LETTER

Dominating Sets in Two-Directional Orthogonal Ray Graphs*

Asahi TAKAOKA ${ }^{\dagger \mathrm{a})}$, Satoshi TAYU ${ }^{\dagger \mathrm{b})}$, Members, and Shuichi UENO ${ }^{\dagger \mathrm{c})}$, Fellow

Abstract

SUMMARY A 2-directional orthogonal ray graph is an intersection graph of rightward rays (half-lines) and downward rays in the plane. We show a dynamic programming algorithm that solves the weighted dominating set problem in $O\left(n^{3}\right)$ time for 2-directional orthogonal ray graphs, where n is the number of vertices of a graph.

key words: Boolean-width, dominating set, dynamic programming, twodirectional orthogonal ray graphs

1. Introduction

A bipartite graph G with bipartition (U, V) is called an orthogonal ray graph [10] if there exist a set of disjoint horizontal rays (closed half-lines) $R_{u}, u \in U$, in the $x y$-plane and a set of disjoint vertical rays $R_{v}, v \in V$, such that for any $u \in U$ and $v \in V,(u, v) \in E(G)$ if and only if R_{u} and R_{v} intersect. The set $\mathcal{R}(G)=\left\{R_{w} \mid w \in V(G)\right\}$ is called an orthogonal ray representation of G. Orthogonal ray graphs have been introduced in connection with the defect-tolerant design of nano-circuits [9]. An orthogonal ray graph is called a 2-directional orthogonal ray graph (2-DORG for short) if every horizontal ray $R_{u}, u \in U$, has the same direction, and every vertical ray $R_{v}, v \in V$, has the same direction.

For 2-DORGs, various characterizations with an $O\left(n^{2}\right)$ time recognition algorithm are known [10], where n is the number of vertices of a graph. Also, some problems are known to be solvable or approximable in polynomial time for 2-DORGs [5], [7], [8], [11]-[14]. We recently showed in [13] that the weighted dominating set problem can be solved in $O\left(n^{4} \log n\right)$ time for 2-DORGs by using a new parameter, boolean-width of graphs. Boolean-width of graphs is introduced in [2], [3], and several problems can be solved in polynomial time by dynamic programming algorithms if the graphs has boolean-width $O(\log n)$. In this paper by using dynamic programming techniques directly, we show an $O\left(n^{3}\right)$-time algorithm that solves the weighted dominating set problem for 2-DORGs.

We note that by using boolean-width of graphs, some other kinds of graph problems, such as the independent set problem, can be solved in polynomial time for several

[^0]classes of graphs. See [1]-[4] for details. We expect that the complexity of the problems can be reduced by using direct dynamic programming approaches, as shown in this paper.

It should also be noted that the complexity of the weighted dominating set problem for orthogonal ray graphs still remains open, whereas the problem can be solved in polynomial time provided that orthogonal ray representations of graphs [13], [15].

2. Problem

All graphs considered in this paper are finite, simple, and undirected. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices and edges, respectively, and let $n=|V(G)|$. The open neighborhood of a vertex v of G is the set $N_{G}(v)=\{u \in$ $V(G) \mid(u, v) \in E(G)\}$, and the closed neighborhood of v is the set $N_{G}[v]=\{v\} \cup N_{G}(v)$. The closed neighborhood of a vertex set $S \subseteq V(G)$ is $N_{G}[S]=\bigcup_{v \in S} N_{G}[v]$. If no confusion arises, we will omit the index G.

A vertex v of a graph G is said to dominate all vertices of $N[v]$. A vertex set $D \subseteq V(G)$ is said to dominate $v \in V(G)$ if D has at least one vertex dominating v. A vertex set $D \subseteq$ $V(G)$ is called a dominating set of G if every vertex of G is dominated by D. The weighted dominating set problem is to find a dominating set with minimum weight in a given vertex-weighted graph. Previous works of the problem for graphs related to orthogonal ray graphs can be found in [13].

