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SUMMARY An orthogonal ray graph is an intersection graph of hor-
izontal and vertical rays (closed half-lines) in the plane. Such a graph is
3-directional if every vertical ray has the same direction, and 2-directional
if every vertical ray has the same direction and every horizontal ray has
the same direction. We derive some structural properties of orthogonal ray
graphs, and based on these properties, we introduce polynomial-time algo-
rithms that solve the dominating set problem, the induced matching prob-
lem, and the strong edge coloring problem for these graphs. We show that
for 2-directional orthogonal ray graphs, the dominating set problem can be
solved in O(n2 log5 n) time, the weighted dominating set problem can be
solved in O(n4 log n) time, and the number of dominating sets of a fixed
size can be computed in O(n6 log n) time, where n is the number of vertices
in the graph. We also show that for 2-directional orthogonal ray graphs, the
weighted induced matching problem and the strong edge coloring problem
can be solved in O(n2 + m log n) time, where m is the number of edges in
the graph. Moreover, we show that for 3-directional orthogonal ray graphs,
the induced matching problem can be solved in O(m2) time, the weighted
induced matching problem can be solved in O(m4) time, and the strong
edge coloring problem can be solved in O(m3) time. We finally show that
the weighted induced matching problem can be solved in O(m6) time for
orthogonal ray graphs.
key words: boolean-width, dominating set, induced matching, orthogonal
ray graphs, strong edge coloring

1. Introduction

A bipartite graph G with bipartition (U,V) is called an or-
thogonal ray graph (ORG for short) [50] if there exist a set
of disjoint horizontal rays (closed half-lines) Ru, u ∈ U, in
the xy-plane and a set of disjoint vertical rays Rv, v ∈ V ,
such that for any u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only
if Ru and Rv intersect. Set R(G) = {Rw | w ∈ V(G)} is called
the orthogonal ray representation of G. ORGs are intro-
duced in connection with the defect-tolerant design of nano-
circuits [49]. An ORG is called a 3-directional orthogonal
ray graph (3-DORG for short) if every vertical ray Rv, v ∈ V ,
has the same direction. A 3-ORG is called a 2-directional
orthogonal ray graph (2-DORG for short) if every horizon-
tal ray Ru, u ∈ U, has the same direction. We also refer to
such representation of 3- and 2-DORGs as the orthogonal
ray representation.

The following relationship between bipartite graph
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classes is known [44], [50]: {Bipartite Permutation Graphs}
⊂ {Biconvex Graphs} ⊂ {Convex Graphs} ⊂ {Interval
Bigraphs} ⊂ {2-Directional Orthogonal Ray Graphs} ⊂
{Chordal Bipartite Graphs}, and {2-Directional Orthogonal
Ray Graphs} ⊂ {3-Directional Orthogonal Ray Graphs} ⊂
{Orthogonal Ray Graphs} ⊂ {Unit Grid Intersection Graphs}
⊂ {Grid Intersection Graphs}, where X ⊂ Y indicates a set
X is a proper subset of Y . Definitions and some comprehen-
sive surveys of these graphs can be found in [10], [30], [50],
[53].

The class of 2-DORGs has been well studied, and vari-
ous characterizations are known [50], [52]. Based on a char-
acterization by circular-arc graphs, 2-DORGs can be recog-
nized in O(n2) time, and the orthogonal ray representation of
a 2-DORG can be obtained in O(n2) time [50], where n is the
number of vertices in the graph. It is known that the biclique
problem can be solved in O(n) time provided that orthogonal
ray representations are given [49]. It is also known that the
cross-free matching problem, the biclique cover problem,
and the jump number problem can be solved in O(n2.5 logc n)
time for some constant c [52]. Based on a characterization
by vertex ordering, the matching problem and the oriented
coloring problem can be solved in linear time [22]. More-
over, it is known that the node-weighted matching problem
can be solved in O(n log2 n) time provided that orthogonal
ray representations are given [46].

This paper considers the complexities of the dominat-
ing set problem, the induced matching problem, and the
strong edge coloring problem for ORGs. We introduce the
first polynomial-time algorithms to solve the problems for
2-DORGs, 3-DORGs, or ORGs. We also show faster algo-
rithms to solve some problems for 2-DORGs.

1.1 Dominating Set Problem

Vertex set D ⊆ V(G) is called a dominating set of a graph
G if for any v ∈ V(G) \ D, there exists a vertex in D ad-
jacent to v. The (weighted) dominating set problem is to
find a dominating set with minimum cardinality (weight) in
a given (vertex-weighted) graph. The dominating set prob-
lem is one of the most basic and well-studied problems in
graph algorithms. The problem and its variants have many
applications in various areas including computer networks,
and have been received considerable attention. Also, the
dominating set counting problem in graph classes is consid-
ered [37].

The dominating set problem is NP-hard for gen-
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eral graphs [29], and remains NP-hard for chordal bipar-
tite graphs [43] and for unit grid intersection graphs [45],
whereas the problem can be solved in O(n) time for permu-
tation graphs [19] and in O(n3) time for convex graphs [21].
Also, the weighted dominating set problem can be solved in
O(n + m) time for permutation graphs [47] and in polyno-
mial time for convex graphs [28] and interval bigraphs [35],
where m is the number of edges in the graph. Moreover,
counting the number of dominating sets in a chordal bipar-
tite graph is known to be �P-complete [37].

