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PAPER

OBDD Representation of Intersection Graphs

Asahi TAKAOKA†a), Student Member, Satoshi TAYU†b), Member, and Shuichi UENO†c), Fellow

SUMMARY Ordered Binary Decision Diagrams (OBDDs for short)
are popular dynamic data structures for Boolean functions. In some mod-
ern applications, we have to handle such huge graphs that the usual explicit
representations by adjacency lists or adjacency matrices are infeasible. To
deal with such huge graphs, OBDD-based graph representations and algo-
rithms have been investigated. Although the size of OBDD representations
may be large in general, it is known to be small for some special classes of
graphs. In this paper, we show upper bounds and lower bounds of the size
of OBDDs representing some intersection graphs such as bipartite permu-
tation graphs, biconvex graphs, convex graphs, (2-directional) orthogonal
ray graphs, and permutation graphs.
key words: implicit representation of graphs, ordered binary decision dia-
grams, orthogonal ray graphs, permutation graphs

1. Introduction

In some modern applications such as nano-circuit design
and bioinformatics, we have to handle such huge graphs that
the usual explicit representations by adjacency lists or ad-
jacency matrices may exceed the memory limitations, and
even polynomial time algorithms may be infeasible. To
deal with such huge graphs, some implicit representations
of graphs have been proposed [17], [28], [30]. Ordered Bi-
nary Decision Diagrams (OBDDs for short) [7], [31] are dy-
namic data structures used for representing and manipulat-
ing Boolean functions. Since the adjacency matrix of a
graph can be considered as a Boolean function, a graph can
be implicitly represented by an OBDD that represents the
adjacency function. The OBDD representation of graphs
has been considered as a promising implicit representation
of graphs, since it realizes compact representations as well
as efficient algorithms, based on existing OBDD operations
(See [20] for survey). To realize OBDD-based graph algo-
rithms that have good running times, the size of the OBDD
representation of the input graph should be small, since
the running time of one OBDD operation depends on the
size of OBDD on which the operation is performed. For
that reason, compact OBDD representations of graphs have
been considered. Nunkesser and Woelfel [20] investigate the
worst-case space complexities of the OBDD representations
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(OBDD sizes for short) of certain graphs as follows:

– The OBDD size of general graphs is O(N2/ log N),
O(M log N), and Ω(N2/ log N);

– The OBDD size of bipartite graphs is O(N2/ log N),
O(M log N), and Ω(N2/ log N);

– The OBDD sizes of cographs and its related graphs are
O(N log N) and Ω(N/ log N);

– The OBDD size of interval graphs is O(N3/2/ log3/4 N)
and Ω(N);

– The OBDD size of unit interval graphs is O(N/
√

log N)
and Ω(N/ log N),

where N and M are the number of vertices and edges of a
graph, respectively. Recently, Gillé [10], [11] has been im-
proved the results as follows:

– The OBDD size of interval graphs is O(N log N);
– The OBDD size of interval graphs is Ω(N log N) if the

variable ordering of OBDDs and the vertex labeling of
graphs are fixed on some natural scheme;

– The OBDD size of unit interval graphs is Θ(N/ log N),

where variable ordering and vertex labeling are as defined
in Sect. 3.

This paper considers the OBDD size of orthogonal ray
graphs [24], which have been introduced in connection with
the defect-tolerant design of nano-circuits [23], and other re-
lated graphs. We show the following:

– The OBDD sizes of (2-directional) orthogonal ray
graphs, convex graphs, and permutation graphs are
O(N3/2/ log3/4 N) and Ω(N);

– The OBDD sizes of biconvex graphs and bipartite per-
mutation graphs are Θ(N/ log N).

The upper bounds are shown in Sect. 4, and the lower
bounds are shown in Sect. 5.

It should be noted that the graphs above, except per-
mutation graphs, are a special kind of bipartite graphs. The
OBDD sizes of these graphs are substantially smaller than
the size of general bipartite graphs.

2. Classes of Intersection Graphs

All graphs considered in this paper are finite, simple, and
undirected. For a graph G, let V(G) and E(G) denote the set
of vertices and edges, respectively. Let N = |V(G)|. The
neighborhood of a vertex v in G is the set ΓG(v) = {u ∈
V(G) | (u, v) ∈ E(G)}.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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A bipartite graph G with a bipartition (U,W) is called
a grid intersection graph [16] if there exist a set of disjoint
horizontal line segments Lu, u ∈ U, in the xy-plane, and a
set of disjoint vertical line segments Lw, w ∈ W, such that
for any u ∈ U and w ∈ W, (u, w) ∈ E(G) if and only if Lu

and Lw intersect. A grid intersection graph G is called a unit
grid intersection graph [21] if every Lv, v ∈ V(G), has the
same (unit) length.

A bipartite graph G is called a chordal bipartite
graph [13] if it contains no cycles of length at least 6 as an
induced subgraph.

A bipartite graph G with a bipartition (U,W) is called
an orthogonal ray graph [24] if there exist a set of disjoint
horizontal rays (closed half-lines) Ru, u ∈ U, in the xy-
plane, and a set of disjoint vertical rays Rw, w ∈ W, such
that for any u ∈ U and w ∈ W, (u, w) ∈ E(G) if and only if
Ru and Rw intersect. The set R(G) = {Rv | v ∈ V(G)} is called
an orthogonal ray representation of G. An orthogonal ray
graph G is called a 2-directional orthogonal ray graph if
every horizontal ray Ru, u ∈ U, has the same direction, and
every vertical ray Rw, w ∈ W, has the same direction.

Let G be a bipartite graph with a bipartition (U,W). A
convex ordering of U is a total ordering of the vertices in
U such that for every vertex w ∈ W, the vertices in ΓG(w)
occur consecutively in the ordering. A bipartite graph G is
called a convex graph [12] if it has a convex ordering of U.
A biconvex ordering of G is a pair of convex orderings of U
and W. A bipartite graph G is called a biconvex graph [12]
if it has a biconvex ordering.

A graph G with a vertex set V(G) = {v1, v2, . . . , vn} is
called a permutation graph [8] if there exists a permutation π
on {1, 2, . . . , n} such that for any i, j ∈ {1, 2, . . . , n}, (vi, v j) ∈
E(G) if and only if (i − j)(π(i) − π( j)) < 0. It is shown in
[1] that a graph is a permutation graph if and only if there
exists a set of points pv = (xv, yv), v ∈ V(G), in the xy-plane
such that for any u, w ∈ V(G), (u, w) ∈ E(G) if and only
if xu < xw and yu < yw. The set P(G) = {pv | v ∈ V(G)}
is called a point representation of G. To prove the upper
bound of OBDD size of permutation graphs, we use point
representations of graphs. A permutation graph is called a
bipartite permutation graph [29] if it is bipartite.

