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AAIoT: Accelerating Artificial Intelligence
in IoT Systems
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Abstract—Existing deep learning systems in the Internet of
Things (IoT) environments lack the ability of assigning compute
tasks reasonably which leads to resources wasting. In this
letter, we propose AAIoT, a method to allocate the inference
computation of each network layer to each device in multi-
layer IoT system. To our best knowledge, this is the first
attempt to solve this problem. We design a dynamic programming
algorithm to minimize the response time when weighing the cost
of computation and transmission. Simulation results show that
our approach makes significant improvements in system response
time.

Index Terms—Internet of things; deep learning; resource
scheduling.

I. INTRODUCTION

IOT systems capture massive amounts of data from sensors
around us. Deep learning is one of the tools we use to

extract useful information from these data. The combination of
IoT and deep learning brings us many possibilities to explore
the real world. There’s a lot of work associated with combining
these two technologies [1], [2], [3]. Traditional systems that
combine IoT with deep learning tend to be cloud-centric. This
approach requires a lot of data transferring from local devices
to the cloud, which can be time-consuming and has a security
risk [4]. With the development of terminal equipment, methods
to use the computing resources outside the cloud have been
proposed, such as Edge Computing [5] and Fog Computing
[6]. Since then, assigning tasks to each device has been a hot
topic of research.

Reasonable task allocation improve the efficiency of the
system. Xu et al. [7], [8] proposed a resource-efficient edge
computing for the emerging intelligent IoT applications. They
assigning tasks in an appropriate way to improve the perfor-
mance. But their approach is not designed for deep learning
applications and can not be used in our condition directly.
Some studies make good use of edge resources and speed up
the inference, such as [9], [10]. But they do not mention how
the network is divided. Kang et al. [11] adaptively partitions
deep neural networks computation between mobile device and
server. They designed a regression model for each layer type
to predict the latency and power consumption of the layer
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running in different devices. They designed an algorithm to
cut the networks into two parts base on this information. And
they deploy these two parts of networks into mobile device
and server respectively to optimize the inference process.
On this basis, Li et al. [12] integrated into the early exit
technology to further speed up the computation. But both
of them only consider the two-layers IoT architecture and
cannot accommodate today’s increasingly complex system
requirements.

In this letter, we propose a neural network segmentation
method to optimize the inference process. Different from
the existing methods, our method can deploy the neural
networks to multi-layer IoT architectures without knowing
the details inside the system. We measure the computing and
communication ability of each device as the model input.
And we design an algorithm to make the optimal strategy
using dynamic programming with the principle of minimizing
system response time. To the best of our knowledge, this is
the first attempt to accurate segmenting neural networks under
multi-layer IoT architectures. The simulation results show
that our approach is better than other simple computational
allocation methods.

II. SYSTEM MODEL

In this section, we introduce the model of the system shown
in Fig. 1. We allocated the inference computation of the
entire network to our devices. The data is collected at the
first device. Each device can do computing tasks and deliver
the result to the next device. At last, the result calculated by
the neural network is communicated back to the first device.
The operations of each layer of the network are inseparable,
and they depend on the results of the previous layer. We
cannot do inference processing in multiple devices at the
same time. We use capital letters to represent arrays and
use lowercases to represent numbers. We want to allocate n
layers deep neural network L = {l0, l1, ..., ln} to m IoT devices
D = {d1, d2, ..., dm}. We use A = {a1,a2, ...,an} to represent
an allocation strategy, where ai ∈ 1, ...m and ai+1 >= ai . And
ai means the network layer li is assigned to the device dai . In
our scenario, the data is collected at the first device and the
high-layer devices have powerful processing ability. The action
of delivering the computation to high-layer devices means
sacrificing the transmission time to reduce the calculation time.
But deliver the computation to low-layer devices cannot bring
benefits. To simplify the model, we specify the layers after li
can only be assigned to dai or IoT devices after dai . So there is
a limit of ai+1 >= ai . Response time and energy consumption
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Fig. 1. System model.

