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On Minimum Feedback Vertex Sets in Bipartite Graphs and
Degree-Constraint Graphs∗

Asahi TAKAOKA†a), Student Member, Satoshi TAYU†, Member, and Shuichi UENO†, Fellow

SUMMARY We consider the minimum feedback vertex set problem
for some bipartite graphs and degree-constrained graphs. We show that
the problem is linear time solvable for bipartite permutation graphs and
NP-hard for grid intersection graphs. We also show that the problem is
solvable in O(n2 log6 n) time for n-vertex graphs with maximum degree at
most three.
key words: 3-regular graph, bipartite permutation graph, feedback vertex
set, grid intersection graph, nonseparating independent set

1. Introduction

A vertex set F ⊆ V(G) of a graph G is a feedback vertex
set (FVS) if the subgraph of G induced by V(G)\F has no
cycles. A minimum feedback vertex set (MFVS) is an FVS
with minimum cardinality. The minimum feedback vertex
set problem (MinFVS) is to find an MFVS in a given graph.
It is known that MinFVS has many applications in various
areas including integrated circuits and optical networks (see
[2], [22], for example).

We first consider MinFVS for bipartite graphs (bi-
graphs). The following relationships between bigraph
classes have been known [15] :

{Bipartite Permutation Graphs}
⊂ {Convex Graphs}
⊂ {2-directional Orthogonal Ray Graphs}
⊂ {Chordal Bipartite Graphs},

and

{2-directional Orthogonal Ray Graphs}
⊂ {Orthogonal Ray Graphs}
⊂ {Unit Grid Intersection Graphs}
⊂ {Grid Intersection Graphs}.

It is known that MinFVS is NP-hard for bigraphs [23],
while it can be solved in O(n5) time for chordal bipartite
graphs [10], in O(n2m) time for convex graphs [13], and in
O(nm) time for permutation graphs [12], where n and m are
the number of vertices and edges of a graph, respectively.
We show in Sect. 2 that MinFVS can be solved in O(n +
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m) time for bipartite permutation graphs. We also show in
Sect. 3 that MinFVS is NP-hard for grid intersection graphs.

We next consider MinFVS for degree-constrained
graphs. It is known that MinFVS is NP-hard even for planar
graphs with maximum degree at most 4 [16], while it can
be solved in O(n4) time for graphs with maximum degree
at most 3 [5], [20]. We show in Sect. 4 that MinFVS can be
solved in O(n2 log6 n) time for graphs with maximum degree
at most 3.

2. A Linear Time Algorithm for Bipartite Permutation
Graphs

2.1 Bipartite Permutation Graphs

A graph G = (V, E) with a vertex set V = {v1, . . . , vn}
is a permutation graph if there exists a permutation π on
{1, . . . , n} such that for all i, j ∈ {1, . . . , n}, (vi, v j) ∈ E if and
only if (i − j)(π(i) − π( j)) < 0. A permutation graph G is
a bipartite permutation graph (permutation bigraph) if it is
bipartite.

A strong ordering of a bigraph G with a bipartition
(X,Y) is a pair of total orderings (x1, . . . , xp) of X and
(y1, . . . , yq) of Y such that for any i, i′, j, j′(1 ≤ i < i′ ≤
p, 1 ≤ j < j′ ≤ q), (xi, y j′ ) ∈ E and (xi′ , y j) ∈ E imply
(xi, y j) ∈ E and (xi′ , y j′ ) ∈ E. For a bigraph with a strong
ordering, the vertices of the bigraph are said to be strongly
ordered. It is shown in [18] that a bigraph G is a permutation
bigraph if and only if G has a strong ordering, and a strong
ordering of G can be obtained in O(n + m) time.

It is also known that a strong ordering of a permu-
tation bigraph G has the adjacency property: For every
x ∈ X[y ∈ Y], the vertices in ΓG(x) [ΓG(y)] are consecu-
tive. Here ΓG(v) is the set of vertices adjacent to v in G. If
no confusion arise, we will omit the index.