The following relationships between bipartite graph
classes have been known [24]: {Bipartite Permutation
Graphs} ⊂ {Biconvex Graphs} ⊂ {Convex Graphs} ⊂ {2-
Directional Orthogonal Ray Graphs} ⊂ {Chordal Bipartite
Graphs}, and {2-Directional Orthogonal Ray Graphs} ⊂
{Orthogonal Ray Graphs} ⊂ {Unit Grid Intersection Graphs}
⊂ {Grid Intersection Graphs}, where X ⊂ Y indicates a set X
is a proper subset of Y .

Some comprehensive surveys with other results can be
found in [6], [24], [28].

3. Representation of Graphs by OBDDs

3.1 OBDDs

Let Xn = {x1, x2, . . . , xn} be a set of Boolean variables, and

let Bn be the set of Boolean functions on Xn. A variable
ordering π on Xn is a permutation of {1, 2, . . . , n}, leading to
the ordered list (xπ(1), xπ(2), . . . , xπ(n)) of the variables.

A π-OBDD on Xn is a single-rooted directed acyclic
graph with two sinks such that each non-sink (inner) node
has two outgoing edges. One of two sinks is labeled by
Boolean constant 0, and the other sink is labeled by 1. One
of two outgoing edges of each inner node is labeled by 0,
and the other edge is labeled by 1. Each inner node is labeled
by a Boolean variable from Xn such that the edges between
inner nodes respect the variable ordering π, that is, if an edge
leads from an inner node labeled by xi (xi-node for short) to
an x j-node, then π−1(i) < π−1( j).

A π-OBDD is said to represent a Boolean function f ∈
Bn if for any binary string a = (an−1, an−2, . . . , a0) ∈ {0, 1}n,
the path starting at the root and leading from any xi-node
over the edge labeled by the value of an−i, ends at a sink
with label f (a).

The size of a π-OBDD is the number of its nodes. The
minimal π-OBDD for a Boolean function f ∈ Bn is the
minimal-size π-OBDD representing f , and the π-OBDD size
of f is the size of the minimal π-OBDD for f . It is known
that the minimal π-OBDD for f is unique up to isomor-
phism, and it can be found in almost linear time [31]. Also,
minimal π-OBDDs are known to be characterized by the fol-
lowing theorem. A function f is said to essentially depends
on a variable x if f|x=0 � f|x=1, where f|x=0 and f|x=1 are the
subfunctions of f obtained by replacing x with constants 0
and 1, respectively.

Theorem A (Sieling and Wegener [25]). The number of
xπ(i)-nodes in the minimal π-OBDD for f ∈ Bn is equal to
the number of different subfunctions of f that are obtained
by replacing each variable xπ( j), j < i, with a Boolean con-
stant, and that essentially depend on xπ(i). �

The OBDD size of a Boolean function f is the minimal
π-OBDD size of f over all variable orderings π. It is known
to be NP-hard to compute an optimal variable ordering that
minimizes the OBDD size of f [5].

3.2 OBDD Representation of Graphs

For a binary string a = (an−1, an−2, . . . , a0) ∈ {0, 1}n, let |a|
denote the natural number represented by a, that is, |a| =∑n−1

i=0 ai · 2i. Conversely, for a natural number l ∈ N, let [l]n,
n ≥ �log(l + 1)�, denote the n-bit binary string representing
l, that is, |[l]n| = l.

Let G be a class of graphs, and

GN = {G ∈ G | |V(G)| = N}.
For a graph G ∈ GN , a bijection

λ : V(G)→ {[0]n, [1]n, . . . , [N − 1]n}
is called a vertex labeling of G, where n ≥ �log N�. For a
vertex v of G, a binary string λ(v) is called the label of v.
For a binary string a ∈ {0, 1}n, a vertex λ−1(a) is called the
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vertex labeled by a. We refer to a pair (G, λ) as a labeled
graph.

A labeled graph (G, λ) can be represented by its char-
acteristic function χG,λ ∈ B2n, where for any a, b ∈ {0, 1}n,
χG,λ(a, b) = 1 if and only if (λ−1(a), λ−1(b)) ∈ E(G). If
(G, λ) is clear from the context, we will omit the index. A
vertex subset S ⊆ V(G) of (G, λ) can be represented by its
characteristic function χS ∈ Bn, where for any a ∈ {0, 1}n,
χS (a) = 1 if and only if λ−1(a) ∈ S .

The π-OBDD for a labeled graph (G, λ) is the min-
imal π-OBDD for χG,λ. Since the minimal π-OBDD for
any Boolean function is unique up to isomorphism [31] as
mentioned in the previous section, the minimal π-OBDD
for (G, λ) is unique up to isomorphism, and we denote it
by π-OBDD(G, λ). The π-OBDD size of (G, λ) is the size of
π-OBDD(G, λ), and we denote it by |π-OBDD(G, λ)|. The
π-OBDD size of G is the minimal of |π-OBDD(G, λ)| over
all vertex labelings λ of G. The OBDD size of G is the min-
imal of the π-OBDD size of G over all variable orderings π
on X2n. The OBDD size of a graph class GN is the maximal
OBDD size of G over all graphs in GN , that is,

max
G∈GN

min
π∈Π,λ∈Λ

{|π-OBDD(G, λ)|}, (1)

where Π is the set of all variable orderings on X2n, and Λ is
the set of all vertex labelings of G.

3.3 Length of Labels

In the previous works, Nunkesser and Woelfel [20], and
Gillé [10], [11] have used a �log N�-bit label for each ver-
tex, which is the minimal number of bits for encoding every
vertices. As discussed in [4], [20], it is known to be im-
portant to keep the number of bits as low as possible by
the following reason. Since the running time of one OBDD
operation depends on the size of OBDD on which the op-
eration is performed, the size of intermediate OBDDs dur-
ing the computation of an OBDD-based algorithm should be
small. Since the size of intermediate OBDDs may get larger,
the worst-case OBDD size should also be small. Since the
worst-case OBDD size is exponentially larger in the number
of bits [18], it is desirable to keep the number of bits as low
as possible. Thus, we use binary strings of length �log N�
for vertex labels, and we assume that n = �log N� in the rest
of this paper.

It should be noticed that increasing the length of labels
may be valid for compact OBDD representations. Indeed,
Meer and Rautenbach [19] investigate compact OBDD rep-
resentations of graphs with bounded tree- and clique-width
by using a label of length more than �log N� for each ver-
tex. They show that the OBDD size of cographs can be
improved from O(N log N) [20] to O(N), if we use vertex
labels of length c · �log N� for some constant c > 1. How-
ever, the running time of an OBDD-based algorithm may be
larger for longer vertex labels, since the worst-case OBDD
size is exponentially larger in the number of bits.