Let $c: V(G) \rightarrow \mathbb{R}$ be a weight (or cost) function of a graph G, where \mathbb{R} is a set of real numbers, and let $c(v)$ denotes the weight of a vertex v of G. For a vertex set $D \subseteq V(G)$, let $c(D)=\sum_{v \in D} c(v)$ be the weight of D. It is shown in [6] that any algorithm that finds a minimumweight dominating set for graphs with non-negative weights can be extended without loss of efficiency to the algorithm for graphs with negative weights. Hence, in the rest of this paper, we assume that $c(v)$ is non-negative for every $v \in V(G)$.

3. Algorithm

If S is a vertex set of a graph G and v is a vertex of G, we use for convenience $S+v$ and $S-v$ instead of $S \cup\{v\}$ and $S \backslash\{v\}$, respectively. For a family of vertex sets $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of G, we use $\min \left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ to denote a set S_{i} with minimum weight (Break ties arbitrarily).

Let G be a 2-DORG with bipartition (U, V) and an orthogonal ray representation $\mathcal{R}(G)=\left\{R_{w} \mid w \in V(G)\right\}$. We
assume without loss of generality that every $R_{u}, u \in U$ is a rightward ray and every $R_{v}, v \in V$ is a downward ray. It is shown in [10] that such an orthogonal ray representation of a 2-DORG can be obtained in $O\left(n^{2}\right)$ time. Let $\left(x_{w}, y_{w}\right)$ be the endpoint of $R_{w}, w \in V(G)$. We refer to x_{w} and y_{w} as the x and y-coordinate of w, respectively. Since the graphs are finite, we can see that the endpoints can be perturbed slightly so that the x-coordinates are distinct and the y-coordinates are distinct [12]. Notice that for any $u \in U$ and $v \in V$, $(u, v) \in E(G)$ if and only if $x_{u}<x_{v}$ and $y_{u}<y_{v}$.

Let G be a 2-DORG with bipartition (U, V) and nonnegative weight function c, and let $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be the total ordering of $V(G)$ such that for any w_{i} and $w_{j}, i<j$ if and only if $x_{w_{i}}<x_{w_{j}}$. For convenience of algorithm description, we add two isolated dummy vertices w_{0} and w_{n+1} with weight 0 . Let w_{0} be a vertex of U, and we denote it by u_{d}. Let w_{n+1} be a vertex of V, and we denote it by v_{d}. We define for any $i \in\{0,1, \ldots, n\}$ that

$$
\begin{aligned}
& W_{i}=\left\{w_{j} \in V(G) \cup\left\{u_{d}, v_{d}\right\} \mid j \leq i\right\}, \\
& U_{i}=W_{i} \cap U, \text { and } \\
& V_{i}=\overline{W_{i}} \cap V,
\end{aligned}
$$

where $\overline{W_{i}}=\left(V(G) \cup\left\{u_{d}, v_{d}\right\}\right) \backslash W_{i}$. Notice that $u_{d} \in U_{i}$ and $v_{d} \in V_{i}$ for any $i \in\{0,1, \ldots, n\}$.

For a vertex set $S \subseteq W_{i}$, let $u_{S} \in S \cap U$ be the vertex with minimum y-coordinate among $S \cap U$. Any vertex $v \in V_{i}$ adjacent to a vertex $u \in S \cap U$ is also adjacent to u_{S}, since $x_{u_{S}}<x_{v}$ and $y_{u_{S}}<y_{u}<y_{v}$. Since $N[S] \cap \overline{W_{i}} \subseteq V_{i}$, any vertex of $\overline{W_{i}}$ dominated by S must be dominated by u_{S}, that is, $N[S] \cap \overline{W_{i}}=N\left[u_{S}\right] \cap \overline{W_{i}}$. With this observation, we show in [13] that the weighted dominating set problem can be solved in $O\left(n^{4} \log n\right)$ time for 2-DORGs. We also use it in this paper, and we refer to u_{S} as the representative of S.

