,
h−Δ

2 ] edges must be deleted from KΔh to obtain the subgraph,

and it has at most
(

h
2

)
−Δ− h−Δ−1

2 [resp.,
(

h
2

)
−Δ− h−Δ

2 ] edges.
This completes the proof of the “only-if” part of

Claim 8. �

Now, we complete the proof of Lemma 7. �

5. Proof of Theorem 2

Let Pt be the longest path of Ct,Δ, and let h = h(Pt). We can
prove the following by arguments similar to Lemmas 4, 5,
and 6.

Lemma 9.

– If Δ ≥ h, then h(Ct,Δ) = Δ + 1.
– If Δ < h, then h(Ct,Δ) ≤ h + 1.
– h(Ct,Δ) ≥ h. �

The following lemma completes the proof of Theo-
rem 2. The rest of the section is devoted to the proof of
the lemma.

Lemma 10. Suppose that Δ < h. Ct,Δ can be colored har-
moniously with h colors if and only if

– m ≤
(

h
2

)
− Δ−3

2 when h is odd and Δ is odd,

– m ≤
(

h
2

)
− Δ−4

2 when h is odd and Δ is even,

– m ≤
(

h
2

)
− h−Δ−1

2 when h is even and Δ is odd, and

– m ≤
(

h
2

)
− h−Δ

2 when h is even and Δ is even.

Proof. As in the proof of Lemma 7, we assume w.l.o.g.
that color 1 is assigned to the degree-Δ vertex, and colors
2, 3, . . . ,Δ+ 1 are assigned to the vertices adjacent to it. See
Fig. 2 (b) for example. Then, t − 3 vertices remains uncol-
ored, and they induce two paths of Ct,Δ (Note that one vertex
can be regarded as a path). To prove Lemma 10, it suffices to
show that the remaining paths can be colored harmoniously
with h colors if and only if the number of edges of Ct,Δ satis-
fies the inequality in the lemma. We assume w.l.o.g. that the
end-vertex of the path is adjacent to the vertex with color 2,
and the end-vertex of the other path is adjacent to the vertex
with color 3 (See Fig. 2 (b)).

We use the graph KΔh defined in Sect. 3. Recall that
V(KΔh ) = {v1, v2, . . . , vh} and that each vi has color i. Notice
that the edges of KΔh denote the pair of colors which we can
use for the harmonious coloring of the remaining paths, and
the non-edges of KΔh denote the pair of colors used for the
harmonious coloring of the star K1,Δ in Ct,Δ. Coloring the re-
maining paths of Ct,Δ harmoniously is equivalent to obtain-
ing a pair of edge-disjoint trails W1 and W2 in KΔh such that
W1 starts at v2, W2 starts at v3, and the sum of the length of
W1 and W2 is t− 3 (Notice that W1 and W2 must have length
at least 1; otherwise the graph is not a comet but a shooting
star). For example, K4

5 in Fig. 3 has a pair of edge-disjoint
trails (v2, a, v3, b, v4, c, v5, d, v2, e, v4) and (v3, f , v5), the sum
of the length of which is 6. As shown in Fig. 2 (b), the re-
maining paths of C9,4 can be colored harmoniously accord-
ing to the pair of trails. Then, the following claim proves
Lemma 10 (Recall that |E(KΔh )| =

(
h
2

)
− Δ).

Claim 11. KΔh has a pair of edge-disjoint trails W1 and W2
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Fig. 4 Graphs K3
5 , K4

5 , K3
4 , and K4

6 with tripartition (A, B, v1). Dotted lines denote the edges deleted
from the complete graphs. Edge (v6, v1) of K4

6 is not used in the trails.

such that

– W1 starts at v2 and has length l1, and
– W2 starts at v3 and has length l2,

if and only if l1 and l2 are any positive integers such that
l1 + l2 is at most

–
(

h
2

)
− Δ − Δ−3

2 when h is odd and Δ is odd,

–
(

h
2

)
− Δ − Δ−4

2 when h is odd and Δ is even,

–
(

h
2

)
− Δ − h−Δ−1

2 when h is even and Δ is odd, and

–
(

h
2

)
− Δ − h−Δ

2 when h is even and Δ is even.