3.4 Variable Orderings

To prove upper bounds mentioned in the introduction,
Nunkesser and Woelfel [20], and Gillé [10], [11] have used
the interleaved variable ordering σ on {an−1, an−2, . . . , a0,
bn−1, bn−2, . . . , b0}, leading to the ordered list

(an−1, bn−1, an−2, bn−2, . . . , a0, b0)

of variables. We also use the same variable ordering in this
paper, since it can achieve compact OBDD representations
compared with some other variable orderings.

Let ρ be the naive ordering, leading to the ordered list
(an−1, an−2, . . . , a0, bn−1, bn−2, . . . , b0) of variables. This
ordering is natural, and has an advantage on an OBDD op-
eration as follows. Computing the neighborhood ΓG(v) of a
vertex v of a graph G is one of the basic operations. In terms
of OBDD representations, it is to compute the minimal π-
OBDD for the characteristic function of ΓG(v) from the π-
OBDD for a labeled graph (G, λ). Notice that the character-
istic function of ΓG(v) is obtained from χG,λ(a, b) by replac-
ing each variable ai with a constant ci for any i, 0 ≤ i < n,
where c = λ(v). Since it is known that replacement by con-
stants can be done in O(|π-OBDD(G, λ)|) time [7], [31], we
have the following.

Theorem 1. For any labeled graph (G, λ) and vari-
able ordering π, the OBDD for the characteristic func-
tion of the neighborhood of a vertex can be obtained in
O(|π-OBDD(G, λ)|) time from a π-OBDD(G, λ). �

On the other hand, replacing ai with ci for any i, 0 ≤ i <
n, can be done in O(n) time for ρ-OBDD, since we only have
to traverse from the root through at most n nodes labeled by
ai for some i, 0 ≤ i < n. Thus, we have the following.

Theorem 2. For any labeled graph (G, λ), the OBDD for
the characteristic function of the neighborhood of a vertex
can be obtained in O(log N) time from a ρ-OBDD(G, λ). �

We can see from Theorems 1 and 2 that the OBDD for
the characteristic function of the neighborhood of a vertex
can be obtained from a ρ-OBDD exponentially faster than
from a σ-OBDD, if the size of the σ-OBDD is Ω(N).

Although the naive ordering has the advantage, we can
see that the representations of most of graphs by ρ-OBDDs
require Ω(N) size.

Theorem 3. If G is a graph whose vertices have different
neighborhoods, then the ρ-OBDD size of G is Ω(N).

Proof. Let λ be a vertex labeling of G and let χG,λ ∈ B2n be
the characteristic function of labeled graph (G, λ). For any
c = (cn−1, cn−2, . . . , c0) ∈ {0, 1}n with |c| < N, all the sub-
functions of χG,λ(a, b) obtained by replacing each variable
ai with a constant ci for any i, 1 ≤ i < n, is different and
essentially depend on a0 = xρ(n), for otherwise there exists
at least one pair of vertices having the same characteristic
function of the neighborhood, contradicting the assumption
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that every vertices have different neighborhoods. It follows
that the number of such subfunctions is at least �N/2�. Since
the number of a0-nodes in the ρ-OBDD for χG,λ is equal to
the number of such subfunctions by Theorem A, the size of
the ρ-OBDD is at least �N/2�, and we have the theorem. �

The theorem implies that the ρ-OBDD size of even a
path or a complete graph is Ω(N), while for some graphs,
the σ-OBDD size can be o(N) as shown in [10], [11], [20]
and this paper. This is the reason why we use the interleaved
variable ordering.

4. Upper Bounds of OBDD Sizes

We show in this section upper bounds for the OBDD size
of some special kinds of graphs. We give a vertex labeling
λG for each graph class G, and show the upper bound of
|σ-OBDD(G, λG)| for any graph G ∈ GN .

4.1 Preliminaries

Before showing the vertex labeling of graphs, we describe
the scheme we use to estimate the size of σ-OBDD. We fol-
low the arguments used in [20]. We assume in the rest of the
paper that the indices of the bits of a binary string c ∈ {0, 1}k
are k − 1, k − 2, . . . , 0, that is, c = (ck−1, ck−2, . . . , c0).

Let λ be a vertex labeling of a graph G and let χ ∈ B2n

be the characteristic function of the labeled graph (G, λ).
Recall that we use the interleaved variable ordering σ lead-
ing to the ordered list (an−1, bn−1, an−2, bn−2, . . . , a0, b0) of
variables. Let χ|α,β ∈ B2(n−k) be the subfunction of χ such
that

χ|α,β(an−k−1, bn−k−1, . . . , a0, b0)

= χ(αk−1, βk−1, . . . , α0, β0, an−k−1, bn−k−1, . . . , a0, b0),

where α,β ∈ {0, 1}k, 0 ≤ k ≤ n. A Boolean function f ∈ Bk

is called 0 if f (c) = 0 for every c ∈ {0, 1}k, called 1 if
f (c) = 1 for every c ∈ {0, 1}k, and called non-constant,
otherwise.

We define for any k, 0 ≤ k < n, that sG,λ,k is the num-
ber of non-constant different subfunctions χ|α,β that do not
necessarily depend on an−k−1. We can see from Theorem A
that the number of an−k−1-nodes in σ-OBDD(G, λ) is equal
to the number of different subfunctions χ|α,β that essentially
depend on an−k−1. It follows that the number of an−k−1-nodes
is bounded above by sG,λ,k.

Similarly, we define for any k, 0 ≤ k < n, that tG,λ,k is
the number of non-constant different subfunctions of χ ob-
tained by replacing variables an−1, bn−1, an−2, bn−2, . . . , an−k,
bn−k, an−k−1 with Boolean constants. We can see from The-
orem A that the number of bn−k−1-nodes in σ-OBDD(G, λ)
is bounded above by tG,λ,k.

Since tG,λ,k ≤ 2sG,λ,k for any G, λ, and k by definition,
we have

|σ-OBDD(G, λ)| ≤
n−1∑

k=0

(sG,λ,k + tG,λ,k) + 2

≤ 3
n−1∑

k=0

sG,λ,k + 2. (2)

We will estimate the size of σ-OBDD(G, λ) by using upper
bounds of sG,λ,k.

The following is the first upper bound of sG,λ,k. The
upper bound is derived from the fact that there exist 22m

Boolean functions on m variables.

Lemma B (Nunkesser and Woelfel [20]). sG,λ,k ≤ 222(n−k)
for

any G, λ and k. �

The upper bound in Lemma B will be used when k is
large. We show in the following sections other upper bounds
of sG,λ,k, which will be used when k is small. The upper
bounds are derived by structures of graphs. We need some
definitions and notations.

We define for any k, 0 ≤ k ≤ n, that

V(α) = {v ∈ V(G) | α ∈ {0, 1}k is a prefix of λ(v)}.
We further define for any k, 0 ≤ k ≤ n, that

S (G, λ, k) =

⎧⎪⎨⎪⎩ (α,β)
α,β ∈ {0, 1}k, |α| < |β|,
χ|α,β is non-constant

⎫⎪⎬⎪⎭ .