A pair (S, v) of a vertex set $S \subseteq W_{i}$ and a vertex $v \in V_{i}$ is said to dominate W_{i} if all vertices of W_{i} are dominated by S or v, that is, $W_{i} \subseteq N[S+v]$. In the algorithm, we use the two-dimensional table D_{i} for each $i \in\{0,1, \ldots, n\}$ that has index set $U_{i} \times V_{i}$. The contents of $D_{i}[u][v]$ for every $u \in U_{i}$ and $v \in V_{i}$ are defined as follows:

$$
\begin{aligned}
& \mathcal{S}_{i}[u][v]=\left\{S \subseteq W_{i} \left\lvert\, \begin{array}{l}
u \text { is the representative of } S \\
\text { and }(S, v) \text { dominates } W_{i},
\end{array}\right.\right\} ; \\
& D_{i}[u][v]=\min \left\{\mathcal{S}_{i}[u][v]\right\} .
\end{aligned}
$$

In other words, $D_{i}[u][v]$ stores one of the minimum-weight subsets S of W_{i} such that the representative of S is u and (S, v) dominates W_{i}. Notice that since u_{d} is isolated, $u_{d} \in$ $D_{i}[u][v]$ for any $i \in\{0,1, \ldots, n\}, u \in U_{i}$, and $v \in V_{i}$. We can see that $D_{n}[u]\left[v_{d}\right]-u_{d}$ with minimum weight over all $u \in U_{n}$ is the minimum-weight dominating set of an input 2DORG. We compute the contents of table D_{i+1} from table D_{i} by the following relationships, which are proved in the next section. In the rest of this paper, we use ∞ to denote a vertex set of sufficiently large weight so that $D_{i}[u][v]=\infty$ means that there is no such vertex set in the graph. We assume that a sum containing a ∞ equals ∞.

```
Algorithm 1: An \(O\left(n^{3}\right)\)-time algorithm to find a
minimum-weight dominating set in 2-DORGs
    Input: An orthogonal ray representation \(\mathcal{R}(G)\) of a 2-DORG \(G\).
    Output: A minimum-weight dominating set of \(G\).
    Add two isolated dummy vertices \(u_{d}\) and \(v_{d}\);
    \(D_{0}\left[u_{d}\right][v] \leftarrow u_{d}\) for all \(v \in V\);
    \(D_{i}[u][v] \leftarrow \infty\) for all \(i \in\{1,2, \ldots, n\}, u \in U_{i}\), and \(v \in V_{i}\);
    for \(i \leftarrow 0\) to \(n-1\) do
        foreach \(u \in U_{i}\) and \(v \in V_{i+1}\) do
            if \(w_{i+1} \in U\) then
            \(u^{\prime} \leftarrow w_{i+1} ;\)
            if \(y_{u^{\prime}}<y_{u}\) then
                \(D_{i+1}\left[u^{\prime}\right][v] \leftarrow \min \left\{D_{i+1}\left[u^{\prime}\right][v], D_{i}[u][v]+u^{\prime}\right\} ;\)
                if \(\left(u^{\prime}, v\right) \in E(G)\) then
                    \(D_{i+1}[u][v] \leftarrow D_{i}[u][v] ;\)
                    else
                    \(D_{i+1}[u][v] \leftarrow \infty ;\)
            else
                        if \(\left(u^{\prime}, v\right) \in E(G)\) then
                                \(D_{i+1}[u][v] \leftarrow D_{i}[u][v] ;\)
            else
                \(D_{i+1}[u][v] \leftarrow D_{i}[u][v]+u^{\prime} ;\)
        if \(w_{i+1} \in V\) then
            \(v^{\prime} \leftarrow w_{i+1} ;\)
            if \(y_{v^{\prime}}<y_{v}\) then
                if \(\left(u, v^{\prime}\right) \in E(G)\) then
                    \(D_{i+1}[u][v] \leftarrow D_{i}[u][v] ;\)
            else
                \(D_{i+1}[u][v] \leftarrow D_{i}[u][v]+v^{\prime} ;\)
            else
                if \(\left(u, v^{\prime}\right) \in E(G)\) then
                        \(D_{i+1}[u][v] \leftarrow \min \left\{D_{i}[u][v], D_{i}[u]\left[v^{\prime}\right]+v^{\prime}\right\} ;\)
                else
                        \(D_{i+1}[u][v] \leftarrow D_{i}[u]\left[v^{\prime}\right]+v^{\prime} ;\)
    return \(D_{n}[u]\left[v_{d}\right]-u_{d}\) with minimum weight over all \(u \in U_{n}\);
```

