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Dominating Sets in Two-Directional Orthogonal Ray Graphs∗

Asahi TAKAOKA†a), Satoshi TAYU†b), Members, and Shuichi UENO†c), Fellow

SUMMARY A 2-directional orthogonal ray graph is an intersection
graph of rightward rays (half-lines) and downward rays in the plane. We
show a dynamic programming algorithm that solves the weighted domi-
nating set problem in O(n3) time for 2-directional orthogonal ray graphs,
where n is the number of vertices of a graph.
key words: Boolean-width, dominating set, dynamic programming, two-
directional orthogonal ray graphs

1. Introduction

A bipartite graph G with bipartition (U,V) is called an or-
thogonal ray graph [10] if there exist a set of disjoint hor-
izontal rays (closed half-lines) Ru, u ∈ U, in the xy-plane
and a set of disjoint vertical rays Rv, v ∈ V , such that for any
u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only if Ru and Rv in-
tersect. The set R(G) = {Rw | w ∈ V(G)} is called an orthog-
onal ray representation of G. Orthogonal ray graphs have
been introduced in connection with the defect-tolerant de-
sign of nano-circuits [9]. An orthogonal ray graph is called
a 2-directional orthogonal ray graph (2-DORG for short) if
every horizontal ray Ru, u ∈ U, has the same direction, and
every vertical ray Rv, v ∈ V , has the same direction.

For 2-DORGs, various characterizations with an O(n2)-
time recognition algorithm are known [10], where n is the
number of vertices of a graph. Also, some problems are
known to be solvable or approximable in polynomial time
for 2-DORGs [5], [7], [8], [11]–[14]. We recently showed
in [13] that the weighted dominating set problem can be
solved in O(n4 log n) time for 2-DORGs by using a new pa-
rameter, boolean-width of graphs. Boolean-width of graphs
is introduced in [2], [3], and several problems can be solved
in polynomial time by dynamic programming algorithms if
the graphs has boolean-width O(log n). In this paper by us-
ing dynamic programming techniques directly, we show an
O(n3)-time algorithm that solves the weighted dominating
set problem for 2-DORGs.

We note that by using boolean-width of graphs, some
other kinds of graph problems, such as the independent
set problem, can be solved in polynomial time for several
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classes of graphs. See [1]–[4] for details. We expect that the
complexity of the problems can be reduced by using direct
dynamic programming approaches, as shown in this paper.

It should also be noted that the complexity of the
weighted dominating set problem for orthogonal ray graphs
still remains open, whereas the problem can be solved in
polynomial time provided that orthogonal ray representa-
tions of graphs [13], [15].

2. Problem

All graphs considered in this paper are finite, simple, and
undirected. For a graph G, let V(G) and E(G) denote the set
of vertices and edges, respectively, and let n = |V(G)|. The
open neighborhood of a vertex v of G is the set NG(v) = {u ∈
V(G) | (u, v) ∈ E(G)}, and the closed neighborhood of v is
the set NG[v] = {v} ∪ NG(v). The closed neighborhood of a
vertex set S ⊆ V(G) is NG[S ] =

⋃
v∈S NG[v]. If no confusion

arises, we will omit the index G.
A vertex v of a graph G is said to dominate all vertices

of N[v]. A vertex set D ⊆ V(G) is said to dominate v ∈ V(G)
if D has at least one vertex dominating v. A vertex set D ⊆
V(G) is called a dominating set of G if every vertex of G
is dominated by D. The weighted dominating set problem
is to find a dominating set with minimum weight in a given
vertex-weighted graph. Previous works of the problem for
graphs related to orthogonal ray graphs can be found in [13].

Let c : V(G) → R be a weight (or cost) function of
a graph G, where R is a set of real numbers, and let c(v)
denotes the weight of a vertex v of G. For a vertex set
D ⊆ V(G), let c(D) =

∑
v∈D c(v) be the weight of D. It

is shown in [6] that any algorithm that finds a minimum-
weight dominating set for graphs with non-negative weights
can be extended without loss of efficiency to the algorithm
for graphs with negative weights. Hence, in the rest of
this paper, we assume that c(v) is non-negative for every
v ∈ V(G).