We consider in Sect. 3 the complexity of the (weighted)
dominating set problem for (vertex-weighted) 2-DORGs
and the dominating set counting problem. We show in
Sect. 3.1 that the dominating set problem can be solved in
O(n2 log5 n) time for 2-DORGs, by showing that 2-DORGs
are the complements of bounded tolerance graphs. The
weighted dominating set problem and the dominating set
counting problem for ORGs are recently pointed out to be
solvable in polynomial time [56] provided that orthogonal
ray representations are given, by using a new parameter,
boolean-width of graphs, which is introduced in [12], [13].
We show in Sect. 3.2 that, indeed, the weighted dominating
set problem can be solved in O(n4 log n) time for vertex-
weighted 2-DORGs, and the number of dominating sets in
a 2-DORG of a fixed size can be computed in O(n6 log n)
time. The results above are in contrast with the NP-hardness
of the dominating set problem [43] and the �P-completeness
of the dominating set counting problem [37] for chordal bi-
partite graphs. Thus, the class of 2-DORGs is a boundary
for the complexities of these problems.

1.2 Induced Matching and Strong Edge Coloring Problem

A matching of a graph G is a set of edges no two of which
share a common vertex in G. An induced matching of G is a
matching that is also an induced subgraph. The (weighted)
induced matching problem is to find an induced match-
ing with maximum cardinality (weight) in a given (edge-
weighted) graph. Recently, the induced matching problem
has attracted much attention. The problem has many ap-
plications such as the risk-free marriage [54] and the se-
cure messages broadcast on communication channels [32].
It also has the applications for wireless networks: The max-
imum induced matchings are used to model a kind of capac-
ity of wireless networks [2], and the problem is used to show
the NP-hardness of the wireless gathering problem [7], [42].

The induced matching problem is NP-hard for general
bipartite graphs [15], [54], and even for unit grid intersection
graphs [45], whereas the problem can be solved in O(n +m)
time for bipartite permutation graphs [18], in O(n2) time for
convex graphs [8], in O(nm) time for interval bigraphs [1],
and in O(m3) time for chordal bipartite graphs [1], [17], [22].
Also, the weighted induced matching problem can be solved
in O(m4) time for chordal bipartite graphs [17]. Since the
class of 2-DORGs is contained in the class of chordal bi-
partite graphs, it has been already known that the induced
matching problem for 2-DORGs can be solved in O(m3)

time, and O(m4) time for weighted case.
A strong edge coloring of a graph G is an assignment of

colors to the edges of G such that every two edges with adja-
cent endvertices must have different colors. In other words,
a strong edge coloring of G is a partition of E(G) into a
collection of induced matchings. The strong edge coloring
problem is to find a strong edge coloring with the minimum
number of colors. The problem has applications for wire-
less networks [3], and has been well studied (see [40] for
survey).

We consider in Sect. 4 the complexity of the (weighted)
induced matching problem and the strong edge coloring
problem for ORGs. We show in Sect. 4.1 that for 2-DORGs,
the weighted induced matching problem and the strong edge
coloring problem can be solved in O(n2 + m log n) time by
reducing the problems to the weighted independent set prob-
lem and the coloring problem for trapezoid graphs, respec-
tively. It should be noted that O(n2) time is needed to obtain
the orthogonal ray representation of a graph. This reduce the
complexity of the (weighted) induced matching problem for
2-DORGs. We also show in Sect. 4.2 that for 3-DORGs, the
induced matching problem can be solved in O(m2) time, the
weighted induced matching problem can be solved in O(m4)
time, and the strong edge coloring problem can be solved
in O(m3) time by reducing the problems to the (weighted)
independent set problem and the coloring problem for co-
comparability graphs, respectively. Moreover, we show in
Sect. 4.3 that the weighted induced matching problem can
be solved in O(m6) time for ORGs. This is in contrast with
the NP-hardness of the problem for unit grid intersection
graphs, and thus, the class of ORGs is a boundary for the
complexity of the induced matching problem.

2. Preliminaries

All graphs considered in this paper are finite, simple, and
undirected. For a graph G, let V(G) and E(G) denote the
set of vertices and edges, respectively. Let n = |V(G)| and
m = |E(G)|. The complement of G is the graph G such that
V(G) = V(G) and E(G) = {(u, v) | (u, v) � E(G)}. The open
neighborhood of a vertex v in G is the set NG(v) = {u ∈
V(G) | (u, v) ∈ E(G)}, and the closed neighborhood of a
vertex v in G is the set NG[v] = {v} ∪ NG(v). For an edge
e = (u, v) ∈ E(G), we use NG[e] to denote the set of vertices
adjacent to u or v, that is,

NG[e]
def
= NG[u] ∪ NG[v] for an edge e = (u, v).

