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Abstract: When concrete is used for construction in cold-temperature regions, cold-resistant
accelerators based on calcium nitrite (Ca(NO2)2) and calcium nitrate (Ca(NO3)2) are added to prevent
early freezing damage. Although cold-resistant accelerators increase the early compressive strength
and prevent early freezing damage by promoting cement hydration, the strength enhancement effect
owing to the formation of such hydrates has not been evaluated quantitatively thus far. This study
covers various types of analysis to understand the relationship between cement hydrate formation
behavior and strength development upon the addition of varying amounts of nitrite-based accelerator.
We find that the early compressive strength is enhanced by the addition of nitrite-based accelerator
via the promotion of the relative production of monosulfate and C-S-H in the early age. However,
the development of compressive strength decreases with an increase in the curing age. Furthermore,
we find that the promotion of hydration reactions at an early age with the addition of nitrite-based
accelerator can affect the formation ratio of each hydrate at a late age. We believe our findings can
significantly contribute to developments in concrete application and allied fields.

Keywords: frost-resistant accelerator; calcium nitrite; nitrite based accelerator; hydrate formation;
concrete strength; early compressive strength

1. Introduction

With regard to the use of concrete for construction in cold-weather countries, it is noteworthy
that early frost damage caused by the freezing of water in concrete during the early stages may cause
serious performance decline in quality of concrete [1,2]. Thus, it becomes necessary to control the
temperature by heating the concrete for the period over which it reaches the “required early strength”
to prevent initial frost damage [3]. However, in severely low-temperature environments or under
conditions wherein it is difficult to set up a heater or a temporary tent owing to factors such as steep
working slopes and narrow workplaces, a simple sheet curing method involving the addition of a
frost-resistant accelerator is adopted [4–7].

Frost-resistant accelerators are admixtures that prevent early frost damage by promoting
the hydration reaction of cement. They serve to lower the freezing temperature of water in
the concrete and further accelerate concrete hardening, thereby increasing the early compressive
strength [8]. In particular, nitrite–nitrate-based curing accelerators such as calcium nitrite (Ca(NO2)2)
and calcium nitrate (Ca(NO3)2) are widely used as the main components of frost-resistant
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accelerators [9]. Nitrite–nitrate-based frost-resistant accelerators promote the hydration of tricalcium
aluminate (C3A) and increase the amount of ettringite (AFt; 3CaO·Al2O3·3CaSO4·32H2O) and
monosulfate (AFm; 3CaO·Al2O3·CaSO4·12H2O). Furthermore, it is known that hydrates such as
nitrite hydrates (nitrite-AFm; 3CaO·Al2O3·Ca(NO2)2·xH2O) and nitrate hydrates (nitrate-AFm;
3CaO·Al2O3·Ca(NO3)2·xH2O) are formed through reactions between C3A and the NO2

− and NO3
−

ions of the nitrite–nitrate-based frost-resistant accelerators [7,10,11]. Each hydrate that is generated
enhances the early compressive strength and reduces early frost damage [1,9].

In regard to strength enhancement, Akama studied the development of a high-performance
frost-resistant accelerator based on a large amount of calcium nitrite, whose addition can ensure
sufficient hardening promotion and workability even at severely low temperatures [1]. They reported
that such an accelerator is effective in early strength development relative to existing cold-resistance
promoters. However, in other studies, it has been reported that the addition of a large amount of calcium
nitrite is effective in improving the early strength, but the strength is lowered in the later ages [1,2,8,9].
There have been many similar studies on the effects of nitrite–nitrate-based accelerators on early
strength development in low-temperature environments; however, in all these studies, the strength
enhancement effect owing to the generation of such hydrates has not been evaluated quantitatively.
Thus, it becomes necessary to gain an understanding of the effects of early-generated hydrates on the
late-age concrete strength.

