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On Two Problems of Nano-PLA Design
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SUMMARY The logic mapping problem and the problem of find-
ing a largest sub-crossbar with no defects in a nano-crossbar with
nonprogrammable-crosspoint defects and disconnected-wire defects are
known to be NP-hard. This paper shows that for nano-crossbars with only
disconnected-wire defects, the former remains NP-hard, while the latter can
be solved in polynomial time.
key words: biclique problem, nano-crossbar, nano-PLA, orthogonal ray
graphs, subraph isomorphism problem

1. Introduction

Implementing a sum-of-product logic function in a conven-
tional programmable logic array (PLA) is a straightforward
task of arbitrarily assigning the literals and product terms to
the wires of the crossbar and programming the appropriate
crosspoints. However, in the case of nano-PLAs, this task is
not trivial because of imperfections in the nano-wire cross-
bar. Defects in nano-wire crossbar have been broadly clas-
sified into two types: nonprogrammable-crosspoint defects,
in which some crosspoints become unprogrammable, and
disconnected-wire defects, in which each horizontal nano-
wire may not be connected to all vertical nano-wires [5].
The problem of mapping a sum-of-product logic func-
tion onto a defective nano-crossbar with nonprogrammable-
crosspoint defects and disconnected-wire defects was first
considered by Rao, Orailoglu, and Karri [5]. They pro-
posed several heuristics since the problem is NP-hard. The
problem of finding a maximum defect-free sub-crossbar
in a nano-crossbar with nonprogrammable-crosspoint de-
fects and disconnected-wire defects was first investigated
by Tahoori [8]. Since the problem is also NP-hard, several
heuristics have been proposed [1], [8].

This paper considers the complexity of the problems
for nano-crossbars with only disconnected-wire defects.

1.1 LOGIC MAPPING

Let f be a logic function in a sum-of-product form. Let S be
a nano-crossbar with disconnected-wire defects. The prob-
lem of implementing f in S is formulated as LOGIC MAP-
PING, which is the problem of assigning the literals and
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product terms of f to nano-wires of S so that containment
relationships among the literals and product terms can be
represented by crosspoint connections in S . A graph model
of LOGIC MAPPING can be obtained as follows.

Let Lf be the set of literals of f , and Pf be the set of
product terms of f . A logic function graph G f for f is a
bipartite graph defined as follows: V(G f ) = Lf ∪ Pf , and
(Lf , Pf ) is a bipartition of G f ; vertices l ∈ Lf and p ∈ Pf

are connected by an edge if and only if literal l is contained
in product term p.

Let Wh be the set of horizontal nano-wires, and Wv be
the set of vertical nano-wires of S . A crossbar graph GS of
S is a bipartite graph defined as follows: V(GS ) = Wh ∪Wv

and (Wh,Wv) is a bipartition of GS ; vertices x ∈ Wh and
y ∈ Wv are connected by an edge if and only if nano-wires
x and y have a crosspoint. Then, LOGIC MAPPING can be
modeled as the subgraph isomorphism problem, which is to
find a subgraph of GS isomorphic to G f . Examples of a logic
function f , a defective crossbar S , and their corresponding
bipartite graphs G f and GS are shown in Fig. 1.

1.2 SUB-CROSSBAR

SUB-CROSSBAR is the problem of finding a defect-free
sub-crossbar consisting of given numbers of horizontal and
vertical wires within the nano-crossbar with disconnected
wire defects. SUB-CROSSBAR can be modeled as the Km,n-
biclique problem, which is to find a complete bipartite sub-
graph Km,n contained in a crossbar graph GS .

(a) Logic function f . (b) Logic function graph G f .

(c) Surviving crossbar S . (d) Surviving crossbar graph GS .

Fig. 1 An instance of LOGIC MAPPING and the corresponding graphs.
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Fig. 2 Nano-wires such as p and q are unusable.

