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A Note on Irreversible 2-Conversion Sets in Subcubic Graphs

Asahi TAKAOKA†a), Student Member and Shuichi UENO†b), Fellow

SUMMARY Irreversible k-conversion set is introduced in connection
with the mathematical modeling of the spread of diseases or opinions. We
show that the problem to find a minimum irreversible 2-conversion set can
be solved in O(n2 log6 n) time for graphs with maximum degree at most
3 (subcubic graphs) by reducing it to the graphic matroid parity problem,
where n is the number of vertices in a graph. This affirmatively settles an
open question posed by Kynčl et al. (2014).
key words: feedback vertex set, graphic matroid parity problem, irre-
versible threshold process, subcubic graphs

1. Introduction

As a mathematical model of the spread of diseases or opin-
ions, an irreversible k-threshold process is introduced by
Dreyer and Roberts [4]. Let G = (V, E) be an undirected
simple graph with vertices colored either black or white. An
irreversible k-threshold process is a discrete-time process
on G where a white vertex becomes black at time t if it is
adjacent to at least k black vertices at time t − 1. An irre-
versible k-conversion set of G (IkCS for short) is a vertex
set S ⊆ V such that if the vertices in S are set to be black
and the other vertices are set to be white at time 0, the ir-
reversible k-threshold process will change all white vertices
to be black after a finite number of steps. The IkCS problem
is to find a minimum IkCS in a given graph.

Dreyer and Roberts [4] show that a vertex set S ⊆ V of
a k-regular graph G = (V, E) is an IkCS if and only if V \ S
is an independent set, and as a result, the IkCS problem is
NP-hard even for k-regular graphs if k ≥ 3. Since the IkCS
problem is trivial if k = 1, they asked the complexity of the
I2CS problem.

Later, Kynčl et al. show in [9] that the I2CS problem is
NP-hard even for graphs with maximum degree 4 (The NP-
hardness of the I2CS problem is also proved in [3]). They
also mention that the I2CS problem is trivial for graphs with
maximum degree at most 2, since the size of I2CS of a path
and cycle is known [4]. A vertex set S ⊆ V of a graph G =
(V, E) is called a feedback vertex set of G if G − S contains
no cycle, where G − S denotes the graph obtained from G
by deleting all vertices in S . Kynčl et al. mention in [9] that
for 3-regular graphs, the I2CS problem is equivalent to the
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problem of finding a minimum feedback vertex set, which
can be solved in polynomial time [12], [13].

Kynčl et al. recently showed in [10] that the I2CS prob-
lem for graphs with maximum degree 3 (subcubic graphs)
can be solved in O(n1+ω) time by reducing it to the linear
matroid parity problem, which can be solved in polynomial
time [7], [11], where n is the number of vertices of a graph
and O(nω) is the time to multiply two n×n matrices (The best
known upper bound of the exponent is ω < 2.3728639 [8]).
They asked whether the problem can be efficiently reduced
to the cographic matroid parity problem. This paper settles
the question affirmatively by showing the following.

Theorem 1. The I2CS problem can be solved in O(n2 log6 n)
time for subcubic graphs. �

2. Proof of Theorem 1

We show that the I2CS problem for subcubic graphs can be
reduced to the graphic matroid parity problem in linear time.
Since the graphic matroid parity problem can be solved in
O(nm log6 n) time [6], [7], we have the theorem, where m is
the number of edges of a graph.

It remains to show the reduction of the I2CS problem
for subcubic graphs to the graphic matroid parity problem.
We employ a reduction similar to that used in [2], [5], [12].
Let G = (V, E) be a subcubic graph, and let V1, V2, and V3

be the set of vertices with degree 1, 2, and 3, respectively.

Lemma 2. A vertex set S ⊆ V is an I2CS if and only if

(1) V1 ⊆ S ,
(2) G − S contains no cycle, and
(3) each connected component of G − S has at most one

vertex in V2 \ S .

Proof. Let S ⊆ V be an I2CS of G. We show that S satisfies
conditions (1)-(3). Since a white vertex needs two black
adjacent vertices to become black, every vertex of degree 1
must be in S .

Suppose a cycle of G has no vertex in S . Every vertex
on the cycle has at most one adjacent vertex outside the cy-
cle. Since every vertex on the cycle is white at the beginning
of the process, they remain white forever, contradicting the
assumption that S is an I2CS. Hence, any cycle of G has at
least one vertex in S , that is, G − S contains no cycle.

Suppose a component of G−S has at least two vertices
in V2. We have a path in the component connecting two of
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them. Every vertex on the path has at most one adjacent
vertex outside the path, since two end-vertices of the path
has degree 2 in G. Since every vertex on the path is white
at the beginning of the process, they remain white forever,
contradicting the assumption that S is an I2CS. Hence, each
component of G − S has at most one vertex in V2.

Conversely, let S ⊆ V be a vertex set of G satisfying
conditions (1)-(3). We show that S is an I2CS. Each con-
nected component of G−S is a tree consisting of vertices in
V3 and at most one vertex in V2. Hence, at any time of the
process, each component of the subgraph of G induced by
the white vertices is a tree consisting of vertices in V3 and
at most one vertex in V2. A leaf of the components becomes
black if it is in V3, since it has two black adjacent vertices.
Since each component has at most one vertex in V2, all white
vertices in V3 will be changed to be black. Finally, the white
vertices in V2 become black, since all its adjacent vertices
are black. Hence, S is an I2CS. �

Let G∗ = (V∗, E∗) be a multigraph obtained from G by

– adding a vertex v∗,
– adding an edge joining v∗ and v for each v ∈ V2, and
– adding two edges joining v∗ and v for each v ∈ V1.