2.2 The Algorithm

Let G = (V, E) be a connected permutation bigraph with
a bipartition (X,Y) and a strong ordering (x1, . . . , xp) and
(y1, . . . , yq). Define that

Vi
j = {x1, . . . , xi, y1, . . . , y j}

for 1 ≤ i ≤ p, 1 ≤ j ≤ q, and G[Vi
j] is a subgraph of G

induced by Vi
j.

For convenience, we use S 1+S 2, S 1−S 2, S+x and S−x
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instead of S 1∪S 2, S 1\S 2, S∪{x} and S \{x}, respectively. We
also use max{S 1, S 2, . . . , S k} to denote S i with maximum
cardinality.

A cycle-free set (CFS) is the complement of an FVS in
a graph. Our algorithm computes a maximum CFS (MCFS)
instead of an MFVS.

Our algorithm applies a dynamic programming scheme
and computes the following for each (xi, y j) ∈ E.

Ai
j: an MCFS of G[Vi

j],
Bi

j: an MCFS of G[Vi
j] including xi and y j,

Ci
j: an MCFS of G[Vi

j] including xi and y j,
and excluding the vertices in Γ(xi) − y j,

Di
j: an MCFS of G[Vi

j] including xi and y j,
and excluding the vertices in Γ(y j) − xi.

Note that A0
0 = B0

0 = C0
0 = D0

0 = ∅, and Ap
q is an MCFS

of G.
Let l(i) and r(i) be the smallest and largest index of

a vertex in Γ(xi), respectively, and let l( j) and r( j) be the
smallest and largest index of a vertex in Γ(y j), respectively.
We use Ãi

j (1 ≤ i ≤ p, 1 ≤ j ≤ q) defined as follows.

Ãi
j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ai
j if (xi, y j) ∈ E,

Ai
r(i) + {yr(i)+1, . . . , y j} if r(i) < j,

Ar( j)
j + {xr( j)+1, . . . , xi} if r( j) < i.

Note that Ãi
j is an MCFS of G[Vi

j] even if (xi, y j) � E,
since if r(i) < j [r( j) < i] then yr(i)+1, . . . , y j [xr( j)+1, . . . , xi]
are isolated vertices in G[Vi

j].
We can compute Ai

j, B
i
j,C

i
j, and Di

j for all (xi, y j) ∈ E
in linear time by the following relationship among these data
structures.

Lemma 1. Ai
j = max{Bi

j, Ã
i1
j , Ã

i
j1
}, where i1 = i − 1 and

j1 = j − 1.

Proof. Consider the following four cases.
(1) If xi, y j ∈ Ai

j then Ai
j = Bi

j.

(2) If xi � Ai
j and y j ∈ Ai

j then Ai
j = Ãi1

j .

(3) If xi ∈ Ai
j and y j � Ai

j then Ai
j = Ãi

j1
.

(4) If xi, y j � Ai
j then Ai

j = max{Ãi1
j , Ã

i
j1
}. �

Lemma 2. Bi
j = max{Ci

j,D
i
j}.

Proof. Let

X1 = {xl( j), . . . , xi1 } and Y1 = {yl(i), . . . , y j1 }.
Notice that X1 ⊆ Γ(yi) and Y1 ⊆ Γ(xi). Suppose Bi

j ∩ X1 �
∅ and Bi

j ∩ Y1 � ∅. Let x̂ ∈ Bi
j ∩ X1 and ŷ ∈ Bi

j ∩ Y1.
Since (xi, ŷ), (x̂, y j) ∈ E, we have (x̂, ŷ) ∈ E by the definition
of the strong ordering. It follows that Bi

j contains a cycle
(x̂, ŷ, xi, yi), a contradiction. Thus Bi

j∩X1 = ∅ or Bi
j∩Y1 = ∅.

If Bi
j ∩ X1 = ∅ then we have Bi

j = Di
j. If Bi

j ∩ Y1 = ∅ then

we have Bi
j = Ci

j. �

We also have the following two lemmas, which are
proved in the next section.