are important criteria for IoT systems. We focus on the real-
time deep learning application scenarios. In our scenario, all
the devices have a steady power supply. Therefore, our model
pays more attention to response time. We use the response
time T of the system to judge the allocation strategy. Response
time T has two factors. The first factor is the computing time
for each network on the assigned device. The second factor is
the time it takes to transfer data between IoT devices. Existing
research uses a prediction scheme to predict the computational
load of different layers [11], [12]. Our method is designed for
the multi-layer IoT systems. There are many factors affect the
processing ability and bandwidth of the devices. For example,
it is a normal situation when multiple low-level devices share
a single high-level device. it will influence the computation
time and bandwidth. It is difficult to model these kinds of
influence. So we measure the computing and communication
ability of each device rather than predict them. This process
consumes some resources, but it simplifies our model and
makes it more applicable. We denote C = {c1

1, ..., c
j
i , ..., c

m
n } as

the layer runtime in each IoT device, where c j
i is the runtime

for neural network layer li on IoT device dj . To calculate
the transfer time, we record the size of the output data S for
each layer of the network and the bandwidth P between each
IoT devices. S = {s1, s2, ..., sn+1}, where s1, ..., sn is the input
data size of l1, ..., ln and sn+1 is the output data size of ln.
P = {p1, p2, ..., pm−1}, where pj is the bandwidth from dj

to dj+1. Above is the definition of all the input and output
variables of our model.

Then we will introduce the calculation of the response
time T . As mentioned before, T divide into calculation time
Tcalcu and transmission time Ttrans . When we determine the
allocation strategy A, the calculation time Tcalcu is defined as

Tcalcu =

n∑
i=1

cai

i (1)

It means the sum of time for each layer li to compute on
the corresponding device dai . The transmission time Ttrans is
defined as

Ttrans =

n∑
i=1

(ai )−1∑
j=a(i−1)

(si + sn+1)/pj (a0 = 1) (2)

The first summation is for all the layers. The second summa-
tion is for all the data transmission between the two layers.
When the adjacent two layers are on different devices, the
a(i−1) <= (ai) − 1 is satisfied. This summation will calculate
all the transmission consumption between device dai−1 and
dai . This transmission consumption includes the time cost to
transmit the output of li from dai−1 to dai and the time cost to
transmit the network’s result from dai to dai−1 . The si in the
formula is the size of the li’s output. sn+1 is the size of the
network’s output, as shown in Fig. 1. And pj is the bandwidth
from dj to dj+1, where j ∈ ai−1, ..., (ai) −1. The a0 = 1 means
we do not calculate the transmission consumption before the
input of the network in d1. Finally, the response time T is
define as

T = Tcalcu + Ttrans (3)

In summary, base on the extraction of the essential in-
formation, we formulate an optimization problem for layers
allocation. That is, when giving each layer’s runtime C on
each IoT device, the size of the output data S for each layer,
and the bandwidth P between each IoT devices, we want to
find an allocation strategy A to minimize the response time
T .

III. METHOD

In this section, we introduce the algorithm we proposed
to solve the optimization problem formulated in the previous
section. After we propose this optimization problem, the
intuitive consideration is to use the exhaustion method. We
consider the amount of possibility of exhaustion method. This
problem is to putting n layers of the neural network into m
different devices and allowing empty devices. If we don’t
allow empty devices, we can simplify this problem as cutting
n layers network into m blocks. The devices are in a fixed
order. The m blocks of the networks are put in m devices
in order. It means to insert m − 1 boards in the n − 1 gaps
between n network layers. When given the layers number
n and the devices number m, the amount of possibility is
Cn−1
m−1, where C is the combination number. Then we consider

allowing the empty devices. To use the conclusion above, we
can assume that each of the m devices originally had one layer.
So this problem is equivalent to cutting n +m layers network
into m blocks. The number of possible allocation strategies is
Cn+m−1
m−1 . The complex calculation of the brute force exhaustive

method is O((n +m − 1)!/(n!(m − 1)!)). This number will rise
dramatically as m and n increase. So we need an approach
with less complex.