Lemma 1. Suppose $w_{i+1} \in U$, and let $u^{\prime}=w_{i+1}$. Then,

$$
\begin{array}{ll}
\qquad D_{i+1}\left[u^{\prime}\right][v]=\min \left\{D_{i}[u][v]+u^{\prime} \mid u \in U_{i} \text { s.t. } y_{u^{\prime}}<y_{u}\right\}, \\
\text { and } D_{i+1}[u][v] \text { is } & \\
\qquad \begin{array}{cl}
D_{i}[u][v] & \text { if } y_{u^{\prime}}<y_{u} \text { and }\left(u^{\prime}, v\right) \in E(G), \\
\infty & \text { if } y_{u^{\prime}}<y_{u} \text { and }\left(u^{\prime}, v\right) \notin E(G), \\
D_{i}[u][v] & \text { if } y_{u^{\prime}}>y_{u} \text { and }\left(u^{\prime}, v\right) \in E(G), \text { and } \\
D_{i}[u][v]+u^{\prime} & \text { if } y_{u^{\prime}}>y_{u} \text { and }\left(u^{\prime}, v\right) \notin E(G),
\end{array}
\end{array}
$$

for any $u \in U_{i}, v \in V_{i+1}$, and $i \in\{0,1, \ldots, n-1\}$.
Lemma 2. Suppose $w_{i+1} \in V$, and let $v^{\prime}=w_{i+1}$. Then, $D_{i+1}[u][v]$ is

$$
\begin{array}{ll}
D_{i}[u][v] & \text { if } y_{v^{\prime}}<y_{v} \text { and }\left(u, v^{\prime}\right) \in E(G), \\
D_{i}[u][v]+v^{\prime} & \text { if } y_{v^{\prime}}<y_{v} \text { and }\left(u, v^{\prime}\right) \notin E(G), \\
\min \left\{D_{i}[u][v]\right. & \\
\left.D_{i}[u]\left[v^{\prime}\right]+v^{\prime}\right\} & \text { if } y_{v^{\prime}}>y_{v} \text { and }\left(u, v^{\prime}\right) \in E(G), \text { and } \\
D_{i}[u]\left[v^{\prime}\right]+v^{\prime} & \text { if } y_{v^{\prime}}>y_{v} \text { and }\left(u, v^{\prime}\right) \notin E(G),
\end{array}
$$

for any $u \in U_{i}, v \in V_{i+1}$, and $i \in\{0,1, \ldots, n-1\}$.
Lemmas 1 and 2 establish Algorithm 1 shown above
by using dynamic programming techniques for computing table D_{i} in the increasing order of $i \in\{0,1, \ldots, n-1\}$.

Theorem 3. Algorithm 1 solves the weighted dominating set problem in $O\left(n^{3}\right)$ time for 2-DORGs.

Proof. Correctness of the algorithm is shown by Lemmas 1 and 2. Since the algorithm consists of three nested loops and each loop index $\left(i \in\{0,1, \ldots, n-1\}, u \in U_{i}\right.$, and $v \in V_{i+1}$) takes at most $n+1$ values, the algorithm runs in $O\left(n^{3}\right)$ time. Since the the orthogonal ray representation of a 2 -DORG can be obtained in $O\left(n^{2}\right)$ time [10], we have the theorem.