Proof of the “if” part of Claim 11. We employ the argu-
ments similar to those used in [13]. Let K2,r (r ≥ 2) be
the complete bipartite graph with bipartition (U,V) such that
|U | = 2 and |V | = r. Let Gr be the graph obtained from K2,r

by adding an edge between the vertices in U. A graph G
is said to be partitioned into a pair of trails W1 and W2 if
E(G) = E(W1) ∪ E(W2) and E(W1) ∩ E(W2) = ∅.
(i). Let r be a positive even integer, and let r1 and r2 be
non-negative even integers with r1 + r2 = r. K2,r can
be partitioned into two closed trails W1 and W2 such that
|E(W1)| = 2r1 and |E(W2)| = 2r2 (Notice that |E(W1)| or
|E(W2)| can be 0).

Proof of (i). Let V1 be a set of r1 vertices in V , and let V2 be
the set of other r2 vertices in V . We have from Theorem C
that the subgraph K2,r1 of K2,r induced by U ∪ V1 has an
Eulerian closed trail, since every vertex of K2,r1 has even
degree. Similarly, the subgraph K2,r2 of K2,r induced by U ∪
V2 has an Eulerian closed trail. Since any edge of K2,r is in
either K2,r1 or K2,r2 , we have (i). �

(ii). Let r be a positive odd integer, and let r1 and r2 be non-
negative integers with r1 + r2 = r. We assume that r1 is odd
and r2 is even. Gr can be partitioned into two closed trails
W1 and W2 such that |E(W1)| = 2r1 + 1 and |E(W2)| = 2r2

(Notice that |E(W1)| ≥ 3 while |E(W2)| can be 0).

Proof of (ii). Let V1 be a set of r1 vertices in V , and let V2

be the set of other r2 vertices in V . We have from Theo-
rem C that the subgraph Gr1 of Gr induced by U ∪ V1 has
an Eulerian closed trail, since every vertex of Gr1 has even

degree. Similarly, the subgraph K2,r2 of Gr induced by the
edges between U and V2 has an Eulerian closed trail. Since
any edge of Gr is in either Gr1 or K2,r2 , we have (ii). �

Now, we are ready to prove the “if” part of Claim 11.
Recall that A(KΔh ) = {v2, v3, . . . , vΔ+1} and B(KΔh ) = {vΔ+2,

vΔ+3, . . . , vh}. We prove by induction on |A(KΔh )| and |B(KΔh )|.
Since |A(KΔh )| = Δ and |B(KΔh )| = h − Δ − 1, we have the
following:

|A(KΔ+2
h+2 )| = |A(KΔh )| + 2; |B(KΔ+2

h+2 )| = |B(KΔh )|;
|A(KΔh+2)| = |A(KΔh )|; |B(KΔh+2)| = |B(KΔh )| + 2.

We take the pair of trails from KΔ+2
h+2 and from KΔh+2 with the

pair of trails in KΔh . We distinguish two cases.
Case 1 h is odd: Suppose that Δ is odd [resp., even].

Recall that 3 ≤ Δ < h. In the base case, it can be verified
that K3

5 [resp., K4
5 ] has the pair of trails, one of which starts

at v2 and the other starts at v3, such that the length of the
trails are any positive integers whose sum is

(
5
2

)
−3− 3−3

2 = 7

[resp.,
(

5
2

)
− 4 − 4−4

2 = 6]. See Fig. 4 (a) [resp., Fig. 4 (b)].
Assume by induction that for any positive integers l1

and l2 such that l1 + l2 =
(

h
2

)
−Δ− Δ−3

2 [resp.,
(

h
2

)
−Δ− Δ−4

2 ],

KΔh has a pair of edge-disjoint trails W1 and W2 such that
W1 starts at v2 and has length l1, and W2 starts at v3 and has
length l2.

We first show that for any positive integers l1 and l2
such that l1+ l2 =

(
h+2

2

)
− (Δ+2)− (Δ+2)−3

2 [resp.,
(

h+2
2

)
− (Δ+

2) − (Δ+2)−4
2 ], KΔ+2

h+2 has a pair of edge-disjoint trails W1 and
W2 such that W1 starts at v2 and has length l1, and W2 starts
at v3 and has length l2. The subgraph I of KΔ+2

h+2 induced
by {v1, v2, . . . , vΔ+1, vΔ+4, vΔ+5, . . . , vh+2} is isomorphic to KΔh .
Since vΔ+2 and vΔ+3 are adjacent to every vertex in V(I)\{v1},
the subgraph J = KΔ+2

h+2 −E(I)−(vΔ+2, vΔ+3)−v1 is isomorphic
to K2,h−1. Since h − 1 is even, we have from (i) that J can
be partitioned into two closed trails whose length are 2r1

and 2r2, respectively. Here, r1 and r2 are non-negative even
integers such that r1 + r2 = h− 1, 2r1 < l1, and 2r2 < l2. We
can assume w.l.o.g. that the closed trail of length 2r1 has v2
and the closed trail of length 2r2 has v3. Let l′1 = l1 − 2r1