Lemma 3. Ci
j is

1. Ãi1
j2
+ {xi, y j} if l( j) ≥ i1,

2. Ci1
j + xi if l( j) < i1 and (xi1 , y j2 ) � E,

3. max{Ãi2
j2
+ {xi, y j}, Ci1

j + xi, Di1
j2
+ {xi, y j}} if l( j) < i1,

(xi1 , y j2 ) ∈ E, and (xi2 , y j2 ) � E,

4. max{Ãi2
j2
+ {xi, y j}, Ci1

j + xi, Di1
j2
+ {xi, y j}, Bi2

j2
+

{xi, y j, xi1 }} if l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E,
and l(i1) = j2,

5. max{Ãi2
j2
+ {xi, y j}, Ci1

j + xi, Di1
j2
+ {xi, y j}} otherwise.

Here i2 = l( j) − 1 and j2 = l(i) − 1. �

Lemma 4. Di
j is

1. Ãi2
j1
+ {xi, y j} if l(i) ≥ j1,

2. Di
j1
+ y j if l(i) < j1 and (xi2 , y j1 ) � E,

3. max{Ãi2
j2
+ {xi, y j}, Di

j1
+ y j, Ci2

j1
+ {xi, y j}} if l(i) < j1,

(xi2 , y j1 ) ∈ E, and (xi2 , y j2 ) � E,

4. max{Ãi2
j2
+ {xi, y j}, Di

j1
+ y j, Ci2

j1
+ {xi, y j}, Bi2

j2
+

{xi, y j, y j1 }} if l(i) < j1, (xi2 , y j1 ) ∈ E, (xi2 , y j2 ) ∈ E,
and l( j1) = i2,

5. max{Ãi2
j2
+ {xi, y j}, Di

j1
+ y j, Ci2

j1
+ {xi, y j}} otherwise.

�

The lemmas above establish an algorithm using dy-
namic programming technique for computing Ai

j, B
i
j,C

i
j,

and Di
j for each edge (xi, y j) in an increasing order from

(x1, y1) to (xp, yq) so that Ai′
j′ , B

i′
j′ ,C

i′
j′ , and Di′

j′ for every i′, j′
(i′ + j′ < i + j) are available when computing the data for
edge (xi, y j). Our algorithm is shown in Fig. 1.

Theorem 1. Algorithm 1 solves MinFVS in O(n + m) time
for permutation bigraphs, where n and m are the number of
vertices and edges of a graph, respectively. �

2.3 Proof of Lemmas 3 and 4

We show a proof of Lemma 3. Lemma 4 can be proved by
similar arguments. We distinguish five cases.

Case 1. l( j) ≥ i1:

We show Ci
j = Ãi1

j2
+{xi, y j}. Notice that l( j) ≥ i1 implies that

Ãi1
j2
+ {xi, y j} is an MCFS of G[Vi

j] that contains no vertex in

Y1, since there exists at most one vertex in Vi1
j2

adjacent to xi

or y j.
Case 2. l( j) < i1 and (xi1 , y j2 ) � E:

We show Ci
j = Ci1

j + xi. Notice that l( j) < i1 implies
(xi1 , y j) ∈ E, and (xi1 , y j2 ) � E implies l(i1) = l(i). Thus
Ci1

j + xi is an MCFS of G[Vi
j] that contains no vertex in Y1.

Case 3. l( j) < i1, (xi1 , y j2 ) ∈ E, and (xi2 , y j2 ) � E:
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Fig. 1 Algorithm 1.

We show

Ci
j = max{Ãi2

j2
+ {xi, y j}, Ci1

j + xi, Di1
j2
+ {xi, y j}}

by a series of claims.
Let Ci

j(xi1 ) be an MCFS of G[Vi
j] that contains xi, y j,

and xi1 , and let Ci
j(xi1 , y j2 ) be an MCFS of G[Vi

j] that con-
tains xi, y j, xi1 , and y j2 . Let

Y2 = {yl(i1), . . . , y j2 }.
Note that Ci

j(xi1 ) contains no vertex in Y1, and Ci
j(xi1 , y j2 )

contains no vertex in X1 − xi1 , since the vertices are strongly
ordered.