Notice that

sG,λ,k ≤ 2|S (G, λ, k)| + 2k, (3)

since there exist at most 2k pairs of (α,β) such that |α| = |β|.
The index of most significant different bit of two binary

strings α,β ∈ {0, 1}k is the index i such that αi � βi and
α j = β j for any j > i. For a binary string α ∈ {0, 1}k, let
αe be the substring of α consisting of bits with even indices,
and let αo be the substring of α consisting of bits with odd
indices.

4.2 Biconvex Graphs and Bipartite Permutation Graphs

Let G be a biconvex graph with a bipartition (U,W) and a
biconvex ordering (u0, u1, . . . , up−1) and (w0, w1, . . . , wq−1).
Let λ1 be a vertex labeling of G such that λ1(ui) = [i]n for
each ui ∈ U, 0 ≤ i < p, and λ1(w j) = [p + j]n for each
w j ∈ W, 0 ≤ j < q. See Fig. 1 for example. We refer to λ1

as a biconvex labeling.
We use some kind of adjacency matrix to show upper

bounds of sG,λ1,k. Let M be a 2n × 2n (0, 1)-matrix such
that for any a, b ∈ {0, 1}n, M(|a|, |b|) = 1 if and only if
(λ−1(a), λ−1(b)) ∈ E(G). Figure 2 shows such matrix M1

of the biconvex graph G1 in Fig. 1. Notice that the subma-
trix induced by the rows 0, 1, . . . ,N − 1 and the columns
0, 1, . . . ,N − 1 is an adjacency matrix of G, and every other
elements are 0. Since the rows and columns of M are
sorted according to the biconvex ordering of G, 1-elements
form two rectilinear polygons in M [32], which we call 1-
polygons. The polygons have two structural properties:

(P1) Each row and column of a 1-polygon contains consec-
utive 1-elements;
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Fig. 1 A biconvex graph G1 with a bipartition (U,W) such that |U | = 8
and |W | = 6. Each vertex v of the graph is labeled by |λ1(v)|.

Fig. 2 The matrix M1 of the biconvex graph G1 in Fig. 1. The submatrix
induced by the rows 0, 1, . . . , 13 and the columns 0, 1, . . . , 13 is an adja-
cency matrix of G1. Gray parts denote the 1-polygons in M1. The matrix is
divided into 16 submatrices, each of which is M|α,β for some α,β ∈ {0, 1}2.

(P2) The right and left boundary of a 1-polygon consists of
two parts: one is non-decreasing from top to bottom
and the other is non-increasing.

Gray parts in Fig. 2 denote the 1-polygons in M1.
For any binary string α,β ∈ {0, 1}k, 0 ≤ k ≤ n, let

M|α,β be the 2n−k × 2n−k submatrix of M induced by rows
|α| · 2n−k, |α| · 2n−k + 1, . . . , |α| · 2n−k + 2n−k − 1 and columns
|β| · 2n−k, |β| · 2n−k + 1, . . . , |β| · 2n−k + 2n−k − 1. See Fig. 2 for
example. Each submatrix is 2n−k × 2n−k matrix, and M has
22k such submatrices. Notice that the rows and columns of
M|α,β correspond to V(α) and V(β), respectively. Thus, each
M|α,β represents the subfunction χ|α,β such that for any i and
j, M|α,β(i, j) = 1 if and only if χ|α,β([i]n−k, [ j]n−k) = 1. A
submatrix M|α,β is called non-constant if it contains both a 0-
element and a 1-element. Notice that for any α,β ∈ {0, 1}k,
χ|α,β is non-constant if and only if M|α,β is non-constant. No-
tice also that M|α,β is non-constant if and only if the bound-
ary of 1-polygons, that is, the boundary between 0-elements
and 1-elements, intersects M|α,β.

We have the following two upper bounds of sG,λ1,k.
First upper bound will be used when k is small, and derived
from the fact that sG,λ1,k is bounded above by the number of
non-constant subfunctions of χ.

Lemma 4. sG,λ1,k ≤ 4 · 2k for any biconvex graph G and k,
0 ≤ k < n.

Proof. Recall that sG,λ1,k is bounded above by the number
of non-constant subfunctions by definition. Recall also that
for any α,β ∈ {0, 1}k, the subfunction χ|α,β is non-constant
if and only if the boundary of 1-polygons intersects the sub-
matrix M|α,β. By (P1) and (P2), the number of submatrices
intersecting the boundary of 1-polygons is at most the num-
ber of submatrices bordering on the perimeter of M, that is,
4 · 2k. Thus, we have the lemma. �

For biconvex graphs, we can obtain the following upper
bound, which is substantially smaller than that in Lemma B.
The second upper bound will be used when k is large, and
derived from the fact that sG,λ1,k is the number of non-
constant different subfunctions of χ.

Lemma 5. sG,λ1,k = 2O(2n−k) for any biconvex graph G and
k, 0 ≤ k < n.

Proof. Recall that sG,λ1,k is the number of non-constant dif-
ferent subfunctions χ|α,β, and thus, the number of non-
constant different submatrices M|α,β. An n × n grid Gn×n

is the graph with

V(Gn×n) = {vi j | 1 ≤ i ≤ n, 1 ≤ j ≤ n} and

E(Gn×n) = {(vi j, vi′ j′ ) | |i − i′| + | j − j′| = 1}.
Recall that M|α,β is non-constant if and only if the bound-
ary of 1-polygons intersects M|α,β. Notice that a part of
boundary intersecting M|α,β corresponds to a walk in the
(2n−k+1)× (2n−k+1) grid whose start point on the perimeter
of the grid. Notice also that by (P1) and (P2), the length of
such walk is less than the perimeter of the submatrix, that is,
4 ·2n−k. Let lk be the number of walks of length 2n−k+2 in the
(2n−k+1)× (2n−k+1) grid whose start point on the perimeter
of the grid. Since the 2n−k × 2n−k matrix is uniquely deter-
mined by the boundary between 0-elements and 1-elements,
and the side in which 1-elements lie, the number of differ-
ent 2n−k × 2n−k matrix is bounded above by 2lk. Since the
maximum degree of a grid is 4, we have lk ≤ 2n−k+2 · 42n−k+2

(Consider random walks of length 2n−k+2 starting at a point
on the perimeter). Thus, sG,λ1,k ≤ 2lk ≤ 2 · 2n−k+2 · 42n−k+2

,
and we have the lemma. �

Now, we have the following.

Theorem 6. The OBDD size of biconvex graphs with N ver-
tices is O(N/ log N).