We propose a dynamic programming algorithm. We denote
the state table H = {h1

1, ..., h
j
i , ..., h

m
n+1}, where h j

i is the
minimum response time when input data of layer li has been
transmitted into device dj . With one exception, that is, h j

n+1
is the minimum response time when the output of network
has been transmitted into device dj . It is worth noting that
when computing h j

i , we do not specify on which device we
compute the li−1 or li . We only specify the input data of li
has been transmitted into dj . We will explain the reason for
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this definition later. Then, we consider the calculation of H.
When i = 1, we calculate the h j

1 by

h j
1 =

{
0 j = 1
h j−1

1 + (s1 + sn+1)/pj−1 j > 1
(4)

When i = 1, there is no layer calculation time consumption.
The only time consumption is to transfer the input of l1 from
d1 to dj and return the result from dj to d1. When j = 1, no
data transfer is required. So the response time h1

1 = 0. When
j > 1, the response time is the sum of the transmission cost
from d1 to dj−1, that is, h j−1

1 and the transmission cost from
dj−1 to dj , that is, (s1 + sn+1)/pj−1. Then, when i > 1, we
calculate the h j

i by

h j
i =

{
h1
i−1 + c1

i−1 j = 1
min(h j

i−1 + c j
i−1, h

j−1
i + (si + sn+1)/pj−1) j > 1

(5)

When j = 1, we perform all the calculations on d1, so there
is no transmission consumption. The response time is the sum
of the runtime from l1 to li−1. The h1

i−1 represents the sum of
the time consumed to perform the calculations from l1 to li−2
on d1. The c1

i−1 is the runtime for calculating li−1 on d1. After
we perform the calculations of li−1 on d1, the output of li−1 is
the input of li . It means that there’s an input of li on d1. So
this calculation is consistent with the definition of H. When
i, j > 1, there are only two paths to reach the state of h j

i . The
first path is through h j

i−1. It means the input of li−1 is on dj . It
requires c j

i−1 to calculate the input of li on dj . The second path
is through h j−1

i . It means the input of li has been calculated,
but this input data is on device dj−1. It requires (si+sn+1)/pj−1
to transmission the data between dj−1 and dj . We choose the
path with the shorter response time and calculate the value of
h j
i . After we calculate the H, we can calculate the response

time under the optimal strategy by

T = min
j∈1,...,m

h j
n+1 (6)

It means that we choose the strategy with the shortest response
time from all the strategies that finish the whole network. We
can calculate the strategy A by Algorithm 1. This algorithm
starts at the top layer of the network and gradually infer
downward. an is the last device used for the optimal strategy. t
indicates the current device, so at first t = an. If ht

i+1 , ht
i +cti ,

Algorithm 1: Get Scheme

Input: State Table H = {h1
1, ..., h

j
i , ..., h

m
n+1}

Output: Allocation Scheme A = {a1,a2, ...an}
Compute

an = arg min
j∈1,...,m

h j
n+1

t = an
for i ∈ n − 1, ...,1 do

while ht
i+1 , ht

i + cti do
t = t − 1

ai = t
return A

the calculation for li is not on dt . We will try the lower device
until we find the device hosts li . We repeat this operation
until we find the allocation of all the layers. At this point, we
have finished the introduction of our dynamic programming
algorithm. H contains m(n + 1) elements, each of which
can be calculated in O(1). So the complex calculation of H
is O(mn). After we get H, we calculate the strategy A by
Algorithm 1. It cost O(m) to find the an. In the subsequent
steps, it find a strategy from h1

i to han

n+1. This strategy include
n + m nodes, and each node can be calculated in O(1). So
the complex calculation of Algorithm 1 is O(m + n). The
complexity calculation of the overall proposed approach is
O(mn).

Then, we discuss the reasons why our algorithm can find the
optimal solution. Our algorithm includes all the possibilities.
The most important point is that to get to h j

i , we have to go
through h j−1

i or h j
i−1. The reason is that the computation of

the network in our model is continuous and monotonous. And
the transmission of data between devices is also continuous
and monotonous. It means that there is no case of skipping
over a layer or device and can not go backward. So h j

i is not
associated with other states except h j−1

i and h j
i−1. This is why

we define h j
i as the minimum response time when the input

data of li has been transmitted into dj . This definition implies
that li−1 has been calculated and also indicates that the data
has been transferred to dj . Our experiments also verify that
this method gets an optimal solution. The proposed algorithm
get the optimal solution. It gets the same solution as the brute
force exhaustive method. But the complex calculation is reduce
from O((n + m − 1)!/(n!(m − 1)!)) to O(mn).