In this study, considering instabilities such as the decrease in the late-age strength of concrete
owing to the addition of calcium nitrite, we examined the concrete strength behavior from the viewpoint
of hydrate generation. We observed the formation behavior of hydrates from an early age to a late age
under low-temperature curing conditions upon adding calcium nitrite as a nitrite-based frost-resistant
accelerator. Thermogravimetric-differential thermal analyses and differential thermal gravimetry
(TG/DTG), X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (NMR) were used
to quantitatively evaluate the hydration products. In addition, the relationship between hydrate
formation and the development of the compressive strength characteristic was analyzed through the
measurement of compressive strength.

2. Experimental

2.1. Materials and Procedures

For our experiments, all specimens were prepared at a water/cement ratio of W/C = 0.5 using
white Portland cement (wPC, density: 3.07 g/cm3, blaine value: 3830 cm2/g). Table 1 lists the relevant
experimental parameters. Calcium nitrite and small amount of calcium nitrate (CN, Ca(NO2)2 about
30 wt% and Ca(NO3)2 about 3 wt% aqueous solution, Nissan chemical corporation, Tokyo, Japan)
were used as the nitrite-based frost-resistant accelerator. Table 2 lists the properties of CN used in
this study. In order to confirm the change in the hydrate formed as a function of the amount of CN
added, the specimens were prepared with different amounts of CN (0 wt%, 4 wt%, 8 wt%; wt% to
cement weight) [7]. All specimens were cured under sealed conditions at 10 ◦C [3]. After curing,
the specimens were finely ground to powder, immersed in acetone, and filtered with the use of a
Buchner funnel. The chemical experiments were conducted over various curing ages (1 h to 56 d).
In this study, “early age” was defined as “within 24 h after mixing”. The compressive strength of
mortar was measured, and the relationship between the hydrate formation behavior and strength
development was studied. The compressive strength was measured at various curing ages (1 d to 56 d).
The fine-aggregate (density: 2.68 g/cm3, water absorption ratio: 2.17 wt%)-to-cement ratio of mortar
was set to 2.5:1, and the size of each mortar cylinder specimen was diameter 5 cm × height 10 cm.

2.2. Compressive Strength

The compressive strength of the mortar was measured (Industrial Series DX600, Instron Japan,
Kawasaki, Japan) in accordance with JIS-A-1108 [12] at each age (1, 3, 7, 14, 28, and 56 days). The load
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was uniformly applied to such a degree that no impact was applied. The loading speed was set to
0.6 ± 0.4 N/mm2 per second. The compressive strength was measured five times per each sample level,
and the results of compressive strength are represented by three average values excluding minimum
and maximum values.

Table 1. Specimen parameters utilized in experimental design.

Type Index CN Content
[Cement × wt%]

W/C
wt%

Curing
Condition

Curing Age
h: hour, d: day

Analysis
Method

Cement
paste

CN0
CN4
CN8

0
4
8

50 +10 ◦C
Sealed

1 h
6 h

12 h

1 d
3 d

14 d
28 d
56 d

TG/DTG
XRD

27Al MAS NMR
29Si MAS NMR

Mortar -

1 d
3 d

14 d
28 d
56 d

Compressive
Strength

Note: CN: nitrite-based frost-resistant accelerator (aqueous solution); CN0: Mixing amount of CN = 0%; CN4:
Mixing amount of CN = 4%; CN8: Mixing amount of CN = 8%.

Table 2. Properties of the nitrite-based frost-resistant accelerator.

Component Component Ratio Specific Gravity of Aqueous Solution pH of Aqueous Solution

Ca(NO2)2 31.84 wt%
1.308 10.5

Ca(NO3)2 3.17 wt%

2.3. Thermogravimetric/Differential Thermal Gravimetry

TG/DTG (STA 7200, Hitachi, Tokyo, Japan) was performed on samples to examine the thermal
decomposition, in a nitrogen atmosphere, from 20 to 1000 ◦C at a heating rate of 20 ◦C/min.
All measurements were performed with 10 mg of powder; the quantitative of Ca(OH)2 in a sample
was calculated from weight loss measured from the TG curve around 400 to 480 ◦C.