Claim 1. If l( j) < i1 and (xi1 , y j2 ) ∈ E then

Ci
j = max{Ãi2

j2
+ {xi, y j}, Ci

j(xi1 )}.

Proof. Let x̂ ∈ X1 − xi1 , and Ĉ be an MCFS of G[Vi
j] that

contains xi and y j, and no vertex in Y1. If Ĉ contains x̂ but
not xi1 then Ĉ − x̂ + xi1 is also an MCFS of G[Vi

j], since
ΓG[Vi

j]
(xi1 ) ⊆ ΓG[Vi

j]
(x̂). Thus we have the claim. �

Claim 2. If l( j) < i1 and (xi1 , y j2 ) ∈ E then

Ci
j(xi1 ) = max{Ci1

j + xi, Ci
j(xi1 , y j2 )}.

Proof. The proof is similar to that of Claim 1, and is omit-
ted. �

Claim 3. If l( j) < i1, (xi1 , y j2 ) ∈ E, and (xi2 , y j2 ) � E then

Ci
j(xi1 , y j2 ) = Di1

j2
+ {xi, y j}.

Proof. Notice that (xi2 , y j2 ) � E implies l( j2) = l( j). Thus
Di1

j2
+ {xi, y j} is a CFS of G[Vi

j], since no vertex in Vi2
j2

is

adjacent to xi or y j. Notice that Di1
j2
+ {xi, y j} contains xi, y j,

xi1 , and y j2 . Notice also that any CFS containing xi, y j, xi1 ,
and y j2 contains no vertex in Vi

j −Vi2
j2
− {xi, y j, xi1 , y j2 }, since

the vertices are strongly ordered. Thus Di1
j2
+ {xi, y j} is an

MCFS of G[Vi
j] that contains xi, y j, xi1 , and y j2 . �

Case 4. l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, and
l(i1) = j2:
We show

Ci
j = max{Ãi2

j2
+ {xi, y j}, Ci1

j + xi,

Di1
j2
+ {xi, y j}, Bi2

j2
+ {xi, y j, xi1 }}

by the following two claims together with Claims 1 and 2.
Let Ci

j(xi1 , y j2 , xi2 ) be an MCFS of G[Vi
j] that contains

xi, y j, xi1 , y j2 , and xi2 . Let

X2 = {xl( j2), . . . , xi2 }.
Note that Ci

j(xi1 , y j2 , xi2 ) contains no vertex in Y2−y j2 , since
the vertices are strongly ordered.

Claim 4. If l( j) < i1, (xi1 , y j2 ) ∈ E, and (xi2 , y j2 ) ∈ E then

Ci
j(xi1 , y j2 ) = max{Di1

j2
+ {xi, y j}, Ci

j(xi1 , y j2 , xi2 )}.
Proof. The proof is similar to that of Claim 1, and is omit-
ted. �

Claim 5. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, and
l(i1) = j2 then

Ci
j(xi1 , y j2 , xi2 ) = Bi2

j2
+ {xi, y j, xi1 }.

Proof. Notice that l(i1) = j2 implies that Bi2
j2
+ {xi, y j, xi1 } is

a CFS of G[Vi
j], since no vertex in Vi2

j2
− y j2 is adjacent to xi,

y j, or xi1 . Notice that Bi2
j2
+{xi, y j, xi1 } contains xi, y j, xi1 , y j2 ,

and xi2 . Notice also that any CFS containing xi, y j, xi1 , y j2 ,
and xi2 contains no vertex in Vi

j − Vi2
j2
− {xi, y j, xi1 , y j2 , xi2 },

since the vertices are strongly ordered. Thus Bi2
j2
+{xi, y j, xi1 }

is an MCFS of G[Vi
j] that contains xi, y j, xi1 , y j2 , and xi2 . �

Now we consider the remaining case.
Case 5. l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, and

l(i1) < j2:
We show

Ci
j = max{Ãi2

j2
+ {xi, y j}, Ci1

j + xi, Di1
j2
+ {xi, y j}}

by the following claims together with Claims 1, 2, and 4.
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Let

i3 = l( j2) − 1, j3 = l(i1) − 1, and Y3 = {yl(i2), . . . , y j3 }.
Let Ci

j(xi1 , y j2 , xi2 , y j3 ) be an MCFS of G[Vi
j] that contains

xi, y j, xi1 , y j2 , xi2 , and y j3 . Note that Ci
j(xi1 , y j2 , xi2 , y j3 ) con-

tains no vertex in X2 − xi2 , since the vertices are strongly
ordered.