1.3 Our Results

Although it is well known that both the subgraph isomor-
phism problem and the Km,n-biclique problem are NP-hard
for bipartite graphs [2], [3], the complexity of LOGIC MAP-
PING and SUB-CROSSBAR is not immediately clear since
the graphs representing surviving sub-crossbars are a special
kind of bipartite graph.

A bipartite graph G with a bipartition (U,V) is called an
orthogonal ray graph if there exist a set of non-intersecting
rays (half-lines) Ru, u ∈ U, parallel to the x-axis in the xy-
plane, and a set of non-intersecting rays Rv, v ∈ V , parallel
to the y-axis such that for any u ∈ U and v ∈ V , (u, v) ∈
E(G) if and only if Ru and Rv intersect. An orthogonal ray
graph G with a bipartition (U,V) is called a two-directional
orthogonal ray graph if Ru is a rightward ray {(x, bu) | x ≥
au} for each u ∈ U, and Rv is an upward ray {(av, y) | y ≥ bv}
for each v ∈ V , where aw and bw are real numbers for any
w ∈ U ∪ V .

Nano-wires such as p and q of a defective nano-
crossbar shown in Fig. 2 cannot be controlled as they do not
reach the boundary of the originally intended nano-crossbar.
Since we cannot use such nano-wires, a graph representing
a surviving sub-crossbar must be an orthogonal ray graph.

We show in Sect. 3 that LOGIC MAPPING is NP-hard
by showing that the subgraph isomorphism problem is NP-
hard even for orthogonal ray graphs. We show in Sect. 4 that
SUB-CROSSBAR can be solved in polynomial time pro-
vided that the vertices of the orthogonal ray graph represent-
ing a surviving sub-crossbar are ordered to reflect the top-to-
bottom order of horizontal nano-wires and left-to-right or-
der of vertical nano-wires. This is a quite natural condition.
We also show in Sect. 4 that in the case of two-directional
orthogonal ray graphs, the Km,n-biclique problem can be
solved in polynomial time without the requirement of such
an ordering, thereby providing a purely graph-theoretic so-
lution for an interesting subproblem of SUB-CROSSBAR.

2. Orthogonal Ray Graphs

In this section, we shall discuss some properties of two-
directional orthogonal ray graphs that will come in handy
in the later sections. Some of the lemmas and theorems in
this section also appear in our earlier work [7]. In order to
make the paper self-contained, we revisit them and also pro-
vide direct explicit proofs for some of them.

The 3-claw is a tree obtained from a complete bipartite

(a) 3-claw. (b) Rays.

Fig. 3 (a) The 3-claw. (b) Rays defined in the proof of Lemma 1.

graph K1,3 by replacing each edge with a path of length 3.
(See Fig, 3 (a).)

Lemma 1. The 3-claw is not a 2-directional orthogonal ray
graph.

Proof. Assume to the contrary that the 3-claw is a 2-
directional orthogonal ray graph. Let the vertices of the 3-
claw be named as in Fig. 3 (a). We shall refer to the endpoint
of the ray corresponding to a vertex v by (av, bv). Without
loss of generality, suppose Ru1 is a horizontal ray and that
Rv1 , Rv2 , Rv3 intersect with Ru1 such that Rv2 lies to the right
of Rv1 and to the left of Rv3 . (See Fig. 3 (b)). It is easy to
observe that bv3 > bv2 > bv1 , or else it is not possible to
define Ru2 , Ru3 , and Ru4 . Since Ru3 has to be defined such
that au3 > av1 and bu3 < bu1 , it is not possible to define Rv5

such that it intersects with Ru3 but not with Ru1 , a contradic-
tion. �

A path P in a tree T is called a spine of T if every vertex
of T is within distance two from at least one vertex of P.

Theorem 1. A tree T has a spine if and only if T contains
no 3-claw as a subtree.