If no confusion arise, we will omit the index.
A point p = (x, y) in the xy-plane is said to be domi-

nated by a point p′ = (x′, y′), denoted by p <R2 p′, if x < x′
and y < y′. It is shown in [51], [52] that a bipartite graph
G with bipartition (U,V) is a 2-DORG if and only if there
exists a set of points pw, w ∈ V(G), in the xy-plane such
that for any u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only if
pu <R2 pv. Moreover, we can assume without loss of gener-
ality that every xw is distinct and every yw is distinct. A set



TAKAOKA et al.: DOMINATING SETS AND INDUCED MATCHINGS IN ORTHOGONAL RAY GRAPHS
3103

of points P(G) = {pw | w ∈ V(G)} is called the point rep-
resentation of G. The point representation can be obtained
from the orthogonal ray representation as follows: Consider
the orthogonal ray representation of G consisting of right-
ward rays corresponding to the vertices of U and downward
rays corresponding to the vertices of V . The set of endpoints
of rays is the point representation of G.

Let L1 and L2 be two lines parallel to x-axis in the xy-
plane. A graph G is called a trapezoid graph [20] if there
exists a set of trapezoids Tv, v ∈ V(G), with parallel sides
along L1 and L2 such that for any u, v ∈ V(G), (u, v) ∈ E(G)
if and only if Tu and Tv intersect. A trapezoid graph G is
called a parallelogram graph [6] if Tv is a parallelogram for
every v ∈ V(G).

In stead of the definitions above, we use the character-
izations of trapezoid graphs and parallelogram graphs that
are shown in [24], [26]. An axis-parallel rectangle in the xy-
plane is called a box. Let ur(B) denote the upper right corner
point of a box B, and let ll(B) denote the lower left corner
point of B. A box B is said to be dominated by a box B′,
denoted by B <R2 B′, if ur(B) <R2 ll(B′). It is shown in [26]
that a graph G is a trapezoid graph if and only if there exists
a set of boxes Bv, v ∈ V(G), in the xy-plane such that for
any u, v ∈ V(G), (u, v) ∈ E(G) if and only if Bu ≮R2 Bv and
Bv ≮R2 Bu. A set of boxes B(G) = {Bv | v ∈ V(G)} is called
the box representation of G. It is also shown in [24] that a
trapezoid graph G is a parallelogram graph if and only if Bv
is a square for every v ∈ V(G).

A graph G is called a circular-arc graph if there exists
a set of arcs Av, v ∈ V(G), on a circle such that for any
u, v ∈ V(G), (u, v) ∈ E(G) if and only if Au and Av intersect.

A bipartite graph G with bipartition (U,V) is called an
interval containment bigraph if there exists a set of intervals
Iw, w ∈ V(G), on the real line such that for any u ∈ U and
v ∈ V , (u, v) ∈ E(G) if and only if Iu ⊆ Iv.

A graph G is called a tolerance graph if there exist a set
of intervals Iv, v ∈ V(G), on the real line and a set of positive
numbers tv, v ∈ V(G), called tolerances, such that for any
u, v ∈ V(G), (u, v) ∈ E(G) if and only if |Iu ∩ Iv| ≥ min{tu, tv},
where |I| is the length of I. A tolerance graph G is called a
bounded tolerance graph if tv ≤ |Iv| for every v ∈ V(G).

A pair P = (A, <) of a set A and a reflexive, anti-
symmetric, and transitive binary relation < on A is called
a partially ordered set (poset for short). A graph G is called
a comparability graph of a poset P if there exists a bijec-
tion assigning each v ∈ V(G) to av ∈ A such that for any
u, v ∈ V(G), (u, v) ∈ E(G) if and only if au and av are com-
parable in P, that is, au < av or av < au. A graph G is called
a co-comparability graph if G is a comparability graph.

A poset P = (A, <) is called an interval order if there
exists a set of intervals Ia, a ∈ A, on the real line such that
for any a, b ∈ A, a < b if and only if ra < lb, where ra is
the right endpoint of Ia and lb is the left endpoint of Ib. The
interval dimension of a poset P is the minimum number d
of interval orders Pi = (A, <i), i ∈ {1, 2, . . . , d}, such that
for any a, b ∈ A, a < b if and only if a <i b for every i ∈
{1, 2, . . . , d}. A poset is said to be height 1 if the underlying

Fig. 1 An example of edge-asteroid of size 5.

graph is bipartite.
A sequence of vertices (v0, v1, . . . , v2k), k ≥ 1, of a

graph G is called an asteroid of size 2k + 1 if for any
i, 0 ≤ i ≤ 2k, there exists a path from vi to vi+1 that con-
tains no vertices in N[vi+k+1] (Subscripts are modulo 2k+1).
The following is shown in [27].

Theorem I. A graph is a co-comparability graph if and
only if it contains no asteroids. �

A bipartite graph is called a chordal bipartite graph if it
contains no cycle of length at least 6 as an induced subgraph.

A sequence of edges (e0, e1, . . . , e2k), k ≥ 1, of a graph
G is called an edge-asteroid of size 2k + 1 if for any i, 0 ≤
i ≤ 2k, there exists a path from ei to ei+1 that contains no
vertices in N[ei+k+1] (Subscripts are modulo 2k + 1). See
Fig. 1 for an example. Edge-asteroids are introduced in [23],
and 2-DORGs can be characterized as follows [23], [50].