2.4. X-Ray Diffraction

XRD was performed to identify the changes of crystalline phase. A Rigaku-SmartLab powder
diffractometer (Tokyo, Japan) was used for measurements. The XRD conditions were as follows: Cu-Kα
radiation resource; 40 kV; 30 mA; scan range, 3 to 70◦/2θ; scan speed, 2◦/min; step width, 0.02◦/step.

2.5. Solid-State Nuclear Magnetic Resonance

27Al NMR spectra were collected at 208.6 MHz on JEOL ECA-800 (magnetic field 18.8T, Tokyo,
Japan) using a 3.2 mmϕ probe. The 27Al NMR experiments employed a spinning speed at 20 kHz,
a pulse width of 0.9 µs, a relaxation delay of 0.5 s, and a total of 1280 scans. 29Si NMR spectra were
collected at 99.4 MHz on JEOL ECA-500 (magnetic field 11.75T, Tokyo, Japan) using a 3.2 mmϕ probe.
The 29Si NMR experiments employed a spinning speed at 10 kHz, a pulse width of 3.6 µs, a relaxation
delay of 15 s and a total of 2500 scans. Analysis of the solid-state NMR spectra were performed on a
JEOL Delta NMR processing and control software (Delta 5.3.1).

3. Results and Analysis

3.1. Compressive Strength

Figure 1a,b show the compressive strength results of the mortar specimens cured at 10 ◦C for
each amount of CN added. As per the Japanese standard, the early (1 d) compressive strength
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for preventing early frost damage is set to more than 5 N/mm2 [3]. The 1-d compressive strength
results in the experiment were recorded as 3.8 N/mm2 for CN0, 5.2 N/mm2 for CN4, and 7.6 N/mm2

for CN8, indicating a proportional correlation between the CN amount and the early compressive
strength. This proportional tendency appears up to 28 d (CN0: 40.6 N/mm2, CN4: 41.1 N/mm2, CN8:
45.2 N/mm2), and a subsequent reversal in the compressive strength with increasing CN addition
occurs at 56 d (CN0: 50.7 N/mm2, CN4: 51.9 N/mm2, CN8: 50.3 N/mm2), but the final difference
in strength between the samples is not significant. Under the 10 ◦C curing condition, the increase
in the early strength with increase in the CN amount can be attributed to the increase in hydration
products owing to the promotion of the reactions of C3A, C3S, and βC2S, as is known from previous
studies [9,11,13]. In this study, we further analyze this relationship between hydrate formation and
compressive strength development with the aid of experimental results. In addition, we note here that,
under the experimental conditions (amount of CN and curing temperature), there was no significant
decrease in the compressive strength at a late age (28 d, 56 d).
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Figure 1. Mortar specimen compressive strength (a) on days 1 and 3, and (b) at all ages as a function of
calcium nitrite amount.