Proof. The necessity is obvious. To prove the sufficiency,
assume T contains no 3-claw. Let P be a longest path in T ,
and let V(P) = {v1, v2, . . . , vp} and (vi, vi+1) ∈ E(P), 1 ≤ i ≤
p − 1. We claim that P is a spine. We distinguish two cases:
|V(P)| ≤ 6 and |V(P)| > 6.

For the former, it is easy to see that P is a spine because
if there is a vertex v � V(P) which is at a distance more than
two from any vertex in P, then the assumption that P is a
longest path is contradicted.

We next take the case of |V(P)| > 6. Assume P is not
a spine. Let F be a forest obtained from T by deleting the
edges in E(P). Let Ti be a tree in F containing vi, 1 ≤
i ≤ p. Since P is a longest path in T , T1 consists of only
one vertex, v1, and Tp consists of only one vertex, vp. Also
all vertices in T2 and Tp−1 are within distance one from v2

and vp−1, respectively; and all vertices in T3 and Tp−2 are
within distance two from v3 and vp−2, respectively. Since
we assumed that P is not a spine, there exists an integer j
(4 ≤ j ≤ p − 3) such that T j contains a vertex wj whose
distance from v j is three. Let P′ be the path from v j to wj.
Then the subgraph of T induced by the vertices in {vi | j−3 ≤
i ≤ j+3}∪V(P′) is a 3-claw. This contradicts the assumption
that T contains no 3-claw as a subtree, and therefore P is a
spine. �
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Fig. 4 Rays corresponding to the vertices of 3-claw-free tree T .

Theorem 2. A tree T is a 2-directional orthogonal ray tree
if and only if T contains no 3-claw as a subtree.

Proof. The necessity follows from Lemma 1. We will show
the sufficiency. Assume T contains no 3-claw as a sub-
tree. Then from Theorem 1, T contains a spine P. Let
V(P) = {v1, v2, . . . , vp}, and (vi, vi+1) ∈ E(P), 1 ≤ i ≤ p − 1.
Corresponding to each vertex vi in P, define ray Rvi = {(i, y) |
y ≥ i−1} if i is odd, and define ray Rvi = {(x, i) | x ≥ i−1} if
i is even. Let F be a forest obtained from T by deleting the
edges in E(P). Let Ti be a tree in T containing vi, 1 ≤ i ≤ p.
Consider Ti to be rooted at vi. Let wi1,wi2, . . . ,wiq(i) be the
children of vi in Ti, where q(i) is the number of children of
vi in Ti. Let zi j1, zi j2, . . . , zi jr(i j) be the children of wi j in Ti,
where r(i j) is the number of children of wi j in Ti. The rays
corresponding to wi j and zi jk, (1 ≤ i ≤ p, 1 ≤ j ≤ q(i),
1 ≤ k ≤ r(i j)) can be placed in the region for Ti as shown in
Fig. 4. Thus T is a 2-directional orthogonal ray graph. �

Lemma 2. A cycle C2m of length 2m is a two-directional
orthogonal ray graph if and only if m = 2.

Proof. It is easy to see that C4 is a 2-directional orthogonal
ray graph.

We show that C2m is not a 2-directional orthogonal ray
graph for any m ≥ 3. Suppose to the contrary that C2m

is a 2-directional orthogonal ray graph for some m ≥ 3.
Let V(C2m) = {0, 1, . . . , 2m − 1} and E(C2m) = {(i, i + 1
(mod 2m)) | 0 ≤ i ≤ 2m − 1}. Suppose without loss of gen-
erality that R0 = {(a0, y) | y ≥ b0}, for some real numbers a0

and b0. Since (0, 1) ∈ E(C2m), R1 intersects with R0 at some
point. Similarly, R2 intersects with R1 at some other point.
We distinguish two cases.