Theorem II. A bipartite graph is a 2-DORG if and only if it
is a chordal bipartite graph and contains no edge-asteroids.

�

A bipartite graph G with bipartition (U,V) is called a
chain graph if for any pair of vertices u, u′ ∈ U, either
N(u) ⊆ N(u′) or N(u) ⊇ N(u′) (it is also known as a dif-
ference graph [33] and a Ferrers bigraph [34]). A discon-
nected graph consisting of k disjoint edges is denoted by
kK2. It is known that a bipartite graph is a chain graph if
and only if it contains no 2K2 as an induced subgraph [58],
and thus, the size of the maximum induced matching of any
chain graph is at most 1. A graph G is called the union of
graphs Gi, 1 ≤ i ≤ k, if E(G) = E(G1)∪E(G2)∪· · ·∪E(Gk),
and called the intersection of graphs Gi, 1 ≤ i ≤ k, if E(G) =
E(G1)∩E(G2)∩· · ·∩E(Gk). The chain subgraph cover prob-
lem for a bipartite graph G is to find the minimum number
of chain graphs, denoted by ch(G), whose union is G. It is
known that for any chordal bipartite graph G, the size of the
maximum induced matching of G is equal to ch(G) [1]. The
chain dimension of a bipartite graph G, denoted by cdim(G),
is the minimum number of chain graphs whose intersection
is G (The chain dimension is also known as the Ferrers di-
mension [34]). It is known that for any fixed k ≥ 3, de-
ciding whether ch(G) ≤ k for a given bipartite graph G
and deciding whether cdim(G) ≤ k are NP-complete [58],
while deciding whether ch(G) ≤ 2 and deciding whether
cdim(G) ≤ 2 can be solved in O(n2) time [39].

Some comprehensive surveys with other results can be
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found in [10], [30], [53].

3. Dominating Sets in 2-DORGs

3.1 Dominating Set Problem

The following relationships are known:

– A bipartite graph G is a 2-DORG if and only if G is a
circular-arc graph [50];

– A bipartite graph G is an interval containment bigraph
if and only if cdim(G) ≤ 2, and if and only if G is a
circular-arc graph [34];

– A bipartite graph G is a comparability graph of a poset
of interval dimension at most 2 and height 1 if and only
if G is a circular-arc graph [55];

– A graph G is a comparability graph of a poset of inter-
val dimension at most 2 if and only if G is a trapezoid
graph [20];

– A graph G is a parallelogram graph if and only if G is
a bounded tolerance graph [6], [24].

We list the graph classes equivalent to 2-DORGs in-
cluding the classes above.

Theorem 1. The following conditions are equivalent for a
bipartite graph G :

(i) G is a 2-directional orthogonal ray graph;
(ii) G is an interval containment bigraph;

(iii) G is a bipartite graph with chain dimension at most
2;

(iv) G is a comparability graph of a poset of interval di-
mension at most 2 and height 1;

(v) G is a circular-arc graph;
(vi) G is a trapezoid graph;

(vii) G is a parallelogram graph;
(viii) G is a bounded tolerance graph.

Proof. Since the equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔
(v)⇔ (vi) are shown in [20], [34], [50], [55], and the equiv-
alence (vii)⇔ (viii) is shown in [6], [24], it suffices to show
the equivalence (i)⇔ (vii).

Proof of (i) ⇒ (vii). Let G be a 2-DORG with bipar-
tition (U,V) and a point representation P(G) = {(xw, yw) |
w ∈ V(G)}. We assume without loss of generality that ev-
ery xw is distinct and every yw is distinct [52]. For each
u ∈ U, let Bu be a square with ur(Bu) = (xu, yu) and ll(Bu) =
(xu − s, yu − s), where s > maxu,u′∈U{|xu − xu′ |, |yu − yu′ |}
(See Fig. 2 for example). For each v ∈ V , let Bv be a square
with ur(Bv) = (xv + t, yv + t) and ll(Bv) = (xv, yv), where
t > maxv,v′∈V {|xv − xv′ |, |yv − yv′ |}. Let H be a parallelo-
gram graph with V(H) = V(G) and the box representation
B(H) = {Bw | w ∈ V(G)}. Notice that H is a bipartite graph
with bipartition (U,V) since s and t are sufficiently large.
Since (u, v) ∈ E(G)⇔ (xu, yu) <R2 (xv, yv)⇔ Bu <R2 Bv ⇔
(u, v) � E(H) ⇔ (u, v) ∈ E(H), we conclude that H = G.
Thus, G is a parallelogram graph.