and l′2 = l2 − 2r2. It is straightforward to see that l′1 + l′2 =(
h
2

)
− Δ − Δ−3

2 [resp.,
(

h
2

)
− Δ − Δ−4

2 ]. By assumption, I has
a pair of edge-disjoint trails W ′1 and W ′2 such that W ′1 starts
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at v2 and has length l′1, and W ′2 starts at v3 and has length l′2.
We can obtain the two trails W1 and W2 of KΔ+2

h+2 as follows:
W1 starts at v2, traverses 2r1 edges of the closed trail in J,
and traverses l′1 edges in W ′1; W2 starts at v3, traverses 2r2

edges of the closed trail in J, and traverses l′2 edges in W ′2.
We next show that for any positive integers l1 and l2

such that l1 + l2 =
(

h+2
2

)
− Δ − Δ−3

2 [resp.,
(

h+2
2

)
− Δ − Δ−4

2 ],

KΔh+2 has a pair of edge-disjoint trails W1 and W2 such that
W1 starts at v2 and has length l1, and W2 starts at v3 and
has length l2. We assume w.l.o.g. that l1 ≥ l2. Since l1 +
l2 ≥ 8 for any h and Δ, we have l1 ≥ 4. The subgraph I of
KΔh+2 induced by {v1, v2, . . . , vh} is isomorphic to KΔh . Since
vh+1 and vh+2 are adjacent to every vertex in I, the subgraph
J = KΔh+2 − E(I) is isomorphic to Gh. Since h is odd, we
have from (ii) that J can be partitioned into two closed trails
whose length are 2r1 + 1 and 2r2, respectively. Here, r1

is a non-negative odd integer and r2 is a non-negative even
integer such that r1 + r2 = h, 2r1 + 1 < l1, and 2r2 < l2. We
can assume w.l.o.g. that the closed trail of length 2r1 + 1 has
v2 and the closed trail of length 2r2 has v3. Let l′1 = l1−2r1−1
(recall that 2r1 + 1 ≥ 3 but l1 ≥ 4) and l′2 = l2 − 2r2. It is

straightforward to see that l′1 + l′2 =
(

h
2

)
− Δ − Δ−3

2 [resp.,(
h
2

)
− Δ − Δ−4

2 ]. By assumption, I has a pair of edge-disjoint
trails W ′1 and W ′2 such that W ′1 starts at v2 and has length l′1,
and W ′2 starts at v3 and has length l′2. We can obtain the two
trails W1 and W2 of KΔh+2 as follows: W1 starts at v2, traverses
2r1 + 1 edges of the closed trail in J, and traverses l′1 edges
in W ′1; W2 starts at v3, traverses 2r2 edges of the closed trail
in J, and traverses l′2 edges in W ′2.

Case 2 h is even: Suppose that Δ is odd [resp., even].
Recall that 3 ≤ Δ < h. In the base case, it can be verified that
K3

4 [resp., K4
6 ] has the pair of trails, one of which starts at v2

and the other starts at v3, such that the length of the trails are
any positive integers whose sum is

(
4
2

)
−3− 4−3−1

2 = 3 [resp.,(
6
2

)
− 4 − 6−4

2 = 10]. See Fig. 4 (c) [resp., Fig. 4 (d)].
Assume by induction that for any positive integers l1

and l2 such that l1+ l2 =
(

h
2

)
−Δ− h−Δ−1

2 [resp.,
(

h
2

)
−Δ− h−Δ

2 ],

KΔh has a pair of edge-disjoint trails W1 and W2 such that W1

starts at v2 and has length l1, and W2 starts at v3 and has
length l2.

We first show that for any positive integers l1 and l2
such that l1 + l2 =

(
h+2

2

)
− (Δ + 2) − (h+2)−(Δ+2)−1

2 [resp.,(
h+2

2

)
− (Δ + 2) − (h+2)−(Δ+2)

2 ], KΔ+2
h+2 has a pair of edge-

disjoint trails W1 and W2 such that W1 starts at v2 and has
length l1, and W2 starts at v3 and has length l2. We as-
sume w.l.o.g. that l1 ≥ l2. Since l1 + l2 ≥ 8 for any h
and Δ, we have l1 ≥ 4. The subgraph I of KΔ+2

h+2 induced
by {v1, v2, . . . , vΔ+1, vΔ+4, vΔ+5, . . . , vh+2} is isomorphic to KΔh .
Since vΔ+2 and vΔ+3 are adjacent to every vertex in V(I)\{v1},
the subgraph J = KΔ+2

h+2 − E(I) − v1 is isomorphic to Gh−1.
Since h − 1 is odd, we have from (ii) that J can be parti-
tioned into two closed trails whose length are 2r1 + 1 and
2r2, respectively. Here, r1 is a non-negative odd integer and
r2 is a non-negative even integer such that r1 + r2 = h − 1,