IV. EXPERIMENT

In this section, we present a simulation experiment to
demonstrate the performance of our method. Today’s neu-
ral network structures are mostly hierarchical. Our experi-
ment is designed to approve our method can be used in
such hierarchical structures and get a good result. We use
our method to optimize the inference process of an image
classification task. The input data is RGB image of size
224× 224× 3. We design the network structure depend on the
AlexNet. The network we designed has 10 layers, that is, L =
{c1, p1, c2, p2, c3, c4, c5, p5, f 6, f 7}. This network includes 5
layers of convolution {c1, c2, c3, c4, c5}, 3 layers of pooling
{p1, p2, p5}, and 2 layers of fully connecting { f 6, f 7}. Our
method speeds up the inference process and does not affect
the accuracy. So we do not pay attention to the accuracy in our
experiment. There are not many restrictions on the choice of
network structure and dataset. Because these choices primarily
affect accuracy. We only need the structure is hierarchical, and
the amount of computation and data transfer per layer can be
measured. The IoT architecture we designed has 4 devices,
that is, D = {RaspberryPi,MobilePC,DesktopPC,Server}.
We use Raspberry Pi 3 Model B as RaspberryPi. It has
a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU and
1GB RAM. The MobilePC has an Intel(R) Core(TM) i5-
4210H CPU and 12GB RAM. The DesktopPC has an Intel(R)
Core(TM) i7-6700 CPU and 16GB RAM. The Server has an
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Fig. 2. Experimental environment. (a) The layer runtime in each IoT device.
(b) The transferred data size between each layer of the network.
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Fig. 3. Simulation result. (a) The allocation strategy with different band-
widths. (b) The response time with different bandwidths.

Intel(R) Core(TM) i7-6700K CPU, a GeForce GTX 1080 GPU
and 32GB RAM. As shown in Fig. 2(a), the computing ability
of these four devices is rising from the bottom to the top. There
is also a variation between devices to calculate different types
of layers. For example, the Server is particularly adept at
calculating p1 and p2. As shown in Fig. 2(b), the output size
of the layer tends to decrease with the inference processing, but
there are also some exceptions. The o in Fig. 2(b) represents
the original data. At this point, we have collected the necessary
data from the real environment.

Then, we verify the validity of our algorithm through
simulation. The bandwidths between devices are the same in
our simulation, that is pi = pj , where i, j ∈ 1,2,3. We set this
network bandwidth as a variable. Our experimental bandwidths
cover the current communication mode. The bandwidth of
narrow band internet is approximately 10Kbps. The theoretical
speed of 5G achieve 1Gbps. The simulation result is shown
in Fig. 3. We show the allocation strategies for different
bandwidths in Figure 3(a). The horizontal axis represents the
bandwidth, the vertical axis represents the network layer, and
the colors of the bar represent the device we allocate the
layer. It is also intuitive that as bandwidth rises, our system
tends to allocate computations to higher level devices. In
addition, our system tends to make segmentation after p1
and p5. It related to the fact that the output data size of
these two layers is relatively smaller than their neighbor. We
show the response time under different bandwidths in Figure
3(b). We draw the response time with a single device as a
comparison. We find that the result of our method is the best
one. In fact, our algorithm finds an optimal solution under
this model. The results of our method are consistent with the
exhaustion method. At the same time, Our algorithm saves
a lot of computing resources compared with the exhaustive
method.

V. CONCLUSION

This letter provides a quantitative method in computational
allocation for deep learning inference tasks in multi-layer IoT
systems. Our method allocates the system resources intelli-
gently to reduce response time. In addition, we establish our
model under the multi-layer IoT architectures different from
existing methods. There are two main contributions in this
letter. The first contribution is to establish the model and
evaluation criterion base on the computational and transmis-
sion time. The second contribution is to design a dynamic
programming algorithm to find the optimal solution base on
our model. We test our method with a simulation experiment,
where we measure the model input from actual devices.
Experimental results show that our method provides significant
performance improvements in real-world scenarios.

Considering the power consumption will enlarge the ap-
plication scope of our method. Besides, the condition of
multitasking needs intensive research. We will do more related
research about these two points in the future.
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