3. Algorithm

If S is a vertex set of a graph G and v is a vertex of G, we use
for convenience S + v and S − v instead of S ∪{v} and S \ {v},
respectively. For a family of vertex sets {S 1, S 2, . . . , S k} of
G, we use min{S 1, S 2, . . . , S k} to denote a set S i with mini-
mum weight (Break ties arbitrarily).

Let G be a 2-DORG with bipartition (U,V) and an or-
thogonal ray representation R(G) = {Rw | w ∈ V(G)}. We
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assume without loss of generality that every Ru, u ∈ U is a
rightward ray and every Rv, v ∈ V is a downward ray. It is
shown in [10] that such an orthogonal ray representation of
a 2-DORG can be obtained in O(n2) time. Let (xw, yw) be the
endpoint of Rw, w ∈ V(G). We refer to xw and yw as the x-
and y-coordinate of w, respectively. Since the graphs are fi-
nite, we can see that the endpoints can be perturbed slightly
so that the x-coordinates are distinct and the y-coordinates
are distinct [12]. Notice that for any u ∈ U and v ∈ V ,
(u, v) ∈ E(G) if and only if xu < xv and yu < yv.

Let G be a 2-DORG with bipartition (U,V) and non-
negative weight function c, and let (w1, w2, . . . , wn) be the
total ordering of V(G) such that for any wi and w j, i < j if
and only if xwi < xw j . For convenience of algorithm descrip-
tion, we add two isolated dummy vertices w0 and wn+1 with
weight 0. Let w0 be a vertex of U, and we denote it by ud.
Let wn+1 be a vertex of V , and we denote it by vd. We define
for any i ∈ {0, 1, . . . , n} that

Wi = {w j ∈ V(G) ∪ {ud, vd} | j ≤ i},
Ui = Wi ∩ U, and

Vi = Wi ∩ V,

where Wi = (V(G) ∪ {ud, vd}) \Wi. Notice that ud ∈ Ui and
vd ∈ Vi for any i ∈ {0, 1, . . . , n}.

For a vertex set S ⊆ Wi, let uS ∈ S ∩ U be the vertex
with minimum y-coordinate among S ∩U. Any vertex v ∈ Vi

adjacent to a vertex u ∈ S ∩ U is also adjacent to uS , since
xuS < xv and yuS < yu < yv. Since N[S ] ∩ Wi ⊆ Vi, any
vertex of Wi dominated by S must be dominated by uS , that
is, N[S ] ∩ Wi = N[uS ] ∩ Wi. With this observation, we
show in [13] that the weighted dominating set problem can
be solved in O(n4 log n) time for 2-DORGs. We also use it
in this paper, and we refer to uS as the representative of S .

A pair (S , v) of a vertex set S ⊆ Wi and a vertex v ∈ Vi

is said to dominate Wi if all vertices of Wi are dominated by
S or v, that is, Wi ⊆ N[S + v]. In the algorithm, we use the
two-dimensional table Di for each i ∈ {0, 1, . . . , n} that has
index set Ui × Vi. The contents of Di[u][v] for every u ∈ Ui

and v ∈ Vi are defined as follows:

Si[u][v] =

{
S ⊆ Wi

u is the representative of S

and (S , v) dominates Wi,

}
;

Di[u][v] = min{Si[u][v]}.
In other words, Di[u][v] stores one of the minimum-weight
subsets S of Wi such that the representative of S is u and
(S , v) dominates Wi. Notice that since ud is isolated, ud ∈
Di[u][v] for any i ∈ {0, 1, . . . , n}, u ∈ Ui, and v ∈ Vi. We
can see that Dn[u][vd] − ud with minimum weight over all
u ∈ Un is the minimum-weight dominating set of an input 2-
DORG. We compute the contents of table Di+1 from table Di

by the following relationships, which are proved in the next
section. In the rest of this paper, we use∞ to denote a vertex
set of sufficiently large weight so that Di[u][v] = ∞ means
that there is no such vertex set in the graph. We assume that
a sum containing a∞ equals∞.