We distinguish two cases.
Case 5-1. (xi2 , y j3 ) � E:

Claim 6. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, l(i1) < j2,
and (xi2 , y j3 ) � E then

Ci
j(xi1 , y j2 , xi2 ) = Ci2

j2
+ {xi, y j, xi1 }.

Proof. Notice that (xi2 , y j3 ) � E implies l(i2) = l(i1). Thus
Ci2

j2
+ {xi, y j, xi1 } is a CFS of G[Vi

j], since no vertex in Vi2
j3

is adjacent to xi, y j, or xi1 . Notice that Ci2
j2
+ {xi, y j, xi1 }

contains xi, y j, xi1 , y j2 , and xi2 . Notice also that any CFS
containing xi, y j, xi1 , y j2 , and xi2 contains no vertex in
Vi

j − Vi2
j3
− {xi, y j, xi1 , y j2 , xi2 }, since the vertices are strongly

ordered. Thus Ci2
j2
+ {xi, y j, xi1 } is an MCFS of G[Vi

j] that
contains xi, y j, xi1 , y j2 , and xi2 . �

Claim 7. If l( j) < i1 then

|Ci1
j + xi| ≥ |Ci2

j2
+ {xi, y j, xi1 }|.

Proof. Let Ĉ = Ci2
j2
+ {xi, y j, xi1 }. There exists a vertex x̂ ∈

X1 such that x̂ � Ĉ, since l( j) < i1. Thus Ĉ − y j2 + x̂ contains
no vertex of Y1 + Y2, since the vertices are strongly ordered.
Thus Ĉ−y j2 + x̂ is a CFS of G[Vi

j], and |Ci1
j + xi| ≥ |Ĉ−y j2 +

x̂| = |Ci2
j2
+ {xi, y j, xi1 }| . �

Case 5-2. (xi2 , y j3 ) ∈ E:

Claim 8. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, l(i1) < j2,
and (xi2 , y j3 ) ∈ E then

Ci
j(xi1 , y j2 , xi2 ) = max{Ci2

j2
+ {xi, y j, xi1 },

Ci
j(xi1 , y j2 , xi2 , y j3 )}.

Proof. The proof is similar to that of Claim 1, and is omit-
ted. �

We further distinguish two cases.
Case 5-2-1. (xi3 , y j3 ) � E:

Claim 9. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, l(i1) < j2,
(xi2 , y j3 ) ∈ E, and (xi3 , y j3 ) � E then

Ci
j(xi1 , y j2 , xi2 , y j3 ) = Di2

j3
+ {xi, y j, xi1 , y j2 }.

Proof. Notice that (xi3 , y j3 ) � E implies l( j3) = l( j2).
Thus Di2

j3
+ {xi, y j, xi1 , y j2 } is a CFS of G[Vi

j], since no ver-

tex in Vi3
j3

is adjacent to xi, y j, xi1 , or y j2 . Notice that

Di2
j3
+ {xi, y j, xi1 , y j2 } contains xi, y j, xi1 , y j2 , xi2 , and y j3 . No-

tice also that any CFS containing xi, y j, xi1 , y j2 , xi2 , and y j3

contains no vertex in Vi
j −Vi3

j3
− {xi, y j, xi1 , y j2 , xi2 , y j2 }, since

the vertices are strongly ordered. Thus Di2
j3
+ {xi, y j, xi1 , y j2 }

is an MCFS of G[Vi
j] that contains xi, y j, xi1 , y j2 , xi2 , and

y j3 . �

Claim 10. If l(i1) < j2 then

|Di1
j2
+ {xi, y j}| ≥ |Di2

j3
+ {xi, y j, xi1 , y j2 }|.