3.2. Hydrate Formation Behavior

3.2.1. TG/DTG

Figure 2 shows an example of the TG/DTG graph as a function of the amount of CN added at
curing ages of 1 h, 1 d, and 56 d. We note that the first significant difference in the results as a function
of CN addition lies in the decomposition between 200 and 300 ◦C. In the case of the specimens to
which CN was added, a peak of around 260 ◦C is observed for the curing age of 1 h. As per the
literature, this peak can be attributed to synthetic nitrite-AFm, which is formed by the decomposition
of hydroxyl and nitrite groups [11,14]. In the case of CN4, the peak is observed for the curing age of
1 d, but not for 3 d. However, in case of CN8, the peak is observed at all ages, and it shows a tendency
to increase with increase in the curing age. In addition, the decomposition peak of AFt and AFm near
100 ◦C can also be confirmed to increase with increase in the CN amount for 1 h, and the difference
becomes larger at 1 d [15]. With regard to the 1 d and 56 d results at ~100 ◦C, we speculate that C-S-H
decomposition is also involved [15]. The results of the decomposition of Ca(OH)2 in the temperature
range of 400–480 ◦C show a peak at a relatively low temperature (370–420 ◦C) for the specimens in the
aging range of 1 h to 12 h, and a peak at ~390–450 ◦C for the specimens over the curing ages of 1 d to
56 d. Based on the quantitative evaluation of Ca(OH)2, we can observe a slight correlation between the
amount of CN addition and Ca(OH)2 production for the curing age of 6 h to 12 h (6 h; CN0: 2.7 wt%,
CN4: 3.9 wt%, CN8: 6.3 wt%, 12 h; CN0: 5.3 wt%, CN4: 6.2 wt%, CN8: 9.3 wt%), but the difference
in Ca(OH)2 production gradually decreases over the curing age of 1 d to 56 d (1 d; CN0: 10.9 wt%,
CN4: 13.7 wt%, CN8: 13.7 wt%, 56 d; CN0: 20.4 wt%, CN4: 22.0 wt%, CN8: 21.9 wt%). Based on these
results, we posit that CN addition not only promotes the reaction of C3A but also the initial generation



Materials 2019, 12, 3936 5 of 11

(6 h to 12 h) of Ca(OH)2; however, there is no significant difference in the Ca(OH)2 amount produced
for all ages [9,11,13].

In the range of 20–1000 ◦C, each specimen shows similar water loss for all ages (1 h: ~6 wt%, 1 d:
~17 wt%, 56 d: ~ 25 wt%). This result is thought to negligibly affect the total bonding water at later ages,
even if the production of nitrite-AFm and AFt increases in the early age with CN addition. However,
this result indicates that the amount of binding of C-S-H gel and other hydrates may be relatively
reduced under the influence of the large amounts of nitrite-AFm and AFt generated [8,11,13,16].
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at curing ages of (a) 1 h, (b) 1 d, (c) 56 d.

3.2.2. XRD

Figure 3 shows the XRD results in the diffraction angle range of 5–25◦ for each curing age. At the
curing age of 1 h, AFt (2θ deg 9.2◦, 16.1◦, 23.2◦) and gypsum (2θ deg 11.6◦, 20.7◦) peaks are visible for
all specimens. In the case of the CN4 and CN8 specimens, nitrite-AFm (2θ deg 11.0◦ to 11.2◦, 23.5◦ to
23.7◦) peaks are also visible along with AFt [16–18]. In this regard, Balonis confirmed the generation of
AFt and nitrite-AFm via the ion exchange reactions of SO4

−and 2NO2
− of AFm through the reaction

experiment involving synthetic AFm and calcium nitrite [11,14]. In our case, we speculate that the C3A
reaction is accelerated by the addition of CN, and the generation of AFt and nitrite-AFm proceeds
simultaneously. In addition, although quantitative evaluation was difficult, weak peaks of gypsum
were observed in the CN0 and CN4 specimens at the curing age of 6 h, but not for CN8. In the range
of the addition amount of CN8, it is expected that the consumption of gypsum is complete within
6 h via promotion of the reaction with C3A. In fact, no gypsum peak was detected after 12 h in all
samples. In the hydration process corresponding to 1 h–6 h, the reaction of C3A with gypsum and the
formation of nitrite-AFm by the addition of CN are expected to significantly affect the early strength
enhancement. Under the curing conditions of this study, beyond the curing age of 1 d, a tendency
to decrease slightly with AFt and slightly increase with nitrite-AFm with an increase in the curing
age was observed; our quantitative evaluation is discussed later in the paper with regard to the 27Al
NMR results. Additionally, there was no correlation between the amount of Ca(OH)2 (2θ deg 18.0◦

b) produced and the amount of CN added. This result shows a slightly different tendency from the
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TG/DTG results, and it is thought that there may be a difference in the crystallinity of Ca(OH)2 at an
early age owing to the addition of CN; further investigations are necessary in this direction.Materials 2019, 12, x FOR PEER REVIEW 6 of 11 
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Figure 3. X-ray diffraction (XRD) results for (a) CN0, (b) CN4, and (c) CN8 samples.