Proof of (i) ⇐ (vii). Let G be a bipartite graph with

Fig. 2 The box representation of a 2-directional orthogonal ray graph
constructed from the point representation of the graph.

bipartition (U,V) such that G is a parallelogram graph with
a box representation B(G) = {Bw | w ∈ V(G)}. For each
(u, v) � E(G), there exist squares Bu and Bv such that Bu <R2

Bv or Bv <R2 Bu. We can assume without loss of generality
that Bu <R2 Bv for every u ∈ U and v ∈ V . For each u ∈ U,
let (xu, yu) = ur(Bu), and for each v ∈ V , let (xv, yv) = ll(Bv).
We can further assume that every xw is distinct and every
yw is distinct [36]. Let H be a 2-DORG with V(H) = V(G)
and the point representation P(H) = {(xw, yw) | w ∈ V(G)}.
Since (u, v) � E(G) ⇔ Bu <R2 Bv ⇔ (xu, yu) <R2 (xv, yv)
⇔ (u, v) ∈ E(H), we conclude that H = G. Thus, G is a
2-DORG. �

It is shown in [36] that the dominating set problem can
be solved in O(n2 log5 n) time for the complements of paral-
lelogram graphs provided that box representations are given,
while the problem is NP-hard for the complements of trape-
zoid graphs. As shown in the proof of Theorem 1, the box
representation of a 2-DORG G can be obtained from the
point representation of G. Since the point representation of
G can be obtained in O(n2) time [50], we have the following.

Theorem 2. The dominating set problem can be solved in
O(n2 log5 n) time for 2-DORGs. �

3.2 Weighted Dominating Set Problem and Dominating
Set Counting Problem

For a set of vertices A ⊆ V(G) of a graph G, let A = V(G)\A.
A bipartition (A, A) of V(G) is called a cut of G. Let the
neighborhood of A ⊆ V(G) be N(A) =

⋃
v∈A N(v). For a cut

(A, A) of G and a subset S ⊆ A, the set N(S )∩A is called the
neighborhood of S across (A, A). Two subset S , S ′ ⊆ A are
said to be neighborhood equivalent with respect to A, de-
noted by S ≡A S ′, if S and S ′ have the same neighborhood
across (A, A), that is,

S ≡A S ′
def⇐⇒ N(S ) ∩ A = N(S ′) ∩ A.

The number of equivalence classes of ≡A is denoted by
nec(≡A).
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A full binary tree is a rooted binary tree in which every
non-leaf node has two children. Let L(T ) be a set of leaves in
a tree T . A decomposition tree of a graph G is a pair (T, δ)
of a full binary tree T with |V(G)| leaves and a bijection
δ : L(T )→ V(G). For a node a in T , let Ta be the subtree of
T rooted at a, and let

Aa
def
= {v ∈ V(G) | δ−1(v) ∈ L(Ta)}.

A cut (Aa, Aa) is called a cut of a. The boolean-width of
a decomposition tree (T, δ), denoted by boolw(T, δ), is the
maximum log nec(≡Aa ) over all nodes a in T . The boolean-
width of G is the minimum boolw(T, δ) over all decomposi-
tion trees (T, δ) of G.

The followings are shown in [12], [13].

Theorem III. The weighted dominating set problem can be
solved in O(n2 + nk23k) time provided that a decomposition
tree of boolean-width k is given. �

Theorem IV. The number of dominating sets of a fixed size
can be computed in O(n3k23k) time provided that a decom-
position tree of boolean-width k is given. �

A decomposition tree of boolean-width O(log n) can be
obtained in polynomial time for some intersection graphs,
such as permutation graphs and interval bigraphs [4], [5],
[35]. It follows from Theorems III and IV that the weighted
dominating set problem and the dominating set counting
problem can be solved in polynomial time for these graphs.

It is pointed out in [56] that the boolean-width of any
ORG is O(log n). The following shows that the boolean-
width of a 2-DORG is indeed at most log n.

Theorem 3. A decomposition tree of boolean-width at most
log n can be obtained in O(n2) time for 2-DORGs.

To prove the theorem, we follow the arguments used in
[4], [5]. Let (T, δ) be a decomposition tree of a graph G. For
a node a in T , we define that

ra
def
= max

S⊆Aa

min
S ′⊆S
{|S ′| | S ′ ≡Aa S }.

Also, for a decomposition tree (T, δ) of G, we define that
r(T,δ) is the maximum ra over all nodes a in T . The following
is shown in [4].

Theorem V. boolw(T, δ) ≤ r(T,δ) · log n. �

As the full binary tree of the decomposition tree of a
graph G, a caterpillar is used in [4], [5]. We use a special
kind of caterpillar as follows. Let (w1, w2, . . . , wn) be a total
ordering of the vertices of G. Let T be a caterpillar obtained
from a path (a1, a2, . . . , an) attaching a leaf li to ai for each
i, 2 ≤ i ≤ n, and let an be a root of T . Let δ be a bijection
from L(T ) to V(G) such that a1 mapped to w1 and li mapped
to wi for each i, 2 ≤ i ≤ n. The pair (T, δ) is called the
decomposition caterpillar of G. Notice that Aai = {w j ∈
V(G) | j ≤ i} for any node ai in T .

Proof of Theorem 3. Let G be a 2-DORG with bipartition
(U,V) and a point representation P(G) = {(xw, yw) | w ∈
V(G)}. We assume without loss of generality that every xw
is distinct and every yw is distinct [52]. We refer to xw and
yw as the x- and y-coordinate of w, respectively.