Proof. Let D̂ = Di2
j3
+ {xi, y j, xi1 , y j2 }. There exists a vertex

ŷ ∈ Y2 such that ŷ � D̂, since l(i1) < j2. Thus D̂ − xi2 + ŷ
contains no vertex of X1 + X2 − xi1 , since the vertices are
strongly ordered. Thus we conclude that D̂ − xi2 + ŷ is a
CFS of G[Vi

j], and |Di1
j2
+ {xi, y j}| ≥ |D̂ − xi2 + ŷ| = |Di2

j3
+

{xi, y j, xi1 , y j2 }| . �

Case 5-2-2. (xi3 , y j3 ) ∈ E:
Let Ci

j(xi1 , y j2 , xi2 , y j3 , xi3 ) be an MCFS of G[Vi
j] that con-

tains xi, y j, xi1 , y j2 , xi2 , y j3 , and xi3 .

Claim 11. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, l(i1) < j2,
(xi2 , y j3 ) ∈ E, and (xi3 , y j3 ) ∈ E then

Ci
j(xi1 , y j2 , xi2 , y j3 ) = max{Di2

j3
+ {xi, y j, xi1 , y j2 },

Ci
j(xi1 , y j2 , xi2 , y j3 , xi3 )}.

Proof. The proof is similar to that of Claim 1, and is omit-
ted. �

Claim 12. If l( j) < i1, (xi1 , y j2 ) ∈ E, (xi2 , y j2 ) ∈ E, l(i1) < j2,
(xi2 , y j3 ) ∈ E, and (xi3 , y j3 ) ∈ E then

|Ci1
j + xi| ≥ |Ci

j(xi1 , y j2 , xi2 , y j3 , xi3 )|.
Proof. Let Ĉ = Ci

j(xi1 , y j2 , xi2 , y j3 , xi3 ). There exists a ver-

tex x̂ ∈ X1 such that x̂ � Ĉ, since l( j) < i1. Thus
Ĉ − y j2 + x̂ contains no vertex of Y1 + Y2 + Y3 − y j3 , since
the vertices are strongly ordered. Thus we conclude that
Ĉ − y j2 + x̂ is a CFS of G[Vi

j], and |Ci1
j + xi| ≥ |Ĉ − y j2 + x̂| =

|Ci
j(xi1 , y j2 , xi2 , y j3 , xi3 )| by the definition of Ci1

j . �

3. NP-Hardness for Grid Intersection Graphs

3.1 Grid Intersection Graphs

A bigraph G with a bipartition (X,Y) is a grid intersection
graph if X and Y correspond to sets of horizontal and verti-
cal line segments in the plain, respectively, such that for any
x ∈ X and y ∈ Y , (x, y) ∈ E(G) if and only if a line segment
corresponding to x and a line segment corresponding to y
intersect. The following is shown in [8].

Theorem I. Any planar bigraph is a grid intersection
graph. �

3.2 NP-Hardness

We consider a decision problem associated with MinFVS
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defined as follows.
FEEDBACK VERTEX SET

INSTANCE: Graph G, positive integer k.
QUESTION: Is there an FVS of size k in G?

It is known that FEEDBACK VERTEX SET is NP-
complete for planar graphs [11] and bigraphs [23]. We show
the following.

Theorem 2. FEEDBACK VERTEX SET is NP-complete
even for planar bigraphs.

Proof. Our proof is similar to that used in [11] and [23]. We
show a polynomial time reduction from VERTEX COVER
for planar graphs to FEEDBACK VERTEX SET for planar
bigraphs. It is well-known that VERTEX COVER is NP-
complete for planar graphs [7].

VERTEX COVER is defined as follows.
VERTEX COVER

INSTANCE: Graph H, positive integer h.
QUESTION: Is there a vertex cover of size h in H, i.e.,
a subset S ⊆ V(H) with |S | = h such that for each edge
(u, v) ∈ E at least one of u and v belongs to S ?