Proof. We have from Lemmas 4 and 5 that sG,λ1,k ≤ 4·2k and
sG,λ1,k = 2O(2n−k) for any biconvex graph G and k, 0 ≤ k < n.
We have from (2) that

|σ-OBDD(G, λ)| ≤ 3
n−1∑

k=0

sG,λ1,k + 2

≤ 3
n−�log n�∑

k=0

4 · 2k + 3
n−1∑

k=n−�log n�+1

2O(2n−k) + 2

≤ 12
n−�log n�∑

k=0

2k + 3
�log n�−1∑

k=1

2O(2k) + 2
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= O(N/ log N).

Thus, we have the theorem. �

Since the class of biconvex graphs contains the class of
bipartite permutation graphs, we have the following.

Corollary 7. The OBDD size of bipartite permutation
graphs with N vertices is O(N/ log N). �

4.3 Permutation Graphs

Let G be a permutation graph with a point representation
P(G) = {(xv, yv) | v ∈ V(G)}. We can assume without loss
of generality that the x-coordinates are distinct and the y-
coordinates are distinct [1].

Let λ2 be a vertex labeling of G such that for any a,
b ∈ {0, 1}n,

– ai < bi implies xλ−1
2 (a) < xλ−1

2 (b) if i is even, and
– ai < bi implies yλ−1

2 (a) < yλ−1
2 (b) if i is odd,

where i is the index of most significant different bit of a and
b, that is, ai � bi and a j = b j for any j > i. We refer to λ2 as
a point partitioning labeling of permutation graphs.

Lemma 8. For any permutation graph G, there exists a
point partitioning labeling λ2 of G.

Proof. The point partitioning labeling of a permutation
graph G can be obtained by the following point partition-
ing algorithm, which assigns labels to the points in P(G)
and corresponding vertices of G. We assume that n − 1 is
even. When n−1 is odd, the vertex labeling can be obtained
by a similar way.

In the first step, we sort the points in P(G) in ascending
order of the x-coordinates. Let P0 be the set of first 2n−1

points in such ordering of P(G), and P1 be the set of other
points in P(G). We define that (n− 1)-th bits of the labels of
the points in P0 are 0, and those in P1 are 1.

In the second step, we sort the points in P0 (resp., P1) in
ascending order of the y-coordinates. Let P00 (resp., P10) be
the set of first 2n−2 points in such ordering of P0 (resp., P1),
and P01 (resp., P11) be the set of other points in P0 (resp.,
P1). We define that (n − 2)-th bits of the labels of the points
in P00 and P10 are 0, and those in P01 and P11 are 1.

Similarly in the i-th step (i ≤ n), for each α ∈ {0, 1}i−1,
let Pα be the set of points such that α is the prefix of the
labels of the points. We sort the points in Pα in ascending
order of the x-coordinates if n − i is even, and in ascending
order of the y-coordinates if n − i is odd. We define that
(n − i)-th bits of the labels of the first 2n−i points in such
ordering of Pα are 0, and those of other points are 1.

We can see that the vertex labeling obtained from the
point partitioning algorithm is indeed a point partitioning
labeling of G, and we have the theorem. �

Recall that

V(α) = {v ∈ V(G) | α ∈ {0, 1}k is a prefix of λ2(v)} and

S (G, λ2, k) =

⎧⎪⎨⎪⎩ (α,β)
α,β ∈ {0, 1}k, |α| < |β|,
χ|α,β is non-constant

⎫⎪⎬⎪⎭ .

where χ is the characteristic function of labeled graph
(G, λ2). To prove the upper bound of sG,λ2,k, we define as
follows:

S e
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α,β) ∈ S (G, λ2, k)

The index of most sig-

-nificant different bit

of α and β is even

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
;

S o
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α,β) ∈ S (G, λ2, k)

The index of most sig-

-nificant different bit

of α and β is odd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Notice that S (G, λ2, k) = S e
k ∪ S o

k . Recall that for a binary
string α ∈ {0, 1}k, αe and αo are the substrings of α consist-
ing of bits with even indices and odd indices, respectively.
We have the following for S e

k.

Claim 9. For every (αi,βi) and (α j,β j) in S e
k,

(|αe
i |= |αe

j |) ∧ (|βe
i |= |βe

j |) ∧ (|αo
i |< |αo

j |)⇒ |βo
i |≤ |βo

j |.
Proof. Recall that P(G) = {(xv, yv) | v ∈ V(G)} is the
point representation of the permutation graph G, and for
any u, w ∈ V(G), (u, w) ∈ E(G) if and only if xu < xw and
yu < yw. (αi,βi) ∈ S e

k together with |αi| < |βi| implies that
xu < xw for any vertex u ∈ V(αi) and w ∈ V(βi), since the in-
dex of most significant different bit of λ(u) and λ(w) is even.
There exists a pair of vertices u′ ∈ V(αi) and w′ ∈ V(βi)
such that yu′ > yw′ , for otherwise xu < xw and yu < yw for
any u ∈ V(αi) and w ∈ V(βi), which implies χ|αi,βi

= 1,
contradicting (αi,βi) ∈ S (G, λ2, k). |αo

i | < |αo
j | together with

|αe
i | = |αe

j | implies that yu′ < yu′′ for any vertex u′′ ∈ V(α j),
since the index of most significant different bit of λ(u′) and
λ(u′′) is odd.

Suppose contrary that |βo
i | > |βo

j |. Then |βo
i | > |βo

j | to-
gether with |βe

i | = |βe
j | implies that yw′ > yw′′ for any vertex

w′′ ∈ V(β j). Since yu′′ > yu′ > yw′ > yw′′ and xu′′ < xw′′
for any u′′ ∈ V(α j) and w′′ ∈ V(β j), we conclude that
χ|α j,β j

= 0, contradicting (α j,β j) ∈ S (G, λ2, k). Thus, we
have |βo

i | ≤ |βo
j |. �

Similarly, we have the following for S o
k .

Claim 10. For every (αi,βi) and (α j,β j) in S o
k ,

(|αo
i |= |αo

j |) ∧ (|βo
i |= |βo

j |) ∧ (|αe
i |< |αe

j |)⇒ |βe
i |≤ |βe

j |.
Proof. The proof is similar to that of Claim 9, and is omit-
ted. �

The following shows an upper bound for the number of
pairs of binary strings satisfying the conditions in Claims 9
and 10.

Claim 11. Let (α1,β1), (α2,β2), . . . , (αp,βp) be a sequence
of pairs of k-bit binary strings such that |αi| < |α j| implies
|βi| ≤ |β j| for every i and j, 1 ≤ i, j ≤ p. Then, p ≤ 2 · 2k.
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Proof. We assume without loss of generality that (α1,β1),
(α2,β2), . . . , (αp,βp) are ordered lexicographically. Then,
|αi| ≤ |α j| and |βi| ≤ |β j| for every i and j such that 1 ≤ i <
j ≤ p. Thus, we have p ≤ (|αp|+ 1)+ (|βp|+ 1) ≤ 2 · 2k. �

The following is obtained from Claims 9, 10, and 11.