2r1 + 1 < l1, and 2r2 < l2. We can assume w.l.o.g. that the
closed trail of length 2r1 + 1 has v2 and the closed trail of
length 2r2 has v3. Let l′1 = l1−2r1−1 (recall that 2r1+1 ≥ 3
but l1 ≥ 4) and l′2 = l2 − 2r2. It is straightforward to see that

l′1 + l′2 =
(

h
2

)
− Δ − h−Δ−1

2 [resp.,
(

h
2

)
− Δ − h−Δ

2 ]. By assump-
tion, I has a pair of edge-disjoint trails W ′1 and W ′2 such that
W ′1 starts at v2 and has length l′1, and W ′2 starts at v3 and has
length l′2. We can obtain the two trails W1 and W2 of KΔ+2

h+2
as follows: W1 starts at v2, traverses 2r1 + 1 edges of the
closed trail in J, and traverses l′1 edges in W ′1; W2 starts at
v3, traverses 2r2 edges of the closed trail in J, and traverses
l′2 edges in W ′2.

We next show that for any positive integers l1 and l2
such that l1 + l2 =

(
h+2

2

)
− Δ − (h+2)−Δ−1

2 [resp.,
(

h+2
2

)
− Δ −

(h+2)−Δ
2 ], KΔh+2 has a pair of edge-disjoint trails W1 and W2

such that W1 starts at v2 and has length l1, and W2 starts
at v3 and has length l2. The subgraph I of KΔh+2 induced
by {v1, v2, . . . , vh} is isomorphic to KΔh . Since vh+1 and vh+2

are adjacent to every vertex in I, the subgraph J = KΔh+2 −
E(I) − (vh+1, vh+2) is isomorphic to K2,h. Since h is even, we
have from (i) that J can be partitioned into two closed trails
whose length are 2r1 and 2r2, respectively. Here, r1 and r2

are non-negative even integers such that r1+r2 = h, 2r1 < l1,
and 2r2 < l2. We can assume w.l.o.g. that the closed trail of
length 2r1 has v2 and the closed trail of length 2r2 has v3.
Let l′1 = l1 − 2r1 and l′2 = l2 − 2r2. It is straightforward to

see that l′1 + l′2 =
(

h
2

)
− Δ − h−Δ−1

2 [resp.,
(

h
2

)
− Δ − h−Δ

2 ]. By
assumption, I has a pair of edge-disjoint trails W′1 and W ′2
such that W ′1 starts at v2 and has length l′1, and W ′2 starts at
v3 and has length l′2. We can obtain the two trails W1 and W2

of KΔh+2 as follows: W1 starts at v2, traverses 2r1 edges of the
closed trail in J, and traverses l′1 edges in W ′1; W2 starts at
v3, traverses 2r2 edges of the closed trail in J, and traverses
l′2 edges in W ′2.

This completes the proof of the “if” part of Claim 11.
�

Proof of the “only-if” part of Claim 11. Recall that a graph
G is said to be partitioned into a pair of trails W1 and W2 if
E(G) = E(W1) ∪ E(W2) and E(W1) ∩ E(W2) = ∅. It is easy
to see the following.

Claim 12. If a graph G can be partitioned into a pair of
trails, G has at most four odd vertices. Moreover, if the
trails start at distinct even vertices, G has no odd vertices.

�

Let GΔh be a subgraph of KΔh that can be partitioned into
the pair of trails, one of which starts at v2 and the other starts
at v3. We distinguish two cases.

Case 1 h is odd: If Δ is odd [resp., even], KΔh has Δ + 1
[resp., Δ] odd vertices. Since v2 and v3 have odd degree, we
have from Claim 12 that four odd vertices including v2 and
v3 can be remained odd vertices in GΔh , and all the other odd
vertices must be made into even vertices. Hence, at least
(Δ+1)−4

2 [resp., Δ−4
2 ] edges must be deleted from KΔh to obtain

GΔh , and GΔh has at most
(

h
2

)
− Δ − Δ−3

2 [resp.,
(

h
2

)
− Δ − Δ−4

2 ]
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edges.
Case 2 h is even: If Δ is odd [resp., even], KΔh has

h − Δ − 1 [resp., h − Δ] odd vertices. Notice that h − Δ − 1
[resp., h − Δ] is even. Since v2 and v3 have even degree, we
have from Claim 12 that all the odd vertices must be made
into even vertices in GΔh . Hence, at least h−Δ−1