Notice that every vertex in V∗\{v∗} has degree 3. The follow-
ing lemma indicates that the I2CS problem can be reduced
to a variant of the feedback vertex set problem.

Lemma 3. A vertex set S ⊆ V∗ \ {v∗} is an I2CS of G if and
only if S is a feedback vertex set of G∗.

Proof. Let S ⊆ V∗ \ {v∗} be an I2CS of G. We show that
S is a feedback vertex set of G∗. Notice that G∗ − S can
be obtained from G − S by adding v∗ and adding an edge
joining v∗ and each vertex of V2 \ S . We have by Lemma 2
that each connected component of G − S is a tree that has at
most one vertex in V2. Hence, G∗ −S contains no cycle, and
S is a feedback vertex set of G∗.

Conversely, let S ⊆ V∗ \ {v∗} be a feedback vertex set
of G∗. We show by Lemma 2 that S is an I2CS of G. For
each v ∈ V1, two edges joining v and v∗ form a cycle. Since
v∗ � S , we conclude that v ∈ S , and hence, V1 ⊆ S .

Since G∗ −S contains no cycle by definition, and G−S
is a subgraph of G∗ − S , we conclude that G− S contains no
cycle.

Recall that v∗ and each vertex in V2 \S are joined by an
edge in G∗−S . Each connected component of G−S contains
at most one vertex in V2 \S , for otherwise v∗ and the vertices
on the path connecting two vertices in V2 \S induce a cycle,
contradicting the assumption that S is a feedback vertex set
of G∗. Hence, we have from Lemma 2 that S is an I2CS. �

The graphic matroid parity problem can be stated as
follows by using terminology only from graph theory. Let
G = (V, E) be a graph whose edges are partitioned into pairs,
that is, every edge e ∈ E has a unique mate ē ∈ E. A parity
set F ⊆ E is an edge set such that for any edge e ∈ E, e ∈ F
if and only if ē ∈ F. The graphic matroid parity problem is

to find a largest parity set containing no cycle.
It should be noted that V∗ = V ∪ {v∗} and E∗ =

E ∪ ΓG∗ (v∗), where ΓG∗ (v∗) is the set of edges of G∗ incident
to v∗. Let G′ = (V ′, E′) be the graph obtained from G∗ by
replacing each edge in E∗\ΓG∗ (v∗) by a path of length 2. No-
tice that {ΓG′ (v)}v∈V is a partition of E′. Let G′′ = (V ′′, E′′)
be the graph obtained from G′ by applying the following
procedure for each v ∈ V:

– Let ΓG′ (v) = {e0, e1, e2};
– Replace each edge in ΓG′ (v) by a path of length 2, and

let ei,1 and ei,2 be the two edges on the path correspond-
ing to ei, 0 ≤ i ≤ 2;

– Let ei,1 be the mate of ei+1,2 for any i (subscripts are
modulo 3).

We say that v ∈ V is associated with each of these three
pairs, and vice versa.

Lemma 4. Let F be a parity set of G′′, and let S be the set
of vertices associated with pairs in E′′ \F. Then, F contains
no cycle in G′′ if and only if S is a feedback vertex set of G∗.

Proof. If F contains a cycle, all edges associated with the
vertices on the cycle are in F. Hence, no vertex on the cycle
is in S , and S is not a feedback vertex set of G∗. Conversely,
if G − S contains a cycle, all edges associated with the ver-
tices on the cycle are in F, and F contains the cycle. �

Lemma 5. Let S ⊆ V be a vertex set of G∗, and let F be a
parity set of G′′ obtained from E′′ by removing one of three
pairs associated with each vertex in S . Then, S is a feedback
vertex set of G∗ if and only if F contains no cycle in G′′.

Proof. The proof is similar to that of Lemma 4, and is omit-
ted. �

Now, we have the following.

Lemma 6. Let f be the number of edges in a largest parity
set of G′′ containing no cycle, and let s be the number of
vertices in a smallest feedback vertex set of G∗ that is also a
subset of V. Then, f + 2s = |E′′|.
Proof. Let F be a largest parity set of G′′ containing no cy-
cle, that is, |F| = f . Let S be the set of vertices associated
with pairs in E′′ \ F. We have by Lemma 4 that S is a feed-
back vertex set of G∗. For each v ∈ V , E′′ \ F contains
at most one pair associated with v, for otherwise F is not
largest since adding one of pairs in E′′ \ F associated with
v makes no cycle in F. Hence, for each vertex in S , E′′ \ F
has a unique pair associated with the vertex, and we have
f + 2s ≤ |F| + 2|S | = |E′′|.

Let S ⊆ V be a smallest feedback vertex set of G∗ that
is also a subset of V , that is, |S | = s. Let F be a parity
set of G′′ obtained from E′′ by removing one of three pairs
associated with each vertex in S . We have by Lemma 5
that F contains no cycle. By the construction of F, we have
f + 2s ≥ |F| + 2|S | = |E′′|.

Now, we have f + 2s = |E′′|. �
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By Lemmas 4 and 6, we can see that if F is a largest
parity set containing no cycle, then the set of vertices asso-
ciated with pairs in E′′ \F is a minimum feedback vertex set
of G∗ that is also a subset of V , and hence, it is a minimum
I2CS of G by Lemma 3. Since it is obvious that G′′ can be
obtained in linear time from the original graph G, we have
the theorem.

3. Concluding Remarks

It should be noted that the theorem also holds for multi-
graphs. Other results on IkCS can be found in [1], [3], [4],
[9].
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