3.2.3. Al MAS NMR

Figures 4 and 5 show the solid-state 27Al NMR spectra and integrated area ratio corresponding
to Al resonance, respectively. The chemical shift regions for 27Al NMR can be described as follows:
tetrahedral coordination (Al[IV]), 50 to 100 ppm; pentahedral coordination (Al[V]), 30 to 40 ppm;
octahedral coordination (Al[VI]), 10 to 20 ppm [19,20]. In general, the broad range of resonance from 50
to 100 ppm can be attributed to structures with reduced crystallinity including Al in the anhydrous
material [21,22]. In this study, Al[IV] resonance at an early age corresponds to anhydrous materials.
The resonances at 9.7 ppm, corresponding to monosulfate, and 12.4 ppm, corresponding to ettringite,
are confirmed in the Al[VI] range [19,20], and the resonance at 5 ppm corresponds to a third aluminate
hydrate (Al(OH)6

3−, OxAl(OH)6−x
(3+x)−, TAH) [22,23]. Furthermore, the 9 ppm resonance in the

Al[VI] regime at an early age can be attributed to C4AF (Figure 6). Overall, the CN8 results show a
strong tendency toward AFm-related resonance in the Al[VI] range to emerge from the early ages.
In the integrated resonance ratio range corresponding to 1 h to 6 h, the Al[IV] resonance is 75 wt%
for CN0, 74 wt% for CN4, and 61 wt% for CN8, that is, CN8 addition accelerates the hydration of
Al-based anhydrous material. However, at the curing age of 1 d, the ratio of Al[IV] resonance is similar
between all the samples, with 45 wt% for CN0, 45 wt% for CN4, and 43 wt% for CN8. Furthermore,
the consumption of Al[VI] in C4AF at an early age tends to extend up to 12 h for CN0 and CN4, but
this consumption is terminated at 6 h for CN8 (Figure 6). This result shows a tendency similar to the
consumption period of gypsum identified as per the XRD results, and it is expected that the reaction of
C3A, C4AF, and gypsum will be accelerated up to 6 h in the range of CN8 addition, thus affecting the
early strength enhancement. Figure 6 shows the solid-state 27Al NMR spectra of the Al[VI] area for the
range of 1 h to 3 d. The biggest difference regarding the presence or absence of CN is the proportion
of the AFt and AFm resonances. In the case of CN8, the area of AFm is wider than that of AFt in
comparison with CN0 and CN4. With respect to the AFm resonance, the center of the resonance moves
toward a higher ppm value in the case of CN8 when compared with the corresponding resonance
center for CN0, as shown in Figure 7. This result is due to an overlap between AFm (9.7–10.3 ppm)
and a different bonding structure detected in the range of 10.7–10.9 ppm, which can be attributed
to nitrite-AFm, thereby resulting in a broader resonance. However, it was difficult to separate the
resonances under the present experimental conditions, and the resonance over 9.7 to 10.9 ppm was
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expressed as AFm(Total). The 1 d results showed that the AFt and AFm proportions were AFt: 36 wt%,
AFm: 15 wt% for CN0, AFt: 33 wt%, AFm(Total): 16 wt% for CN4, and AFt: 23 wt%, AFm(Total):
26 wt% for CN8. In the case of CN0 and CN4, the AFt resonance increases from 1 h to 1 d and then
tends to decrease slightly. AFm resonance develops from 12 h to 3 d. On the other hand, in the
case of CN8, the development of AFt resonance runs from 1 h to 12 h and subsequently decreases.
Furthermore, in CN8, AFm resonance is observed to develop steeply from 6 h onward (Figure 6).