Let H be a planar graph as an instance of VERTEX
COVER. Let G be a graph obtained from H by replacing
each edge (u, v) by a cycle (u, xuv, v, yuv), where xuv and yuv

are new vertices. It is easy to see that G is a planar bigraph
and can be constructed in linear time.

It is also easy to see that H has a vertex cover of size h
if and only if G has an FVS of size h. �

From Theorems I and 2, we have the following.

Theorem 3. MinFVS is NP-hard for grid intersection
graphs. �

4. A Polynomial Time Algorithm for Graphs with
Maximum Degree at most Three

A vertex set S ⊆ V(G) of a graph G is a separating set if
the number of connected components of the subgraph of G
induced by V(G)\S is more than that of G. A vertex set S ⊆
V(G) of a graph G is an independent set if no two vertices
of S are adjacent. A maximum nonseparating independent
set (MNIS) is a maximum independent set that contains no
separating set. The maximum nonseparating independent
set problem (MaxNIS) is to find an MNIS in a given graph.

Like MinFVS, MaxNIS is also NP-hard even for planar
graphs with maximum degree at most 4 [6], while it can
be solved in O(n4) time for graphs with maximum degree
at most 3 [5], [20], where n is the number of vertices of a
graph.

A graph is said to be k-regular if the degree of every
vertex is k. Let η(G) and ν(G) be the number of vertices in
an MFVS and an MNIS of G, respectively. It is shown in
[20] that for any graph H with maximum degree at most 3,
we can construct 3-regular graphs G and G′ in linear time
such that η(G) = η(H) and ν(G′) = ν(H), respectively. It is

also shown that for a 3-regular graph G,

ν(G) + η(G) = μ(G).

Here μ(G) = m − n + c, where n, m, and c are the number
of vertices, edges, and connected components of G, respec-
tively. μ(G) is known as the nullity, cyclomatic number, and
first Betti number of G.

An embedding of a graph G in S k, a sphere with k han-
dles, is a continuous one-to-one mapping. The components
of S k−G are called regions. An embedding is said to be cel-
lular if each region is homeomorphic to an open disk. γM(G)
is the maximum-genus of G, which is the maximum value
of k such that G is cellular embeddable in S k. It is shown in
[9] that

γM(G) = ν(G),

for a 3-regular graph G. Moreover, it is known that comput-
ing γM(G) can be reduced to the cographic matroid parity
problem [3], which can be solved in O(nm log6 n) time [4],
[5], where n and m are the number of vertices and edges of
a graph, respectively. Thus we have the following.

Theorem 4. MinFVS and MaxNIS can be solved in
O(n2 log6 n) time for graphs with maximum degree at most 3.

�

5. Concluding Remarks

It should be noted that our linear time algorithm, Algo-
rithm 1, for permutation bigraphs is similar to an O(n2m)
time algorithm for convex graphs proposed in [13]. The dif-
ference in the time complexity is due to the strong ordering.

It is known that the class of grid intersection graphs is
a subclass of the boxicity-2 graphs [1], [8]. Thus, from The-
orem 3, we conclude that MinFVS is NP-hard for boxicity-2
graphs, settling an open question posed in [17].

A vertex cover S ⊆ V(G) of a connected graph G is a
connected vertex cover if the subgraph of G induced by S
is connected. A minimum connected vertex cover problem
(MinCVC) is to find a connected vertex cover with mini-
mum cardinality in a given graph. It is shown in [14], [21]
that MinCVC for quasi-wheels, which is a subclass of 3-
connected graphs, can be reduced to the problem to find an
MNIS that consists of only vertices of degree 3. It is also
shown that this problem can be reduced to the cographic
matroid parity problem in linear time by the reduction sim-
ilar to that shown in Sect. 4. It follows that MinCVC for
quasi-wheels can be solved in O(n2 log6 n) time, where n is
the number of vertices of a graph.

The time complexity of MinFVS for orthogonal ray
graphs and unit grid intersection graphs remains open.
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