Case 1 When R2 intersects with R1 such that R2 is to the
left of R0: Then R3 must intersect with R2 such that R3 lies
below the endpoint of R0. Similarly R4 must intersect with
R3 such that R4 lies to the left of the endpoint of R1. Contin-
uing in this manner, Ri (5 ≤ i ≤ 2m − 1) must lie below(to
the left of) the endpoint of Ri−3 for odd(even) i. Therefore
R2m−1 lies in the region below the endpoint of R4. However,

R0 is in the region right of R2 and above R3, making it im-
possible for R0 to intersect with R2m−1 without intersecting
with R3,R5, . . . , R2m−3, a contradiction.

Case 2 When R2 intersects with R1 such that R2 is to
the right of R0: We further distinguish two cases.

Case 2-1 When R3 intersects with R2 such that R3 is
below R1: Then R4 must lie to the left of the endpoint of
R1. This confines R0 within the region left of R2 and above
R3, making it impossible for ray R2m−1 to intersect with R0

without intersecting with R2, a contradiction.
Case 2-2 When R3 intersects with R2 such that R3 is

above R1: This case may be further broken down into two
cases depending on whether R4 is to the left of R2 or right
of R2. In the former case, R4 gets confined within the re-
gion left of R2 and above R1 making it impossible for R5 to
intersect with R4 without intersecting with R2, a contradic-
tion. In the latter case, R5, . . . , R2m−1 must lie in the region
right of R2 and above R3, making it impossible for R2m−1 to
intersect with R0 without intersecting with R2,R4, . . . ,R2m−2,
a contradiction.

Thus we conclude that C2m is not a 2-directional or-
thogonal ray graph for any m ≥ 3. �

A bipartite graph is chordal if it contains no induced
cycles of length greater than 4. A tree is chordal, by defini-
tion. Thus, by Lemma 2 and Theorem 2, we have:

Theorem 3. A class of two-directional orthogonal ray
graphs is a proper subset of the class of chordal bipartite
graphs. �

3. Intractability of LOGIC MAPPING

We show in this section the following.

Theorem 4. LOGIC MAPPING is NP-hard.

Theorem 4 follows from Theorem 5 below. A decision
problem associated with the subgraph isomorphism problem
is defined as follows:

SUBGRAPH ISOMORPHISM

INSTANCE: Graphs H and G.

QUESTION: Does G contain a subgraph isomorphic
to H, that is, does there exist a one-to-one mapping
φ : V(H) → V(G) such that if (u, v) ∈ E(H) then
(φ(u), φ(v)) ∈ E(G)?

Theorem 5. SUBGRAPH ISOMORPHISM is NP-complete
even if G is a 2-directional orthogonal ray tree and H is a
forest.

Proof. It is easy to see that the problem is in NP. We show
a polynomial-time reduction from 3-PARTITION, which
has been shown to be strongly NP-complete in [2]. 3-
PARTITION is defined as follows.
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(a) G.

(b) H.

Fig. 5 Two-directional orthogonal ray tree G and forest H corresponding to the instance of 3-
PARTITION.

3-PARTITION

INSTANCE: A finite set A of 3m elements, a bound B ∈
Z
+, and a size s(a) ∈ Z+ for each a ∈ A, such that each

s(a) satisfies B/4 < s(a) < B/2 and such that
∑

a∈A s(a) =
mB.

QUESTION: Does A have a 3-partition, that is, can A
be partitioned into m disjoint sets S 1, S 2, . . . , S m such
that, for 1 ≤ i ≤ m,

∑
a∈S i

s(a) = B?