From these results, we speculate that the difference in compressive strength at 1 d significantly
affects the proportion of AFt and AFm(Total), rather than the increase in the amount of total hydrates
produced by the hydration promotion of C3A. This production proportion is maintained until the
curing age of 56 d. The relative increase in AFm(Total) contributes to the development of compressive
strength in early aging when C-S-H production is not sufficient, and this effect decreases with increasing
C-S-H as the curing age progresses.
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CN8 samples.
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Figure 6. 27Al nuclear magnetic resonance (NMR) spectra of Al[VI] in range from 1 h to 3 d for (a) CN0,
(b) CN4, and (c) CN8 samples.
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Figure 7. 27Al nuclear magnetic resonance (NMR) spectra of CN0 and CN8 specimens after 1 d (8 ppm
to 16 ppm).

3.2.4. Si MAS NMR

Figures 8 and 9 show the solid-state 29Si NMR spectra and integrated area ratio of Si resonance,
respectively. We note that Q0 and Q1–Q2 resonances are detected at around −70 to −73 ppm and
−79 to −85 ppm, respectively [24,25]. As per the 29Si NMR results for the curing age of 6 h, Q1

and Q2 resonances are not detected in all samples. However, Q1 and Q2 resonances are detected at
age 1 d in all samples, and the combined ratio of Q1 + Q2 is 12 wt% in CN0, 24 wt% in CN4, and
28 wt% in CN8, which is proportional to the amount of CN added. As with the trend of the 27Al
NMR spectra results, this proportional tendency gradually reduces after 1 d. The 3 d to 28 d results
showed that the combined ratio of Q1 and Q2 increases gradually but shows similar binding rates
in all samples (Figure 9, 3 d: ~43 wt%, 14 d: 48 wt%, 28 d: 62 wt%). In addition, the ratio tends
to slightly reverse at the curing age of 56 d, but the binding rate difference is not significant. Upon
comparison of the compressive strength corresponding to the 27Al NMR and 29Si NMR integrated
area ratios, it is observed that the improvement in compressive strength at an early age (1 d) can be
explained only by the relative increase in C-S-H with CN addition. However, in regard to the 3 d
compressive strength results, although the amount of C-S-H production is similar among all three
samples, the compressive strength increases with the addition of CN. From this result, we can confirm
that the formation of AFm(Total) also affects the early compressive strength up to 1–3 d. Additionally,
although the difference in compressive strength is not large, the results show that the compressive
strength and the amount of C-S-H produced over 28 d to 56 d are reversed. Consequently, the addition
of a large amount of CN may interfere with the production of C-S-H at a late age owing to the large
amount of AFm(Total) produced at an early age. In this regard, as per Choi [16], the compressive
strength is significantly decreased in the late aging of the specimens containing 13 wt% CN additive or
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more. However, in our case, there was no noticeable decrease in compressive strength and no decrease
in the C-S-H production over the range of CN addition considered in the study.Materials 2019, 12, x FOR PEER REVIEW 9 of 11 

 

 

Figure 8. 29Si nuclear magnetic resonance (NMR) spectra of (a) CN0, (b) CN4, and (c) CN8 samples. 

 

Figure 9. 29Si nuclear magnetic resonance (NMR) integrated area ratio of (a) CN0, (b) CN4, and (c) 
CN8 samples. 

4. Conclusions 

In this study, we performed various types of analysis to understand the relationship between 
the hydrate formation behavior and strength development in the early age range of concrete as a 
function of the quantity of frost-resistant accelerator, calcium nitrite, added. The results of the study 
are summarized as follows: 

(1) In the compressive strength experiments on the mortar specimens, the early compressive 
strength was proportional to the amount of CN added, and this addition was found to be effective in 
preventing early freezing damage. However, this correlation gradually decreases with curing age. 