Let (w1, w2, . . . , wn) be the increasing order of x-
coordinates of vertices of G, that is, the total ordering of
V(G) such that for any wi and w j, i < j if and only if
xwi < xw j . Let (T, δ) be a decomposition caterpillar obtained
from such ordering. For any leaf l in T , rl = 1 since |Al| = 1.
We show that for any internal node ai in T , rai = 1. For each
S ⊆ Aai = {w j ∈ V(G) | j ≤ i}, let uS ∈ S ∩ U be a vertex
with the minimum y-coordinate over all vertices in S ∩ U.
Notice that N(S )∩Aai ⊆ Aai ∩V since no vertices in Aai ∩U
are adjacent to a vertex in Aai . Notice also that any vertex
v ∈ Aai ∩ V adjacent to a vertex u ∈ S ∩ U is also adjacent
to uS since xuS < xv and yuS < yu < yv. Therefore, we have
S ≡Aai

{uS } for any S ⊆ Aai , and rai = 1. Thus, r(T,δ) = 1,
and the boolean-width of the decomposition caterpillar is at
most log n by Theorem V.

Since the representation of a 2-DORG can be obtained
in O(n2) time [50], and a decomposition caterpillar can be
obtained by sorting the points in the xy-plane, the overall
time complexity is O(n2). �

We have the following from Theorems III and 3.

Theorem 4. The weighted dominating set problem can be
solved in O(n4 log n) time for 2-DORGs. �

We also have the following from Theorems IV and 3.

Theorem 5. The number of dominating sets in a 2-DORG
of a fixed size can be computed in O(n6 log n) time. �

4. Induced Matchings and Strong Edge Colorings

It has been known that the induced matching problem for
a graph G can be reduced to the independent set problem
for the square of line graph of G [15]. Indeed, the induced
matching problem for many classes of graphs can be solved
in this way [9], [15]–[18], [31], [32], [38]. The square of line
graph of G is a graph L2(G) such that V(L2(G)) = E(G) and
for any e, f ∈ V(L2(G)), (e, f ) ∈ E(L2(G)) if and only if
e and f share a common endvertex or they are joined by an
edge in G. We can see that any induced matching of G corre-
sponds to the independent set of L2(G) and vice versa, and
any strong edge coloring of G corresponds to the coloring
of L2(G) and vice versa. It is also known that a chain sub-
graph cover of any chordal bipartite graph (and thus, of any
2-DORG) G corresponds to the clique cover of L2(G) [1].

4.1 2-Directional Orthogonal Ray Graphs

Lemma 6. If G is a 2-DORG, L2(G) is a trapezoid graph.
Moreover, a box representation of L2(G) can be obtained in
O(m) time from the orthogonal ray representation of G.
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Fig. 3 The box representation of L2(G) constructed from the orthogonal
ray representation of G.

Proof. Let G be a 2-DORG with bipartition (U,V) and an
orthogonal ray representation R(G) = {Rw | w ∈ V(G)}. We
assume without loss of generality that every Ru, u ∈ U, is
a rightward ray and every Rv, v ∈ V , is an upward ray. Let
(xw, yw) be the endpoint of Rw ∈ R(G). We further assume
that every xw is distinct and every yw is distinct [52]. Notice
that for any u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only if xu <
xv and yu > yv. For each edge e = (u, v) ∈ E(G) with u ∈ U
and v ∈ V , let Be be a box in the xy-plane whose upper left
corner point is (xu, yu) and lower right corner point is (xv, yv)
(See Fig. 3 for example). Notice that ur(Be) = (xv, yu) and
ll(Be) = (xu, yv). Let H be a trapezoid graph with V(H) =
E(G) and the box representation B(H) = {Be | e ∈ E(G)}.
Since for any e = (u, v), f = (z, w) ∈ E(G) with u, z ∈ U
and v, w ∈ V , (e, f ) � E(H) ⇔ Be <R2 Bf [or Bf <R2 Be]
⇔ (xv < xz) ∧ (yu < yw) [or (xw < xu) ∧ (yz < yv)] ⇔
((z, v) � E(G)) ∧ ((u, w) � E(G)) ⇔ (e, f ) � E(L2(G)), we
conclude that H = L2(G). Thus, L2(G) is a trapezoid graph.

Since the above procedure requires constant time for
each edge in G, the box representation of L2(G) can be ob-
tained in O(m) time from the orthogonal ray representation
of G. �

Recall that for a 2-DORG G, the induced matching,
the strong edge coloring, and the chain subgraph cover cor-
respond to the independent set, the coloring, and the clique
cover of L2(G). It is shown in [26] that the weighted inde-
pendent set problem, the coloring problem, and the clique
cover problem can be solved in O(n log n) time for trape-
zoid graphs provided that box representations are given.
Since |L2(G)| = |E(G)|, we have from Lemma 6 that the
corresponding problems can be solved in O(m log m) time
for 2-DORGs. Notice that O(m log m) = O(m log n) since
m = O(n2). Since an orthogonal ray representation of a
2-DORG can be obtained in O(n2) time [50], we have the
following.