Lemma 12. sG,λ2,k ≤ 65 · 23k/2 for any permutation graph
G and k, 0 ≤ k < n.

Proof. We have from Claims 9 and 11 that there exist at
most 2 · 2�k/2� 4-tuples in set {(αe,βe,αo,βo) | (α,β) ∈ S e

k}
for each pair of αe and βe, since the length of αe, βe, αo, and
βo is at most �k/2�, respectively. Thus,

|S e
k | ≤ 2�k/2� · 2�k/2� · 2 · 2�k/2� ≤ 16 · 23k/2.

Similarly, we have from Claims 10 and 11 that

|S o
k | ≤ 2�k/2� · 2�k/2� · 2 · 2�k/2� ≤ 16 · 23k/2.

Since S (G, λ2, k) = S e
k ∪ S o

k , we have that

|S (G, λ2, k)| = |S e
k | + |S o

k | ≤ 32 · 23k/2.

We have from (3) that

sG,λ2,k ≤ 2|S (G, λ2, k)| + 2k ≤ 65 · 23k/2.

Thus, we have the lemma. �

Now, we have the following from Lemmas B and 12.

Theorem 13. The OBDD size of permutation graphs with
N vertices is O(N3/2/ log3/4 N).

Proof. We have from Lemmas B and 12 that sG,λ2,k ≤ 222(n−k)

and there exists a constant c such that sG,λ2,k ≤ c · 23k/2 for
any permutation graph G and k, 0 ≤ k < n. Thus, we have
from (2) that

|σ-OBDD(G, λ)| ≤ 3
n−1∑

k=0

sG,λ2,k + 2

≤ 3
n−� 2 log n−1

4 �∑

k=0

c · 23k/2 + 3
n−1∑

k=n−� 2 log n−1
4 �+1

222(n−k)
+ 2

≤ 3c

n−� 2 log n−1
4 �∑

k=0

23k/2 + 3
� 2 log n−1

4 �−1∑

k=1

222k
+ 2

= O(N3/2/ log3/4 N).

Thus, we have the theorem. �

4.4 Two-Directional Orthogonal Ray Graphs

Let G be a 2-directional orthogonal ray graph with a bipar-
tition (U,W) and an orthogonal ray representation R(G) =
{Rv | v ∈ V(G)}. We assume without loss of generality that
every Ru, u ∈ U, is a rightward ray, and every Rw, w ∈ W, is a
downward ray. Let (xv, yv) be the endpoint of Rv ∈ R(G), and

we assume without loss of generality that the x-coordinates
are distinct and the y-coordinates are distinct [26]. Notice
that for any u ∈ U and w ∈ W, (u, w) ∈ E(G) if and only if
xu < xw and yu < yw.

Let λ3 be a vertex labeling of G satisfying the following
conditions:

– For any u ∈ U, 0 ≤ |λ3(u)| < |U |;
– For any w ∈ W, |U | ≤ |λ3(w)| < |V(G)|;
– For any a, b ∈ {0, 1}n such that both λ−1

3 (a) and λ−1
3 (b)

are in U (respectively, W),

– ai < bi implies xλ−1
3 (a) < xλ−1

3 (b) if i is even, and
– ai < bi implies yλ−1

3 (a) < yλ−1
3 (b) if i is odd,

where i is the index of most significant different bit of
a and b, that is, ai � bi and a j = b j for any j > i.

We refer to λ3 as a point partitioning labeling of 2-
directional orthogonal ray graphs.

Lemma 14. For any 2-directional orthogonal ray graph G,
there exists a point partitioning labeling λ3 of G.

Proof. The point partitioning labeling of a 2-directional or-
thogonal ray graph can be obtained by an algorithm similar
to the point partitioning algorithm shown in Sect. 4.3. �

Recall that

V(α) = {v ∈ V(G) | α ∈ {0, 1}k is a prefix of λ3(v)} and

S (G, λ3, k) =

⎧⎪⎨⎪⎩ (α,β)
α,β ∈ {0, 1}k, |α| < |β|,
χ|α,β is non-constant

⎫⎪⎬⎪⎭ .

where χ is the characteristic function of labeled graph
(G, λ3). Notice that for any (α,β) ∈ S (G, λ3, k), V(α) con-
tains a vertex in U and V(β) contains a vertex in W since
|α| < |β|. We define that

S ′k = {(α,β) ∈ S (G, λ3, k) | V(α) ⊆ U and V(β) ⊆ W}.
Notice that there exists at most one binary string γ ∈ {0, 1}k
for each k, 0 ≤ k < n, such that V(γ) contains both a vertex
in U and a vertex in W, since |λ3(u)| < |λ3(w)| for any u ∈
U and w ∈ W. Since the number of pairs in S (G, λ3, k)
containing such a binary string γ is at most 2k, we have that
|S (G, λ3, k)| ≤ |S ′k | + 2k.

For any (α,β) ∈ S ′k, there exists a pair of vertices u ∈
V(α) and w ∈ V(β) such that (u, w) � E(G), for otherwise
χ|α,β = 1, contradicting (α,β) ∈ S (G, λ3, k). Since (u, w) �
E(G) implies that xu > xw or yu > yw, we define that

S x
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α,β)∈S ′k

There exists a pair of verti-

ces u ∈ V(α) and w ∈ V(β)

such that xu > xw

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
;

S yk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α,β)∈S ′k

There exists a pair of verti-

ces u ∈ V(α) and w ∈ V(β)

such that yu > yw

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Notice that S ′k = S x
k ∪ S yk . Recall that for a binary string
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α ∈ {0, 1}k, αe and αo are the substrings of α consisting
of bits with even indices and odd indices, respectively. We
have the following for S x

k .

Claim 15. For every (αi,βi) and (α j,β j) in S x
k ,

(|αo
i |= |αo

j |) ∧ (|βo
i |= |βo

j |) ∧ (|αe
i |< |αe

j |)⇒ |βe
i |≤ |βe

j |.
Proof. Since (αi,βi) ∈ S x

k , there exists a pair of vertices
u ∈ V(αi) and w ∈ V(βi) such that xu > xw. |αe

i | < |αe
j |

together with |αo
i | = |αo

j | implies that xu < xu′ for any vertex
u′ ∈ V(α j), since the index of most significant different bit
of λ(u) and λ(u′) is even.

Suppose contrary that |βe
i | > |βe

j |. Then |βe
i | > |βe

j | to-
gether with |βo

i | = |βo
j | implies that xw > xw′ for any vertex

w′ ∈ V(β j). Since xu′ > xu > xw > xw′ for any u′ ∈ V(α j)
and w′ ∈ V(β j), we conclude that χ|α j,β j

= 0, contradicting
(α j,β j) ∈ S (G, λ3, k). Thus, we have |βe

i | ≤ |βe
j |. �

Similarly, we have the following for S yk .