4. Proof of Lemmas

4.1 Proof of Lemma 1

We will compute the content of $D_{i+1}[u][v]$ from table D_{i}. Recall that $w_{i+1} \in U$ and $u^{\prime}=w_{i+1}$.

We first show how to compute $D_{i+1}\left[u^{\prime}\right][v]$ for every $v \in V_{i+1}$. Notice that $u^{\prime} \in D_{i+1}\left[u^{\prime}\right][v]$ by definition, and $D_{i+1}\left[u^{\prime}\right][v]$ has no vertex of U_{i} whose y-coordinate is lower than that of u^{\prime}, for otherwise u^{\prime} is no longer the representative of the vertex set.

Claim 4. $D_{i+1}\left[u^{\prime}\right][v]-u^{\prime}=D_{i}[u][v]$, where u is the representative of $D_{i+1}\left[u^{\prime}\right][v]-u^{\prime}$, that is, the vertex in $D_{i+1}\left[u^{\prime}\right][v] \cap U$ with the second-minimum y-coordinate.

Proof. Since W_{i} has no vertex dominated by $u^{\prime}, D_{i+1}\left[u^{\prime}\right][v]-$ $u^{\prime} \in \mathcal{S}_{i}[u][v]$. There is no vertex set $D \in \mathcal{S}_{i}[u][v]$ such that $c(D)<c\left(D_{i+1}\left[u^{\prime}\right][v]-u^{\prime}\right)$, for otherwise we have $D+u^{\prime} \in$ $\mathcal{S}_{i+1}\left[u^{\prime}\right][v]$ and $c\left(D+u^{\prime}\right)<c\left(D_{i+1}\left[u^{\prime}\right][v]\right)$, a contradiction. Thus, $D_{i+1}\left[u^{\prime}\right][v]-u^{\prime}$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u][v]$.

From Claim 4, we can compute $D_{i+1}\left[u^{\prime}\right][v]$ as follows.

Lemma 5.

$$
D_{i+1}\left[u^{\prime}\right][v]=\min \left\{D_{i}[u][v]+u^{\prime} \mid u \in U_{i} \text { s.t. } y_{u^{\prime}}<y_{u}\right\} .
$$

We next show how to compute $D_{i+1}[u][v]$ for every $u \in$ U_{i} and $v \in V_{i+1}$. We first show the following.

Claim 6. If $u^{\prime} \notin D_{i+1}[u][v]$, then we have $\left(u^{\prime}, v\right) \in E(G)$ and $D_{i+1}[u][v]=D_{i}[u][v]$.

Proof. Recall that ($\left.D_{i+1}[u][v], v\right)$ dominates u^{\prime}. Since $u^{\prime} \notin$ $D_{i+1}[u][v]$ and W_{i} has no vertex dominating u^{\prime}, v must dominate u^{\prime}. Hence, $\left(u^{\prime}, v\right) \in E(G)$.

Since $u^{\prime} \notin D_{i+1}[u][v]$, we have $D_{i+1}[u][v] \in \mathcal{S}_{i}[u][v]$. There is no vertex set $D \in \mathcal{S}_{i}[u][v]$ such that $c(D)<$ $c\left(D_{i+1}[u][v]\right)$, for otherwise $\left(u^{\prime}, v\right) \in E(G)$ implies that $D \in \mathcal{S}_{i+1}[u][v]$, contradicting the minimality of $D_{i+1}[u][v]$ in $\mathcal{S}_{i+1}[u][v]$. Thus, $D_{i+1}[u][v]$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u][v]$.

We distinguish two cases, each of which corresponds to Lemma 7 and 8, respectively.