Theorem 7. The weighted induced matching problem, the
strong edge coloring problem, and the chain subgraph cover
problem can be solved in O(n2+m log n) time for 2-DORGs.
Moreover, these problems can be solved in O(m log n) time
for 2-DORGs provided that orthogonal ray representations
are given. �

We note that the necessary condition in Lemma 6 is not
sufficient, since C6, a cycle of length 6, is a counterexam-
ple: We can see from Theorem II that C6 is not a 2-DORG,

whereas since L2(C6) = 3K2 (three disjoint edges), L2(C6) is
a 2-DORG, which implies from Theorem 1 (vi) that L2(C6)
is a trapezoid graph.

4.2 3-Directional Orthogonal Ray Graphs

We first show a necessary condition of 3-DORGs. To prove
the condition, we use the following.

Lemma 8. For any permutation π on {0, 1, . . . , 2k}, k ≥ 1,
there exists i, 0 ≤ i ≤ 2k, such that πi < πi+k+1 < πi+1 or
πi > πi+k+1 > πi+1 (Subscripts are modulo 2k + 1).

Proof. It suffices to show that there exists i, 0 ≤ i ≤ 2k, such
that (πi − πi+k+1)(πi+k+1 − πi+1) > 0. Suppose contrary that
(πi − πi+k+1)(πi+k+1 − πi+1) < 0 for any i, 0 ≤ i ≤ 2k. Then,
we have

2k∏

i=0

(πi − πi+k+1)(πi+k+1 − πi+1) =
2k∏

i=0

(πi − πi+k+1)2 < 0,

a contradiction. �

We have the following from Lemma 8.

Theorem 9. Any 3-DORG contains no edge-asteroids.

Proof. Let G be a 3-DORG with bipartition (U,V) and an
orthogonal ray representation R(G) = {Rw | w ∈ V(G)}. We
assume without loss of generality that every Rv, v ∈ V , is
an upward ray. Let (xw, yw) be the endpoint of Rw ∈ R(G),
and we have that every xv, v ∈ V , is distinct since the ver-
tical rays in R(G) are disjoint. We prove the theorem by
contradiction. Suppose contrary that G has an edge-asteroid
(e0, e1, . . . , e2k) of size 2k + 1, k ≥ 1, where ei = (ui, vi)
with ui ∈ U and vi ∈ V for any i, 0 ≤ i ≤ 2k. Let π be a
permutation on {0, 1, . . . , 2k} such that πi < π j if and only
if xvi ≤ xv j (Recall that two edges in an edge-asteroid may
share a common endvertex as shown in Fig. 1). We assume
that subscript additions are modulo 2k + 1.

Now, we have from Lemma 8 that there exists a positive
integer i such that πi < πi+k+1 < πi+1 or πi > πi+k+1 > πi+1.
We have that ei and ei+k+1 share no common endvertex, and
ei+1 and ei+k+1 share no common endvertex by the defini-
tion of edge-asteroids. Two rays Rui+k+1 and Rvi+k+1 divide the
plane into two regions, and Rvi and Rvi+1 are in the differ-
ent region since Rvi and Rvi+1 are upward rays. Hence, any
path from ei to ei+1 must have a vertex adjacent to ui+k+1 or
vi+k+1, contradicting to the definition of edge-asteroid. Thus,
G contains no edge-asteroids. �

Now, we consider the graphs that contain no edge-
asteroids. For a set of vertices A ⊆ V(G) of a graph G, we
use G − A to denote the graph obtained from G by deleting
all vertices in A. We have the following.

Lemma 10. For any edge e in a graph G,

L2(G − NG[e]) = L2(G) − NL2(G)[e].
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Proof. Since NL2(G)[e] is the set of edges of G incident to
a vertex of G in NG[e], we have that V(L2(G − NG[e])) =
E(G−NG[e]) = E(G)\NL2(G)[e] = V(L2(G)−NL2(G)[e]). For
any f , g ∈ V(L2(G−NG[e])), ( f , g) ∈ E(L2(G−NG[e])) if and
only if f and g share a common vertex in G or there exists an
edge h ∈ E(G−NG[e]) joining f and g. Since such h is inci-
dent to no vertex of G in NG[e] and h � NL2(G)[e] in L2(G),
we have that ( f , g) ∈ E(L2(G − NG[e]))⇔ ( f , g) ∈ E(L2(G))
⇔ ( f , g) ∈ E(L2(G) − NL2(G)[e]). Thus, we conclude that
L2(G − NG[e]) = L2(G) − NL2(G)[e]. �

We have the following from the definition of edge-
asteroids and Lemma 10.

Lemma 11. An edge-asteroid in a graph G corresponds to
the asteroid in L2(G) and vice versa.

Proof. Notice that a sequence of vertices (v0, v1, . . . , v2k),
k ≥ 1, of G is an asteroid of size 2k+ 1 if and only if for any
i, 0 ≤ i ≤ 2k, two vertices vi and vi+1 are in the same con-
nected component of G−NG[vi+k+1] (Subscripts are modulo
2k+1). Notice also that a sequence of edges (e0, e1, . . . , e2k),
k ≥ 1, of G is an edge-asteroid of size 2k + 1 if and only if
for any i, 0 ≤ i ≤ 2k, two edges ei and ei+1 are in the same
connected component of G − NG[ei+k+1]. Thus, we have the
lemma from Lemma 10. �

We have the following from Theorem I and Lemma 11

Theorem 12. A graph G contains no edge-asteroids if and
only if L2(G) is a co-comparability graph. �

Recall that any induced matching of G corresponds to
the independent set of L2(G), and any strong edge color-
ing of G corresponds to the coloring of L2(G). For co-
comparability graphs, the independent set problem can be
solved in linear time [41], and the coloring problem can be
solved in O(n3) time [30]. Since it takes O(m2) time to ob-
tain L2(G) from G, we have the following from Theorem 12.