Claim 16. For every (αi,βi) and (α j,β j) in S yk,

(|αe
i |= |αe

j |) ∧ (|βe
i |= |βe

j |) ∧ (|αo
i |< |αo

j |)⇒ |βo
i |≤ |βo

j |.
Proof. The proof is similar to that of Claim 15, and is omit-
ted. �

The following is obtained from Claims 11, 15, and 16.

Lemma 17. sG,λ3,k ≤ 67 ·23k/2 for any 2-directional orthog-
onal ray graph G and k, 0 ≤ k < n.

Proof. We have from Claims 11 and 15 that there exist at
most 2 · 2�k/2� 4-tuples in set {(αo,βo,αe,βe) | (α,β) ∈ S x

k}
for each pair of αo and βo, since the length of αo, βo, αe,
and βe is at most �k/2�, respectively. Thus,

|S x
k | ≤ 2�k/2� · 2�k/2� · 2 · 2�k/2� ≤ 16 · 23k/2.

Similarly, we have from Claims 11 and 16 that

|S yk | ≤ 2�k/2� · 2�k/2� · 2 · 2�k/2� ≤ 16 · 23k/2.

Since |S (G, λ3, k)| ≤ |S ′k | + 2k and S ′k = S x
k ∪ S yk , we have

that

|S (G, λ3, k)| ≤ |S ′k | + 2k ≤ |S x
k | + |S yk | + 2k ≤ 33 · 23k/2.

We have from (3) that

sG,λ3,k ≤ 2|S (G, λ3, k)| + 2k ≤ 67 · 23k/2.

Thus, we have the lemma. �

Now, we have the following from Lemmas B and 17.

Theorem 18. The OBDD size of 2-directional orthogonal
ray graph with N vertices is O(N3/2/ log3/4 N).

Proof. The proof is similar to that of Theorem 13, and is
omitted. �

Since the class of 2-directional orthogonal ray graphs
contains the class of convex graphs, we have the following.

Corollary 19. The OBDD size of convex graphs with N ver-
tices is O(N3/2/ log3/4 N). �

4.5 Orthogonal Ray Graphs

Let G be an orthogonal ray graph with a bipartition (U,W)
and an orthogonal ray representation R(G) = {Rv | v ∈
V(G)}. Let (xv, yv) be the endpoint of Rv ∈ R(G), and we
assume without loss of generality that the x-coordinates are
distinct and the y-coordinates are distinct. We define that

Ul = {u ∈ U | Ru is a leftward ray},
Ur = {u ∈ U | Ru is a rightward ray},
Wu = {w ∈ W | Rw is a upward ray}, and

Wd = {w ∈ W | Rw is a downward ray}.
Let λ4 be a vertex labeling of G satisfying the following

conditions:

– For any u ∈ Ul, 0 ≤ |λ4(u)| < |Ul|;
– For any u ∈ Ur, |Ul| ≤ |λ4(u)| < |U |;
– For any w ∈ Wu, |U | ≤ |λ4(w)| < |U | + |Wu|;
– For any w ∈ Wd, |U | + |Wu| ≤ |λ4(w)| < |V(G)|;
– For any a, b ∈ {0, 1}n such that both λ−1

4 (a) and λ−1
4 (b)

are in Ul (respectively, Ur,Wu,Wd),

– ai < bi implies xλ−1
4 (a) < xλ−1

4 (b) if i is even, and
– ai < bi implies yλ−1

4 (a) < yλ−1
4 (b) if i is odd,

where i is the index of most significant different bit of
a and b, that is, ai � bi and a j = b j for any j > i.

We refer to λ4 as a point partitioning labeling of orthogonal
ray graphs.

Lemma 20. For any orthogonal ray graph G, there exists a
point partitioning labeling λ4 of G.

Proof. The point partitioning labeling of an orthogonal ray
graph can be obtained by an algorithm similar to the point
partitioning algorithm shown in Sect. 4.3. �

Lemma 21. sG,λ4,k ≤ 271 · 23k/2 for any orthogonal ray
graph G and k, 0 ≤ k < n.

Proof. Recall that

V(α) = {v ∈ V(G) | α ∈ {0, 1}k is a prefix of λ4(v)} and

S (G, λ4, k) =

⎧⎪⎨⎪⎩ (α,β)
α,β ∈ {0, 1}k, |α| < |β|,
χ|α,β is non-constant

⎫⎪⎬⎪⎭ .

where χ is the characteristic function of labeled graph
(G, λ4). We define as follows:

S lu
k = {(α,β) ∈ S (G, λ4, k) | V(α)⊆Ul and V(β)⊆Wu};

S ld
k = {(α,β) ∈ S (G, λ4, k) | V(α)⊆Ul and V(β)⊆Wd};

S ru
k = {(α,β) ∈ S (G, λ4, k) | V(α)⊆Ur and V(β)⊆Wu};
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S rd
k = {(α,β) ∈ S (G, λ4, k) | V(α)⊆Ur and V(β)⊆Wd}.

Notice that there exist at most three binary strings γ ∈ {0, 1}k
for each k, 0 ≤ k < n, such that V(γ) has vertices whose
corresponding rays have different directions, since |λ4(ul)| <
|λ4(ur)| < |λ4(wu)| < |λ4(wd)| for any ul ∈ Ul, ur ∈ Ur, wu ∈
Wu, and wd ∈ Wd. Since the number of pairs in S (G, λ4, k)
containing such binary string γ is at most 3 ·2k, we have that
|S (G, λ4, k)| ≤ |S lu

k | + |S ld
k | + |S ru

k | + |S rd
k | + 3 · 2k.

Since the subgraphs of G induced by Ul∪Wu, Ul∪Wd,
Ur∪Wu, and Ur∪Wd are 2-directional orthogonal ray graphs,
we have from Lemma 17 that |S lu

k |, |S ld
k |, |S ru

k |, |S rd
k | ≤ 33 ·

23k/2. Thus, we have that

|S (G, λ4, k)|≤ |S lu
k |+|S ld

k |+|S ru
k |+|S rd

k |+3·2k≤135·23k/2.

We have from (3) that

sG,λ4,k ≤ 2|S (G, λ4, k)| + 2k ≤ 271 · 23k/2.

Thus, we have the lemma. �

Now, we have the following from Lemmas B and 21.

Theorem 22. The OBDD size of orthogonal ray graph with
N vertices is O(N3/2/ log3/4 N).

Proof. The proof is similar to that of Theorem 13, and is
omitted. �

5. Lower Bounds of OBDD Sizes

The following theorem is implicit in [20]. We give here an
explicit statement and proof for the following arguments.
Recall that GN is the set of all N-vertex graphs in a graph
class G.

Theorem C (Nunkesser and Woelfel [20]). When we use
binary strings [0]n, [1]n, . . . , [N − 1]n for vertex labels, the
OBDD size of a graph class GN is

Ω(N/ log N) if |GN | = 2Ω(N),
Ω(N) if |GN | = 2Ω(N log N), and
Ω(N log N) if |GN | = 2Ω(N log2 N),

where n = �log N� and |GN | is the number of graphs in GN.