Lemma 7. Let $u \in U_{i}$ be a vertex with $y_{u^{\prime}}<y_{u}$. Then,

$$
D_{i+1}[u][v]= \begin{cases}D_{i}[u][v] & \text { if }\left(u^{\prime}, v\right) \in E(G), \\ \infty & \text { otherwise } .\end{cases}
$$

Proof. We have that $u^{\prime} \notin D_{i+1}[u][v]$, for otherwise $y_{u^{\prime}}<$ y_{u} implies that the representative of the vertex set is u^{\prime}, a contradiction. The lemma is derived from Claim 6.

Lemma 8. Let $u \in U_{i}$ be a vertex with $y_{u^{\prime}}>y_{u}$. Then,

$$
D_{i+1}[u][v]= \begin{cases}D_{i}[u][v] & \text { if }\left(u^{\prime}, v\right) \in E(G), \\ D_{i}[u][v]+u^{\prime} & \text { otherwise } .\end{cases}
$$

Proof. We first show that

$$
\begin{equation*}
\text { if } u^{\prime} \in D_{i+1}[u][v] \text {, then } D_{i+1}[u][v]-u^{\prime}=D_{i}[u][v] \text {. } \tag{1}
\end{equation*}
$$

Notice that the representative of $D_{i}[u][v]+u^{\prime}$ is still u, since $y_{u^{\prime}}>y_{u}$. Since W_{i} has no vertex dominated by u^{\prime}, $D_{i+1}[u][v]-u^{\prime} \in \mathcal{S}_{i}[u][v]$. There is no vertex set $D \in \mathcal{S}_{i}[u][v]$ such that $c(D)<c\left(D_{i+1}[u][v]-u^{\prime}\right)$, for otherwise we have $D+u^{\prime} \in \mathcal{S}_{i+1}[u][v]$ and $c\left(D+u^{\prime}\right)<c\left(D_{i+1}[u][v]\right)$, a contradiction. Thus, $D_{i+1}[u][v]-u^{\prime}$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u][v]$.

Now, we have from Claim 6 and (1) that $D_{i+1}[u][v]=$ $\min \left\{D_{i}[u][v], D_{i}[u][v]+u^{\prime}\right\}$ if $\left(u^{\prime}, v\right) \in E(G)$, and $D_{i+1}[u][v]$ $=D_{i}[u][v]+u^{\prime}$ otherwise. Since we assume that the weights of vertices are non-negative, we have the lemma.

Lemmas 5, 7, and 8 prove Lemma 1.

4.2 Proof of Lemma 2

We show how to compute $D_{i+1}[u][v]$ for every $u \in U_{i}$ and $v \in V_{i+1}$ from table D_{i}. Recall that $w_{i+1} \in V$ and $v^{\prime}=w_{i+1}$. Notice that v^{\prime} does not appear in the index of D_{i+1}, since $v^{\prime} \notin V_{i+1}$. We first show the following.

Claim 9. If $v^{\prime} \notin D_{i+1}[u][v]$, then we have $\left(u, v^{\prime}\right) \in E(G)$ and $D_{i+1}[u][v]=D_{i}[u][v]$.

Proof. Since u is the representative of $D_{i+1}[u][v]$ and $v^{\prime} \notin$ $D_{i+1}[u][v], u$ must dominate v^{\prime}. Hence, $\left(u, v^{\prime}\right) \in E(G)$.

Since $v^{\prime} \notin D_{i+1}[u][v]$, we have $D_{i+1}[u][v] \in \mathcal{S}_{i}[u][v]$. There is no vertex set $D \in \mathcal{S}_{i}[u][v]$ such that $c(D)<$ $c\left(D_{i+1}[u][v]\right)$, for otherwise $\left(u, v^{\prime}\right) \in E(G)$ implies that $D \in \mathcal{S}_{i+1}[u][v]$, contradicting the minimality of $D_{i+1}[u][v]$ in $\mathcal{S}_{i+1}[u][v]$. Thus, $D_{i+1}[u][v]$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u][v]$.

We distinguish two cases, each of which corresponds to Lemma 10 and 11, respectively.