Theorem 13. For the graphs that contain no edge-
asteroids, the induced matching problem and the strong
edge coloring problem can be solved in O(m2) and O(m3)
time, respectively. �

The following is shown in [18].

Theorem VI. The weighted induced matching problem can
be solved in O(m4) time for graphs that contain no edge-
asteroids of size 3. �

We have the following from Theorem 9, 13, and VI.

Corollary 14. For 3-DORGs, the induced matching prob-
lem, the weighted induced matching problem, and the strong
edge coloring problem can be solved in O(m2), O(m4), and
O(m3) time, respectively. �

4.3 Orthogonal Ray Graphs

A set of vertices A ⊆ V(G) of a graph G is called an aster-
oidal set [57] if for every a ∈ A, the vertices in A \ {a} are

contained in the same connected component of G − N[a].
The maximum cardinality of an asteroidal set in G is called
the asteroidal number of G.

A set of edges F ⊆ E(G) is called an edge-asteroidal
set [18] if for every e ∈ F, the edges in F \ {e} are contained
in the same connected component of G − N[e]. We can see
that every edge-asteroidal set is an induced matching, and
a set of two edges is an edge-asteroidal set if it forms 2K2.
The maximum cardinality of an edge-asteroidal set in G is
called the asteroidal index of G. The following is shown in
[18].

Theorem VII. The weighted induced matching problem for
graphs with asteroidal index at most s can be solved in
O(ms+2) time. �

We note that Theorem VII can be derived from
Lemma 10, which implies that an edge-asteroidal set in a
graph G corresponds to the asteroidal set in L2(G) (This is
also proved in [18]). Since the independent set problem for
graphs with asteroidal number at most s can be solved in
O(ns+2) time [11], we have the theorem.

We have the following for ORG. It should be noted that
the following lemma is implicitly shown in [44], [48].

Lemma 15. The asteroidal index of any ORG is at most 4.

Proof. Let G be an ORG with bipartition (U,V) and an or-
thogonal ray representation R(G) = {Rw | w ∈ V(G)}. No-
tice that for the representation R(G), each edge of G can be
classified into four types as up-right, down-right, up-left, or
down-left, depending on the orientations of the horizontal
ray (rightward or leftward) and the vertical ray (upward or
downward) corresponding to the endvertices of the edge.

Now, we prove the lemma by contradiction. Suppose
contrary that G has an edge-asteroidal set F of size at least
5. Since |F| ≥ 5, at least two edges in F have the same
type. We assume without loss of generality that edges e and
f are both of type up-right. For an edge (u, v) ∈ E(G) of
type up-right with u ∈ U and v ∈ V , two rays Ru and Rv
divide the plane into two regions, and we refer to the region
above Ru and to the right of Rv as the inner region of (u, v),
and the other as the outer region. Since no pairs of edges
in F are joined by an edge, we can further assume that the
rays corresponding to the endvertices of e lie in the inner
region of f , and we have that the rays corresponding to the
endvertices of the other edges in F lie in the outer region
of f . Hence, any path from e to any other edge in F must
have a vertex adjacent to at least one of the endvertices of f ,
contradicting to the definition of edge-asteroidal set. Thus,
G contains no edge-asteroidal sets of size at least 5. �

Thus, we have the following from Theorem VII and
Lemma 15.

Theorem 16. The weighted induced matching problem can
be solved in O(m6) time for ORGs. �
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5. Concluding Remarks

It should be noted that Theorem 3 indicates that the num-
ber of independent sets in a 2-DORG of a fixed size can be
computed in O(α2n4 log n) time, where α is the size of the
maximum independent set of the graph [13]. Theorem 3 also
implies that several optimization problems can be solved in
polynomial time for 2-DORGs (See [13], [14] for details).

It is shown in [13], [14] that the dominating set prob-
lem can be solved in polynomial time for the graph that has
a decomposition tree of boolean-width O(log n). Since such
a decomposition tree of any ORG can be obtained from
the orthogonal ray representation [56], the problem can be
solved in polynomial time for ORGs provided that orthogo-
nal ray representations are given. However, since the com-
plexity of the recognition problem for ORGs and 3-DORGs
remains open, the complexity of the dominating set problem
for ORGs and 3-DORGs still remains open.

Recognition of ORGs and 3-DORGs is an interesting
open problem. It should be noted that the recognition prob-
lems can be solved in polynomial time provided that orien-
tations of rays corresponding to the vertices are given [25].
Also, the problems can be solved in linear time for the case
of trees [44].

We also note that the complexity of the strong edge
coloring problem for ORGs remains open.
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