Proof. Since we use n-bit labels [0]n, [1]n, . . . , [N − 1]n for
vertex labeling as we discussed in Sect. 3, each Boolean
function in B2n can represent one N-vertex graph up to iso-
morphism. Hence, the number of characteristic functions
needed to represent all graphs in GN is at least the number
of graphs in GN . Since OBDDs on Xk of size s can represent
at most sks(s+ 1)2s/s! = 2s log s+s log k+Θ(s) different functions
f ∈ Bk [31], if

lim
N→∞

2s(N) log s(N)+s(N) log log N+Θ(s(N))

|GN | < 1,

where s : N → N is a function, then there exists a nat-
ural number N ∈ N such that GN has a graph that can-
not be represented by OBDD of size at most s(N). Thus,

s(N) = Ω(N/ log N) if |GN | = 2Ω(N), s(N) = Ω(N) if |GN | =
2Ω(N log N), and s(N) = Ω(N log N) if |GN | = 2Ω(N log2 N). �

It should be noted that the lower bounds are valid only
when we use [0]n, [1]n, . . . , [N − 1]n for vertex labels, since
if we increase the range of vertex labeling, one Boolean
function in B2n might be able to represent more than one
N-vertex graphs.

5.1 Biconvex Graphs and Bipartite Permutation Graphs

The following is shown in [22].

Theorem D (Saitoh, Otachi, Yamanaka, and Uehara [22]).
The number of unlabeled connected bipartite permutation
graphs with N ≥ 2 vertices is

1
4

(
C(N − 1) + C(N/2 − 1) +

(
N

N/2

))
if N is even, and

1
4

(
C(N − 1) +

(
N−1

(N−1)/2

))
if N is odd,

where C(N) = 1
N+1

(
2N
N

)
is the N-th Catalan number. �

The following is immediate from Theorem D, since(
2N
N

)
= 22N+Θ(log N) [15].

Corollary 23. The number of unlabeled bipartite permuta-
tion graphs with N vertices is 2Ω(N). �

Now, we have the following from Theorem C and
Corollary 23.

Theorem 24. The OBDD size of bipartite permutation
graphs with N vertices is Ω(N/ log N). �

Since the class of bipartite permutation graphs is con-
tained in the class of biconvex graphs, we have the following
from Theorem 24.

Corollary 25. The OBDD size of biconvex graphs with N
vertices is Ω(N/ log N). �

5.2 Permutation Graphs

The following is shown in [2].

Theorem E (Bazzaro and Gavoille [2]). The number of un-
labeled permutation graphs with N vertices is 2Ω(N log N). �

We have the following from Theorems C and E.

Theorem 26. The OBDD size of permutation graphs with
N vertices is Ω(N). �

5.3 Orthogonal Ray Graphs and Convex Graphs

We have the following.

Theorem 27. The number of unlabeled convex graphs with
N vertices is 2Ω(N log N).

Proof. A graph G is called an interval graph [3] if there ex-
ists a set of closed intervals Iv, v ∈ V(G), on the real line
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such that for any u, w ∈ V(G), (u, w) ∈ E(G) if and only if
Iu and Iw intersect. The set I(G) = {Iv | v ∈ V(G)} is called
an interval representation of G. It is shown in [9] that the
number of interval graphs with N vertices is 2Θ(N log N).

We can assume without loss of generality that N can be
divided by 3. Let CGN be a class of convex graphs with N
vertices. We assume that each graph inCGN has a bipartition
(U,W) and a convex ordering of U. Let

CG2N/3,N/3 = {G ∈ CBN | |U | = 2N/3 and |W | = N/3}.
Let IGN/3 be a class of interval graphs with N/3 vertices.
Notice that IGN/3 = 2Ω(N log N). Then, it suffices to show
that there exists a surjection φ : CG2N/3,N/3 → IGN/3, since
it implies that |IGN/3| ≤ |CG2N/3,N/3| ≤ |CBN |.

For any convex graph G in CG2N/3,N/3, we define that
φ(G) is a graph such that

V(φ(G)) = W and

E(φ(G)) = {(w, w′) | ΓG(w) ∩ ΓG(w′) � ∅}.
Since for any w ∈ W, the vertices in ΓG(w) occur consecu-
tively in the convex ordering of U, we have φ(G) ∈ IGN/3.

Now, we show that the mapping φ is a surjection. Let
H be an interval graph in IGN/3 with an interval representa-
tion I(H). For each Iv ∈ I(H), there exist the left and right
endpoints of Iv, and let P be the set of all such endpoints of
I(H). We can assume without loss of generality that end-
points in P are distinct [14]. For each p ∈ P, we define a
corresponding vertex up. Let GH be a bipartite graph with a
bipartition (UH ,WH) such that

UH = {up | p ∈ P },
WH = V(H), and

E(GH) = {(up, v) | v ∈ WH and p ∈ Iv}.
Since it is immediate that GH ∈ CG2N/3,N/3 and φ(GH) = H,
we conclude that φ is a surjection. �

Now, we have the following from Theorems C and 27.

Theorem 28. The OBDD size of convex graphs with N ver-
tices is Ω(N). �

Since {Convex Graphs} ⊂ {2-Directional Orthogonal
Ray Graphs} ⊂ {Orthogonal Ray Graphs} ⊂ {Unit Grid Inter-
section Graphs} ⊂ {Grid Intersection Graphs}, where X ⊂ Y
indicates a set X is a proper subset of Y , we have the follow-
ing from Theorem 28.

Corollary 29. The OBDD sizes of (2-directional) orthogo-
nal ray graphs and (unit) grid intersection graphs with N
vertices are Ω(N). �

6. Concluding Remarks

It should be noted that for any permutation graph G, labeling
λ2 of G, shown in Sect. 4.3, can be obtained in polynomial
time by the point partitioning algorithm, since it requires

sorting the points in the xy-plane and setting the bits of the
labels of the points. See the proof of Lemma 8. Similarly,
labeling λ3 can be obtained in polynomial time for any 2-
directional orthogonal ray graph, and labeling λ4 can be ob-
tained in polynomial time for any orthogonal ray graph.

Since the number of chordal bipartite graphs with N
vertices is 2Θ(N log2 N) [27], the OBDD size of chordal bipar-
tite graphs is Ω(N log N) by Theorem C.

It should be noticed that Gillé mentions in [10], [11]
that the OBDD size of convex graphs is O(N log N).

Upper bounds of the OBDD sizes of chordal bipar-
tite graphs and (unit) grid intersection graphs remain open.
Also, the upper and lower bounds of OBDD sizes of convex
graphs, (2-directional) orthogonal ray graphs, and permuta-
tion graphs are not tight, and closing the gaps between the
bounds are another open problems.
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