Algorithm 1: An O(n3)-time algorithm to find a
minimum-weight dominating set in 2-DORGs

Input: An orthogonal ray representation R(G) of a 2-DORG G.
Output: A minimum-weight dominating set of G.
Add two isolated dummy vertices ud and vd;
D0[ud][v]← ud for all v ∈ V;
Di[u][v]← ∞ for all i ∈ {1, 2, . . . , n}, u ∈ Ui, and v ∈ Vi;
for i← 0 to n − 1 do

foreach u ∈ Ui and v ∈ Vi+1 do
if wi+1 ∈ U then

u′ ← wi+1;
if yu′ < yu then

Di+1[u′][v]← min{Di+1[u′][v], Di[u][v]+u′};
if (u′, v) ∈ E(G) then

Di+1[u][v]← Di[u][v];
else

Di+1[u][v]← ∞;
else

if (u′, v) ∈ E(G) then
Di+1[u][v]← Di[u][v];

else
Di+1[u][v]← Di[u][v] + u′;

if wi+1 ∈ V then
v′ ← wi+1;
if yv′ < yv then

if (u, v′) ∈ E(G) then
Di+1[u][v]← Di[u][v];

else
Di+1[u][v]← Di[u][v] + v′;

else
if (u, v′) ∈ E(G) then

Di+1[u][v]← min{Di[u][v],Di[u][v′]+v′};
else

Di+1[u][v]← Di[u][v′] + v′;
return Dn[u][vd] − ud with minimum weight over all u ∈ Un;

Lemma 1. Suppose wi+1 ∈ U, and let u′ = wi+1. Then,

Di+1[u′][v] = min{Di[u][v] + u′ | u ∈ Ui s.t. yu′ < yu},
and Di+1[u][v] is

Di[u][v] if yu′ < yu and (u′, v) ∈ E(G),

∞ if yu′ < yu and (u′, v) � E(G),

Di[u][v] if yu′ > yu and (u′, v) ∈ E(G), and

Di[u][v] + u′ if yu′ > yu and (u′, v) � E(G),

for any u ∈ Ui, v ∈ Vi+1, and i ∈ {0, 1, . . . , n − 1}. �

Lemma 2. Suppose wi+1 ∈ V, and let v′ = wi+1. Then,
Di+1[u][v] is

Di[u][v] if yv′ < yv and (u, v′) ∈ E(G),

Di[u][v] + v′ if yv′ < yv and (u, v′) � E(G),

min{Di[u][v]

Di[u][v′] + v′} if yv′ > yv and (u, v′) ∈ E(G), and

Di[u][v′] + v′ if yv′ > yv and (u, v′) � E(G),

for any u ∈ Ui, v ∈ Vi+1, and i ∈ {0, 1, . . . , n − 1}. �

Lemmas 1 and 2 establish Algorithm 1 shown above
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by using dynamic programming techniques for computing
table Di in the increasing order of i ∈ {0, 1, . . . , n − 1}.
Theorem 3. Algorithm 1 solves the weighted dominating
set problem in O(n3) time for 2-DORGs.

Proof. Correctness of the algorithm is shown by Lemmas 1
and 2. Since the algorithm consists of three nested loops and
each loop index (i ∈ {0, 1, . . . , n − 1}, u ∈ Ui, and v ∈ Vi+1)
takes at most n + 1 values, the algorithm runs in O(n3) time.
Since the the orthogonal ray representation of a 2-DORG
can be obtained in O(n2) time [10], we have the theorem. �

4. Proof of Lemmas

4.1 Proof of Lemma 1

We will compute the content of Di+1[u][v] from table Di.
Recall that wi+1 ∈ U and u′ = wi+1.