Let C1,C2, . . . ,Cm be B-vertex paths such that for each i
(1 ≤ i ≤ m), V(Ci) = {vi, j | 1 ≤ j ≤ B} and E(Ci) =
{(vi, j, vi,( j+1)) | 1 ≤ j ≤ B − 1}. Let T1,T2, . . . ,Tm−1

be complete binary trees of height two rooted at vertices
r1, r2, . . . , rm−1, respectively. Let G be the graph defined as

V(G) =

⎛⎜⎜⎜⎜⎜⎝
m⋃

i=1

V(Ci)

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎜⎝

m−1⋃

i=1

V(Ti)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

E(G) =

⎛⎜⎜⎜⎜⎜⎝
m⋃

i=1

E(Ci)

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎜⎝

m−1⋃

i=1

E(Ti)

⎞⎟⎟⎟⎟⎟⎟⎠ ∪

{(ri, vi,B), (ri, v(i+1),1) | 1 ≤ i ≤ m − 1}.
(See Fig. 5 (a).) Since the path in G from v1,1 to vm,B is a
spine of G, it follows from Theorems 1 and 2 that G is a two-
directional orthogonal ray tree. Let H be a forest consisting
of m−1 complete binary trees of height two T ′1,T

′
2, . . . ,T

′
m−1,

and 3m paths P1, P2, . . . P3m, each Pj corresponding to ele-
ment a j of A and having s(a j) vertices. (See Fig. 5 (b).) G
and H can be constructed in time polynomial in m and B.

We next prove that A has a 3-partition if and only if G
contains a subgraph isomorphic to H.

Suppose first that A can be partitioned into m disjoint
subsets S 1, S 2, . . . , S m such that for each i (1 ≤ i ≤ m),∑

a∈S i
s(a) = B. An isomorphism from H to a subgraph of

G can be obtained as follows. Since each path Ci contains
B vertices, we can map the paths of H corresponding to the
elements of S i to the path Ci in G. Each T ′i in H can be
mapped to Ti in G. It is easy to see that this is indeed an
isomorphism from H to a subgraph of G.

Next suppose that H is isomorphic to a subgraph of G.

Each T ′j(1 ≤ j ≤ m − 1) in H contains two vertices which
have degree three and are at a distance two from each other.
These vertices must be mapped to the children of vertex ri

of Ti for some i (1 ≤ i ≤ m − 1). Therefore, each T ′j in
H must be mapped to some Ti in G. This means that paths
P1, P2, . . . , P3m in H are mapped to paths C1,C2, . . . ,Cm in
G. For 1 ≤ i ≤ m, let S i be the set of elements of A corre-
sponding to the paths of H mapped to Ci. Since Ci has B ver-
tices,

∑
a∈S i

s(a) ≤ B, for all i (1 ≤ i ≤ m). Moreover, since
the instance of 3-PARTITION satisfies

∑
a∈A s(a) = mB, we

can conclude that
∑

a∈S i
s(a) = B for all i (1 ≤ i ≤ m).

Therefore A has a 3-partition. �

4. Tractability of SQUARE SUB-CROSSBAR

Let H be a set of non-intersecting horizontal rays, and let
V be a set of non-intersecting vertical rays. Let Kh ⊆ H
and Kv ⊆ V. Kh ∪Kv is called a |Kh| × |Kv| sub-crossbar of
H ∪ V if each X ∈ Kh intersects every Y ∈ Kv. For a ray
R, we shall denote the x and y-coordinates of its endpoints
by x(R) and y(R), respectively. We associate withH ∪V, a
sequence XHV of the rays of H ∪ V sorted in the increas-
ing order of x-coordinate values of the end points – ties are
broken such that if a horizontal ray and a vertical ray have
the same x-coordinate value, then the horizontal ray appears
before the vertical ray in the sequence. We also associate
withH∪V, a sequence YHV of the rays ofH∪V sorted in
the increasing order of y-coordinate values of the end points
– ties are broken such that if a vertical ray and a horizontal
ray have the same y-coordinate value, then the vertical ray
appears before the horizontal ray in the sequence.

Our earlier observation that a nano-wire crossbar can
be represented by a set of orthogonal rays allows us to use
the terms “nano-wires” and “rays” interchangeably. Then
an alternate, equivalent definition of SUB-CROSSBAR is
as follows:

SUB-CROSSBAR

INSTANCE: A set H of horizontal rays, a set V of ver-
tical rays, and positive integers kh and kv.
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Fig. 6 Algorithm 1.