(2) From the TG/DTG results, we confirmed the decomposition of the nitrite-AFm group from 
the age of 1 h for CN-added samples. Furthermore, this decomposition is expected to affect early 
compressive strength development. It was observed that the total amount of binding water was 
similar regardless of the amount of CN addition for all curing ages, indicating the possibility of a 
cyclic increase and decrease in the binding water between each hydrate by the amount of CN 
addition. 

(3) From the XRD results, we confirmed that the consumption of gypsum is accelerated and 
nitrite-AFm is produced at the age of 1 h upon CN addition. However, no significant compressive 
strength development factor was found in the formation of Ca(OH)2. 

(4) While the 27Al NMR results showed that the C3A reaction was accelerated upon CN addition 
over the range of 1–6 h, all samples showed a similar hydration progress at the age of 1 d. However, 
the relative development ratio of AFm to AFt rapidly increased upon CN addition, possibly strongly 
affecting the early compressive strength. 

(5) As per the 29Si NMR results, we found that the production of C-S-H is accelerated by CN 
addition at an early age (Day 1), thereby contributing to the early compressive strength development. 

-85-80-75-70-65 ppm

Chemical shift

CN0_1d
CN0_3d
CN0_14d
CN0_28d
CN0_56d

C3S and C2S
in Q0 area

C-S-H
in Q1 area

C-S-H
in Q2 area

a)

-85-80-75-70-65 ppm

CN4_1d
CN4_3d
CN4_14d
CN4_28d
CN4_56d

C3S and C2S
in Q0 area

C-S-H
in Q1 area

C-S-H
in Q2 area

b)

Chemical shift
-85-80-75-70-65 ppm

CN8_1d
CN8_3d
CN8_14d
CN8_28d
CN8_56d

C3S and C2S
in Q0 area

C-S-H
in Q1 area

C-S-H
in Q2 area

c)

Chemical shift

Figure 8. 29Si nuclear magnetic resonance (NMR) spectra of (a) CN0, (b) CN4, and (c) CN8 samples.
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Figure 9. 29Si nuclear magnetic resonance (NMR) integrated area ratio of (a) CN0, (b) CN4, and (c)
CN8 samples.

4. Conclusions

In this study, we performed various types of analysis to understand the relationship between
the hydrate formation behavior and strength development in the early age range of concrete as a
function of the quantity of frost-resistant accelerator, calcium nitrite, added. The results of the study
are summarized as follows:

(1) In the compressive strength experiments on the mortar specimens, the early compressive
strength was proportional to the amount of CN added, and this addition was found to be effective in
preventing early freezing damage. However, this correlation gradually decreases with curing age.

(2) From the TG/DTG results, we confirmed the decomposition of the nitrite-AFm group from
the age of 1 h for CN-added samples. Furthermore, this decomposition is expected to affect early
compressive strength development. It was observed that the total amount of binding water was
similar regardless of the amount of CN addition for all curing ages, indicating the possibility of a cyclic
increase and decrease in the binding water between each hydrate by the amount of CN addition.

(3) From the XRD results, we confirmed that the consumption of gypsum is accelerated and
nitrite-AFm is produced at the age of 1 h upon CN addition. However, no significant compressive
strength development factor was found in the formation of Ca(OH)2.

(4) While the 27Al NMR results showed that the C3A reaction was accelerated upon CN addition
over the range of 1–6 h, all samples showed a similar hydration progress at the age of 1 d. However,
the relative development ratio of AFm to AFt rapidly increased upon CN addition, possibly strongly
affecting the early compressive strength.
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(5) As per the 29Si NMR results, we found that the production of C-S-H is accelerated by CN
addition at an early age (Day 1), thereby contributing to the early compressive strength development.
However, this advantage gradually decreased with increase in age, and the trend appeared to slightly
reverse with further increase in the age. This reversal is most likely related to the decrease in
compressive strength at a late age by the addition of large amounts of CN [16].
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