We first show how to compute Di+1[u′][v] for every
v ∈ Vi+1. Notice that u′ ∈ Di+1[u′][v] by definition, and
Di+1[u′][v] has no vertex of Ui whose y-coordinate is lower
than that of u′, for otherwise u′ is no longer the representa-
tive of the vertex set.

Claim 4. Di+1[u′][v]−u′ = Di[u][v], where u is the represen-
tative of Di+1[u′][v]−u′, that is, the vertex in Di+1[u′][v]∩U
with the second-minimum y-coordinate.

Proof. Since Wi has no vertex dominated by u′, Di+1[u′][v]−
u′ ∈ Si[u][v]. There is no vertex set D ∈ Si[u][v] such that
c(D) < c(Di+1[u′][v] − u′), for otherwise we have D + u′ ∈
Si+1[u′][v] and c(D + u′) < c(Di+1[u′][v]), a contradiction.
Thus, Di+1[u′][v] − u′ is a minimum-weight vertex set in
Si[u][v]. �

From Claim 4, we can compute Di+1[u′][v] as follows.

Lemma 5.

Di+1[u′][v]= min{Di[u][v]+u′ | u ∈ Ui s.t. yu′ < yu}. �
We next show how to compute Di+1[u][v] for every u ∈

Ui and v ∈ Vi+1. We first show the following.

Claim 6. If u′ � Di+1[u][v], then we have (u′, v) ∈ E(G) and
Di+1[u][v] = Di[u][v].

Proof. Recall that (Di+1[u][v], v) dominates u′. Since u′ �
Di+1[u][v] and Wi has no vertex dominating u′, v must dom-
inate u′. Hence, (u′, v) ∈ E(G).

Since u′ � Di+1[u][v], we have Di+1[u][v] ∈ Si[u][v].
There is no vertex set D ∈ Si[u][v] such that c(D) <
c(Di+1[u][v]), for otherwise (u′, v) ∈ E(G) implies that
D ∈ Si+1[u][v], contradicting the minimality of Di+1[u][v]
in Si+1[u][v]. Thus, Di+1[u][v] is a minimum-weight vertex
set in Si[u][v]. �

We distinguish two cases, each of which corresponds
to Lemma 7 and 8, respectively.

Lemma 7. Let u ∈ Ui be a vertex with yu′ < yu. Then,

Di+1[u][v] =

⎧⎪⎪⎨⎪⎪⎩
Di[u][v] if (u′, v) ∈ E(G),

∞ otherwise.

Proof. We have that u′ � Di+1[u][v], for otherwise yu′ <
yu implies that the representative of the vertex set is u′, a
contradiction. The lemma is derived from Claim 6. �

Lemma 8. Let u ∈ Ui be a vertex with yu′ > yu. Then,

Di+1[u][v] =

⎧⎪⎪⎨⎪⎪⎩
Di[u][v] if (u′, v) ∈ E(G),

Di[u][v] + u′ otherwise.

Proof. We first show that

if u′ ∈ Di+1[u][v], then Di+1[u][v] − u′ = Di[u][v]. (1)

Notice that the representative of Di[u][v] + u′ is still u,
since yu′ > yu. Since Wi has no vertex dominated by u′,
Di+1[u][v]−u′ ∈ Si[u][v]. There is no vertex set D ∈ Si[u][v]
such that c(D) < c(Di+1[u][v] − u′), for otherwise we have
D + u′ ∈ Si+1[u][v] and c(D + u′) < c(Di+1[u][v]), a contra-
diction. Thus, Di+1[u][v] − u′ is a minimum-weight vertex
set in Si[u][v].

Now, we have from Claim 6 and (1) that Di+1[u][v] =
min{Di[u][v],Di[u][v] + u′} if (u′, v) ∈ E(G), and Di+1[u][v]
= Di[u][v]+ u′ otherwise. Since we assume that the weights
of vertices are non-negative, we have the lemma. �

Lemmas 5, 7, and 8 prove Lemma 1.