QUESTION: Show a kh × kv sub-crossbar of H ∪ V, if
any.

An interesting subproblem of SUB-CROSSBAR in which
the instance is restricted to rightward and upward rays can
be defined as follows:

2-SUB-CROSSBAR

INSTANCE: A set R of rightward rays, a set U of up-
ward rays, and positive integers kr and ku.

QUESTION: Show a kr × ku sub-crossbar of R ∪ U, if
any.

In the following subsections, we will discuss algo-
rithms to solve these problems.

4.1 Algorithms for 2-SUB-CROSSBAR

Kloks and Kratsch [4] showed the following.

Lemma 3. [4] A chordal bipartite graph with n vertices
and m edges contains at most m maximal complete bipartite
subgraphs which can be enumerated in O(min(m log n, n2))
time. �

From Lemma 3 and Theorem 3, we have:

Lemma 4. The Km,n biclique problem can be solved in
O(min(m log n, n2)) time for n-vertex, m-edge 2-directional
orthogonal ray graphs. �

Since the graph representing R ∪ U is a 2-directional
orthogonal ray graph, we have the following theorem from
the above lemma.

Theorem 6. 2-SUB-CROSSBAR can be solved in O(min
(m log n, n2)) time for a crossbar, where n = |R| + |U| and m
is the number of crosspoints. �

This is a purely graph theoretic approach, which as-
sumes no information about the endpoints of rays. Taka-
hashi [9] showed that a computational geometry approach
utilizing the coordinates of the endpoints yields a faster al-
gorithm of time complexity O(n log n). We present Algo-
rithm 1 (See Fig. 6), which is a linear-time algorithm to
solve 2-SUB-CROSSBAR given that sequences XRU and
YRU are provided. Since XRU and YRU can be computed
in O(n log n) time, Algorithm 1 can be easily extended to
solve 2-SUB-CROSSBAR in O(n log n) time. However, the
main purpose of introducing Algorithm 1 is to use it as a
subroutine to solve SUB-CROSSBAR, as shown in the next
subsection.

A brief description of Algorithm 1 follows. Algo-
rithm 1 begins with some preprocessing operations, in
which the sequences R, U and the sets uEnd(i)(1 ≤ i ≤ |R|),
rEnd( j) (1 ≤ j ≤ |U|) are computed (see Steps 1 and 2).
To search for a kr × ku sub-crossbar, Algorithm 1 uses two
sweep lines to perform a left-to-right, bottom-to-top scan
of the rays. The horizontal sweep line stops at R1,R2, . . .,
and it is represented by variable h, which indicates that it is
at the position of ray Rh. The vertical sweep line stops at
U1,U2, . . ., and it is represented by variable v, which indi-
cates that it is at the position of ray Uv. At each stop, the
following processes are carried out. The number rCross of
horizontal rays that cross the vertical sweep line and lie in
the area above, and including, the horizontal sweep line is
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Fig. 7 An example showing HHV , VHV (left figure) and H′HV , V′HV (right figure) for a pair
of intersecting rays H and V . In this example, HHV = {H, I, J,K};VHV = {V,W, X, Y};H′HV ={H′, I′, J′,K′};V′HV = {V′,W′, X′,Y′}.

Fig. 8 Algorithm 2.

computed (Step 4). Similarly, the number uCross of vertical
rays that cross the horizontal sweep line and lie in the area
right of, and including, the vertical sweep line, is computed
(Step 5). Evidently, if rCross ≥ kr and uCross ≥ ku, then
there exists a kr×ku subcrossbar, which is output (Step 6). If
rCross < kr, then ray Uv is not a part of any kr×ku subcross-
bar, and therefore it is removed from further consideration
by updating the appropriate set uEnd(i) and uCross (Step 7).
The vertical sweep line then moves one step right to the po-
sition of ray Uv+1. If uCross < ku, identical operations are
carried out for the horizontal case (Step 8).