Lemma 10. Let $v \in V_{i+1}$ be a vertex with $y_{v^{\prime}}<y_{v}$. Then,

$$
D_{i+1}[u][v]= \begin{cases}D_{i}[u][v] & \text { if }\left(u, v^{\prime}\right) \in E(G), \\ D_{i}[u][v]+v^{\prime} & \text { otherwise } .\end{cases}
$$

Proof. We first show that

$$
\begin{equation*}
\text { if } v^{\prime} \in D_{i+1}[u][v] \text {, then } D_{i+1}[u][v]-v^{\prime}=D_{i}[u][v] \text {. } \tag{2}
\end{equation*}
$$

Since $y_{v^{\prime}}<y_{v}$, we have $N\left(v^{\prime}\right) \cap W_{i} \subseteq N(v) \cap W_{i}$. It follows that $\left(D_{i+1}[u][v]-v^{\prime}, v\right)$ dominates W_{i}, and hence, $D_{i+1}[u][v]-v^{\prime} \in \mathcal{S}_{i}[u][v]$. There is no vertex set $D \in \mathcal{S}_{i}[u][v]$ such that $c(D)<c\left(D_{i+1}[u][v]-v^{\prime}\right)$, for otherwise we have $D+v \in \mathcal{S}_{i+1}[u][v]$ and $c\left(D+v^{\prime}\right)<c\left(D_{i+1}[u][v]\right)$, a contradiction. Thus, $D_{i+1}[u][v]-v^{\prime}$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u][v]$.

Now, we have from Claim 9 and (2) that $D_{i+1}[u][v]=$ $\min \left\{D_{i}[u][v], D_{i}[u][v]+v^{\prime}\right\}$ if $\left(u, v^{\prime}\right) \in E(G)$, and $D_{i+1}[u][v]$ $=D_{i}[u][v]+v^{\prime}$ otherwise. Since we assume that the weights of vertices are non-negative, we have the lemma.

Lemma 11. Let $v \in V_{i+1}$ be a vertex with $y_{v^{\prime}}<y_{v}$. Then,

$$
D_{i+1}[u][v]=\left\{\begin{array}{cl}
\min \left\{D_{i}[u][v],\right. & \\
\left.D_{i}[u]\left[v^{\prime}\right]+v^{\prime}\right\} & \text { if }\left(u, v^{\prime}\right) \in E(G), \\
D_{i}[u]\left[v^{\prime}\right]+v^{\prime} & \text { otherwise } .
\end{array}\right.
$$

Proof. We first show that

$$
\begin{equation*}
\text { if } v^{\prime} \in D_{i+1}[u][v] \text {, then } D_{i+1}[u][v]-v^{\prime}=D_{i}[u]\left[v^{\prime}\right] . \tag{3}
\end{equation*}
$$

Since $y_{v^{\prime}}>y_{v}$, we have $N\left(v^{\prime}\right) \cap W_{i} \supseteq N(v) \cap W_{i}$. It follows that $\left(D_{i+1}[u][v]-v^{\prime}, v^{\prime}\right)$ dominates W_{i}, and hence, $D_{i+1}[u][v]-v^{\prime} \in \mathcal{S}_{i}[u]\left[v^{\prime}\right]$. There is no vertex set $D \in$ $\mathcal{S}_{i}[u]\left[v^{\prime}\right]$ such that $c(D)<c\left(D_{i+1}[u][v]-v^{\prime}\right)$, for otherwise we have $D+v^{\prime} \in \mathcal{S}_{i+1}[u][v]$ and $c\left(D+v^{\prime}\right)<c\left(D_{i+1}[u][v]\right)$, a contradiction. Thus, $D_{i+1}[u][v]-v^{\prime}$ is a minimum-weight vertex set in $\mathcal{S}_{i}[u]\left[v^{\prime}\right]$.

Now, we have from Claim 9 and (3) that $D_{i+1}[u][v]=$ $\min \left\{D_{i}[u][v], D_{i}[u]\left[v^{\prime}\right]+v^{\prime}\right\}$ if $\left(u, v^{\prime}\right) \in E(G)$, and $D_{i+1}[u][v]$ $=D_{i}[u]\left[v^{\prime}\right]+v^{\prime}$ otherwise.