2 [resp., h−Δ
2 ]

edges must be deleted from KΔh to obtain GΔh , and GΔh has at

most
(

h
2

)
− Δ − h−Δ−1

2 [resp.,
(

h
2

)
− Δ − h−Δ

2 ] edges.
This completes the proof of the “only-if” part of

Claim 11. �

Now, we complete the proof of Lemma 10. �

6. Proof of Theorem 3

Let Tt be a 3-regular caterpillar with the longest path on t
vertices, let Pt be the longest path of Tt, and let h = h(Pt).
We show in this section that Tt can be colored harmoniously
with h + �(h − 1)/2� colors. We first color the vertices on Pt

harmoniously with h colors, then color the remaining ver-
tices with �(h − 1)/2� colors. See Fig. 2 (c) for example of
such a coloring of a 3-regular caterpillar.

Now, it suffices to show that in any harmonious color-
ing of Pt, at most �(h − 1)/2� inner vertices have the same
color. Suppose contrary that at least �(h − 1)/2� + 1 inner
vertices have, w.l.o.g., color h. Let Vh be the set of such in-
ner vertices. Let N(Vh) be the set of vertices on Pt adjacent
to a vertex in Vh. Since the distance between any pair of
vertices in Vh is at least 3, we have |N(Vh)| = 2|Vh|. Since
the vertices on Pt are colored harmoniously, the vertices in
N(Vh) must have different colors from colors 1, 2, . . . , h− 1.
However, since (h − 1)/2 − 1 < �(h − 1)/2�, we have that
h− 1 < 2(�(h− 1)/2�+ 1) ≤ |N(Vh)|, a contradiction. Hence,
at most �(h− 1)/2� inner vertices on Pt have the same color,
and we have Theorem 3.

7. Concluding Remarks

This paper showed in Theorems 1 and 2 the harmonious
chromatic number of a shooting star and a comet, respec-
tively. We also showed in Theorem 3 the upper bound of the
harmonious chromatic number of a 3-regular caterpillar.

Akbari et al. [2] show that for any forest T , h(T ) =
Δ(T )+1 if Δ(T ) ≥ n+2

3 and T has no pair of non-adjacent ver-
tices of degree Δ(T ). Here, n = |V(T )| and Δ(T ) is the max-
imum degree of T . They also show that the bound Δ(T ) ≥
n+2

3 is sharp, that is, for any integer d ≥ 3 they present a
caterpillar Td such that (i) Δ(Td) = d, (ii) Td has no pair of
non-adjacent vertices of degree d, (iii) |V(Td)| = 3d − 1, and
(iv) h(Td) ≥ d + 2. In the case of shooting stars and comets
(that is, caterpillars with at most one vertex of degree more
than 2), Theorems 1 and 2 state that h(T ′) = Δ(T ′) + 1 if
Δ(T ′) ≥ h(P′) for any such caterpillar T ′, where P′ is the
longest path of T ′. The theorems also imply that the bound
Δ(T ′) ≥ h(P′) is sharp, that is, for any integer d ≥ 3 we
have a caterpillar T ′d with at most one vertex of degree more

than 2 such that (i) Δ(T ′d) = d, (ii) Δ(T ′d) < h(P′d), and
(iii) h(T ′d) ≥ d + 2. The bound Δ(T ′) ≥ h(P′) is signifi-
cantly smaller than the general bound Δ(T ′) ≥ n+2

3 , since

h(P′) = O(
√

n) (Recall that k(G) =
⌈
(1 +

√
8m + 1)/2

⌉
for

any graph G with m edges).
We also note that Edwards [10] conjectures that for any

tree T , h(T ) ≤ k(T ) + Δ(T ). Theorems 1 and 2 imply that
this conjecture holds for caterpillars with at most one vertex
of degree more than 2. On the other hand, Theorem 3 does
not imply the conjecture since 3-regular caterpillar T315 is
a counter example, that is, h(P315) + �(h(P315) − 1)/2� >
k(T315) + 3, where T315 is the 3-regular caterpillar with the
longest path on 315 vertices, and P315 is the longest path of
T315. (Note that k(T315) = 36 and h(P315) = 27). Hence, it
remains an open problem to ask whether h(T ) ≤ k(T )+3 for
any 3-regular caterpillar T .

We finally note that the complexity of the harmonious
coloring problem for general caterpillars also remains open.
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