Let n = |R|+ |U|. The items in Steps 1 and 2 can be ob-
tained from the given sequences XRU and YRU in O(n) time.
Each operation in Steps 3 through 8 can be performed in
O(1) time. Steps 4 through 9 are repeated until there are less
than ku vertical rays or less than kr horizontal rays remain-
ing to be scanned, which is O(n) times. Thus the algorithm
is linear in the order of the total number of rays. The cor-
rectness of Algorithm 1 is obvious, and therefore we have
the following theorem.

Theorem 7. Algorithm 1 solves 2-SUB-CROSSBAR in
O(|R|+ |U|) time, provided that the sequences XRU and YRU
are given. �

4.2 Algorithm for SUB-CROSSBAR

LetH be a set of non-intersecting horizontal rays andV be
a set of non-intersecting vertical rays. For two rays H ∈ H
and V ∈ V which intersect, say at point (px, py), define

HHV = {R | R ∈ H ,R intersects V, and y(R) ≤ py}.
Similarly, define

VHV = {R | R ∈ V,R intersects H, and x(R) ≤ px}.
Let B be the bottommost ray in HHV , and let L be the left-
most ray inVHV . For each ray R ∈ HHV , define ray R′ such
that if R is a rightward ray, R′ = R; and if R is a leftward ray,
R′ is a rightward ray with x(R′) = x(L) and y(R′) = y(R).
And for each ray R ∈ VHV , define ray R′ such that if R is
an upward ray, R′ = R; and if R is a downward ray, R′ is
an upward ray with x(R′) = x(R) and y(R′) = y(B). Finally,
define

H′HV = {R′ | R ∈ HHV }
and

V′HV = {R′ | R ∈ VHV }.
Figure 7 shows an example ofHHV ,VHV ,H′HV , andV′HV .

The following observation is obvious from the defini-
tions above.

Observation 1. Two rays in H′HV ∪ V′HV intersect if and
only if their corresponding rays inHHV∪VHV intersect. �

Observation 2. H ∪ V contains a kh × kv sub-crossbar if
and only if there exists a pair of intersecting rays H ∈ H
and V ∈ V such that H′HV ∪ V′HV contains a kh × kv sub-
crossbar.
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Proof. The sufficiency is immediate from Observation 1.
To see the necessity, set H and V to be the topmost and
rightmost rays, respectively of a kh × kv sub-crossbar of
H ∪V. �

SinceH′HV contains only rightward rays andV′HV con-
tains only upward rays, we can use Algorithm 1 to find a
kh × kv sub-crossbar in H′HV ∪ V′HV . Algorithm 2 which
solves SUB-CROSSBAR is shown in Fig. 8. It exhaustively
checks all pairs of intersecting rays to determine if there ex-
ists a pair H ∈ H and V ∈ V such thatH′HV ∪V′HV contains
a kh × kv sub-crossbar.

Let n = |H|+|V|. Step 1 can be performed in O(n log n)
time. Step 2 takes O(n2) time. The items in Step 4 can
be computed in O(n) time from the sequences obtained in
Step 1. Step 5 takes O(n) time. Steps 3 through 6 are re-
peated O(n2) time. Then it follows from Observation 2 and
Theorem 7 that:

Theorem 8. Algorithm 2 solves SUB-CROSSBAR in
O((|H| + |V|)3) time. �

5. Concluding Remarks

The complexity of SUBGRAPH ISOMORPHISM in which
G is a 2-directional orthogonal ray graph and H is a con-
nected graph is open. Note that if both G and H are
trees, then SUBGRAPH ISOMORPHISM is polynomial-
time solvable [2]. Reducing the time complexity of SUB-
CROSSBAR is another interesting open question.

A preliminary version of this paper has appeared in [6].
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