4.2 Proof of Lemma 2

We show how to compute Di+1[u][v] for every u ∈ Ui and
v ∈ Vi+1 from table Di. Recall that wi+1 ∈ V and v′ = wi+1.
Notice that v′ does not appear in the index of Di+1, since
v′ � Vi+1. We first show the following.

Claim 9. If v′ � Di+1[u][v], then we have (u, v′) ∈ E(G) and
Di+1[u][v] = Di[u][v].

Proof. Since u is the representative of Di+1[u][v] and v′ �
Di+1[u][v], u must dominate v′. Hence, (u, v′) ∈ E(G).

Since v′ � Di+1[u][v], we have Di+1[u][v] ∈ Si[u][v].
There is no vertex set D ∈ Si[u][v] such that c(D) <
c(Di+1[u][v]), for otherwise (u, v′) ∈ E(G) implies that
D ∈ Si+1[u][v], contradicting the minimality of Di+1[u][v]
in Si+1[u][v]. Thus, Di+1[u][v] is a minimum-weight vertex
set in Si[u][v]. �

We distinguish two cases, each of which corresponds
to Lemma 10 and 11, respectively.

Lemma 10. Let v ∈ Vi+1 be a vertex with yv′ < yv. Then,

Di+1[u][v] =

⎧⎪⎪⎨⎪⎪⎩
Di[u][v] if (u, v′) ∈ E(G),

Di[u][v] + v′ otherwise.

Proof. We first show that
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if v′ ∈ Di+1[u][v], then Di+1[u][v] − v′ = Di[u][v]. (2)

Since yv′ < yv, we have N(v′) ∩ Wi ⊆ N(v) ∩ Wi. It
follows that (Di+1[u][v] − v′, v) dominates Wi, and hence,
Di+1[u][v]−v′ ∈ Si[u][v]. There is no vertex set D ∈ Si[u][v]
such that c(D) < c(Di+1[u][v] − v′), for otherwise we have
D+ v ∈ Si+1[u][v] and c(D+ v′) < c(Di+1[u][v]), a contradic-
tion. Thus, Di+1[u][v] − v′ is a minimum-weight vertex set
in Si[u][v].

Now, we have from Claim 9 and (2) that Di+1[u][v] =
min{Di[u][v],Di[u][v] + v′} if (u, v′) ∈ E(G), and Di+1[u][v]
= Di[u][v]+ v′ otherwise. Since we assume that the weights
of vertices are non-negative, we have the lemma. �

Lemma 11. Let v ∈ Vi+1 be a vertex with yv′ < yv. Then,

Di+1[u][v] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min{Di[u][v],

Di[u][v′] + v′} if (u, v′) ∈ E(G),

Di[u][v′] + v′ otherwise.

Proof. We first show that

if v′ ∈ Di+1[u][v], then Di+1[u][v]−v′ = Di[u][v′]. (3)

Since yv′ > yv, we have N(v′) ∩ Wi ⊇ N(v) ∩ Wi. It
follows that (Di+1[u][v] − v′, v′) dominates Wi, and hence,
Di+1[u][v] − v′ ∈ Si[u][v′]. There is no vertex set D ∈
Si[u][v′] such that c(D) < c(Di+1[u][v] − v′), for otherwise
we have D + v′ ∈ Si+1[u][v] and c(D + v′) < c(Di+1[u][v]),
a contradiction. Thus, Di+1[u][v] − v′ is a minimum-weight
vertex set in Si[u][v′].

Now, we have from Claim 9 and (3) that Di+1[u][v] =
min{Di[u][v],Di[u][v′] + v′} if (u, v′) ∈ E(G), and Di+1[u][v]
= Di[u][v′] + v′ otherwise. �

Lemmas 10 and 11 prove Lemma 2.
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