Lemmas 10 and 11 prove Lemma 2.

Acknowledgements

We are grateful to anonymous referees for careful reading and helpful comments on the preliminary version of this paper. The research was partially supported by JSPS KAKENHI Grant Number 26330007, and JSPS Grant-inAid for JSPS Fellows (26•8924).

References

[1] R. Belmonte and M. Vatshelle, "Graph classes with structured neighborhoods and algorithmic applications," Theor. Comput. Sci., vol.511, pp.54-65, 2013.
[2] B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle, "Boolean-width of graphs," Proc. 4th International Workshop on Parameterized and Exact Computation (IWPEC), Lecture Notes in Computer Science, vol.5917, pp.61-74, Springer, Berlin, Heidelberg, 2009.
[3] B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle, "Boolean-width of graphs," Theor. Comput. Sci., vol.412, no.39, pp.5187-5204, 2011.
[4] B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle, "Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems," Theor. Comput. Sci., vol.511, pp.66-76, 2013.
[5] A. Ershadi, List homomorphisms and bipartite co-circular arc graphs, Master's thesis, Simon Fraser University, 2012.
[6] G.K. Manacher and T.A. Mankus, "Incorporating negative-weight vertices in certain vertex-search graph algorithms," Inform. Process. Lett., vol.42, no.6, pp.293-294, 1992.
[7] C.G. Plaxton, "Vertex-weighted matching in two-directional orthogonal ray graphs," Proc. 24th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, vol.8283, pp.524-534, Springer, Berlin, Heidelberg, 2013.
[8] A.M.S. Shrestha, A. Takaoka, S. Tayu, and S. Ueno, "On two problems of nano-PLA design," IEICE Trans. Inf. \& Syst., vol.E94-D, no.1, pp.35-41, Jan. 2011.
[9] A.M.S. Shrestha, S. Tayu, and S. Ueno, "Orthogonal ray graphs and nano-PLA design," Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp.2930-2933, May 2009.
[10] A.M.S. Shrestha, S. Tayu, and S. Ueno, "On orthogonal ray graphs," Discrete Appl. Math., vol.158, no.15, pp.1650-1659, 2010.
[11] A.M.S. Shrestha, S. Tayu, and S. Ueno, "Bandwidth of convex bipartite graphs and related graphs," Inform. Process. Lett., vol.112, no.11, pp.411-417, 2012.
[12] J.A. Soto and C. Telha, "Jump number of two-directional orthogonal ray graphs," Proc. 15th International Conference on Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science, vol.6655, pp.389-403, Springer, Berlin, Heidelberg, 2011.
[13] A. Takaoka, S. Tayu, and S. Ueno, "Dominating sets and induced matchings in orthogonal ray graphs," IEICE Trans. Inf. \& Syst., vol.E97-D, no.12, pp.3101-3109, Dec. 2014.
[14] A. Takaoka, S. Tayu, and S. Ueno, "Weighted dominating sets and induced matchings in orthogonal ray graphs," Proc. IEEE-2nd International Conference on Control, Decision and Information Technologies (CoDIT), pp.69-73, Nov. 2014.
[15] M. Vatshelle, Personal communication, 2013.

[^0]: Manuscript received March 23, 2015.
 Manuscript publicized May 8, 2015.
 ${ }^{\dagger}$ The authors are with the Department of Communications and Computer Engineering, Tokyo Institute of Technology, Tokyo, 152-8550 Japan.
 *A preliminary version of this paper has appeared in [14].
 a) E-mail: asahi@eda.ce.titech.ac.jp
 b) E-mail: tayu@eda.ce.titech.ac.jp
 c) E-mail: ueno@eda.ce.titech.ac.jp

 DOI: 10.1587/transinf.2015EDL8068

