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ABSTRACT With the rapid development of automatic vehicles (AVs), vehicles have become important
intelligent objects in Smart City. Vehicles bring huge amounts of data for Intelligent Transportation System
(ITS), and at the same time, they also put forward new application requirements. However, it is difficult to
obtain and analyze massive data and provide accurate application services for AVs. In today’s society of
traffic explosion, how to plan the route of vehicles has become a hot issue. In order to solve this problem,
we introduced content-data-friendly information-center networking (ICN) architecture into the Internet of
Vehicles (IoV), and achieved efficient route planning for AVs through the Big Data acquisition and analysis
architecture in ICN. We use the analytical capabilities of the network to achieve active cognitive access to
traffic data. At the same time, we use game theory to achieve the incentive mechanism for task distribution
and information sharing. Finally, the simulation results show that the method is effective.

INDEX TERMS IC-IoV, Edge-MapReduce, route planning, evolutionary game.

I. INTRODUCTION
With the rapid growth of large-scale network sensors, com-
puting and communication technologies, and cloud infras-
tructure, the realization of smart cities is possible in the
future [1]. In the smart city scenario [2], the vehicle, a smart
object with its own processor, computing and communication
capabilities, will become an indispensable smart device for
human life in the future due to its rapid growth and high
mobility [3]. At the same time, with the rapid development
of automation technology and artificial intelligence tech-
nology, autonomous vehicles(AVs) have gradually become
a major component of the future intelligent transportation
system(ITS) [4].

The emergence of AVs has had a huge impact on traditional
modes of transportation. With the popularity of autonomous
driving technology, people do not need to drive in person. The
driving system becomes more precise, and further reduces the
time cost of travel [5]. This may make AVs an important part
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of the public transportation system in the future. However,
as the time cost of a single trip decreases and the ease of
travel increases, the number of people traveling will increase
greatly. How to realize the rational mobility of the AVs,
the assignment of public transportation tasks and the route
planning in the ITS has become an important issue.

Vehicles, as mobile smart objects in smart cities, have
data collection, energy storage, computing and communi-
cation functions that provide massive amounts of data for
intelligent transportation systems, often referred to as the
Big Data [3]. In order to achieve efficient autonomous vehi-
cle routing, this requires efficient collection and analysis
of data in the Internet of Vehicles (IoV). However, due to
the rapid expansion of the city scale, the number of cars
in the city has risen sharply [6]. According to the Shanghai
Transportation Industry Development Report, the number of
registered motor vehicles in Shanghai was 3.905 million,
an increase of 8.5% over the previous year. Faced with such
a large amount of data, the Big Data [7] analysis architecture
in traditional networks is difficult to meet the data analysis
needs in today’s IoV.
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As a new network architecture, Information-Centric Net-
working (ICN) has changed the focus of traditional network,
not focusing on the location of data storage, but on specific
data content, which is the real concern of today’s users and
applications [8]. Unlike traditional networks, which can only
request data according to known IP addresses, users in ICN
directly request data according to data names. This charac-
teristic makes ICN friendly to the network with large-scale
data request behavior. Therefore, ICN is an ideal choice
for today’s content explosion network [9]. So in this paper,
we focus on the Big Data analysis in Information-Centric IoV
(IC-IoV).

Since the traditional network is concerned with the com-
munication process of the communicating endpoints [10],
the big data analysis in the traditional network needs to
collect and store the data before further data analysis can be
performed [11]. The introduction of a naming mechanism in
ICN has changed this approach. The data names in the ICN
can reflect content data to a certain extent. That is to say,
we can directly manipulate the content data according to the
filtering of the data name, which makes the direct big data
operation of the routing forwarding layer possible.

Edge computing [12] has emerged as an effective way
to mitigate long latency problems and improve current
network architectures [13], which has attracted increasing
attention [14]. In edge computing, edge servers are deployed
at the edge of the network to perform calculations near the
data source. This brings two benefits [15]:1) For downstream
data, the edge server acts as a cloud service provider, bring-
ing computing resources closer to the end user, making the
latency of service requests very low. 2) Regarding upstream
data, it helps to improve network transmission on the core net-
work. Using edge computing, we can change themode of cen-
tralized big data computing in traditional networks to achieve
the overall big data analysis of intelligent networks [16].

In order to enable AVs to provide efficient transportation
services [17], it is also important to analyze user needs and
timely assignment of traffic tasks while using intelligent
network big data analysis to obtain optimal routes. As the
intelligent nodes in the IC-IoV, the AVs can take the initiative
to seek the user’s traffic tasks. How to motivate vehicles to
carry out active task requests and information sharing is very
important in the process of traffic task release.

The contributions of this paper are summarized as follows:
• We proposed an edge-based MapReduce big data analy-
sis architecture in IC-IoV to collect vehicle information
and traffic conditions of ITS and process the data to
obtain the optimal driving path of the vehicle.

• We proposed a task publishing method based on game
theory for edge nodes, and proposed an incentive mech-
anism among vehicle nodes. This approachwill motivate
the vehicle to make mission requests and encourage
vehicles to share data. Finally, we carried out an experi-
mental simulation of this method.

The rest of this paper is organized as follows. Section II dis-
cusses the related works. Section III discusses architectural

principles of the system. Section IV describes the Cognitive
Route Planning System using Edge-MapReduce architecture.
Section V and VI introduce the game models of task publish-
ing and information sharing. We evaluate the performance of
our proposed strategy in Section VII. Eventually, we draw
some conclusions in Section VIII. Besides, we propose the
direction of work that can be studied in the future.

II. RELATED WORK
The rapid development of ITS mainly depends on the sig-
nificant improvement of the Internet of Things(IoT) [18]
technology. At present, many studies have introduced ICN
network architecture into IoT. In the challenging environ-
ment of the IoT [19], ICN opens up new opportunities for
new applications in this context with its unique routing and
content-based security due to the existence of a large num-
ber of heterogeneous and potentially constrained network
devices and unique and heavy traffic patterns [20]. The future
global scale IoT system will focus on service-oriented data
sharing and processing. ICN identifies services as a kind of
information, which naturally adapts to the Internet of Things
communication. Chen et al.’s work [21] has discussed that
ICN architecture can meet the communication requirements
of the Internet of Things. Sicari et al.’s research [22] proposed
an extensible framework to implement lightweight authenti-
cation and hierarchical routing in IoT, thus achieving security
protection for the large-scale Internet of Things applications.
At the same time, there are also studies to improve the
mmWave wireless system to meet the application require-
ments of IC-IoT [23]. It can be seen that IC-IoT has become
one of the important choices for future network development.

IoV can be seen as a convergence of the mobile Internet
and the traditional Internet of Things [3]. As a huge inter-
active network, IoV technology refers to the use of vehicle
to vehicle (V2V) [24], vehicle to roadside unit(V2R) [25],
vehicle to infrastructure(V2I) [26], vehicle to home (V2H)
[27] and vehicle-to-grid(V2G) [28], [29]. Deploying IoV in
smart cities can achieve information sharing and large data
collection of vehicles, roads, infrastructure, buildings and
their surrounding environment [3]. Data Decision Network
(NDN), an implementation of ICN, provides great conve-
nience for V2V data exchange in Vehicle Ad Hoc Network
(VANET) [30]–[33]. But the ICN based data exchange from
vehicle to the core network is less studied.

Route planning has always been an important issue in the
field of unmanned driving. The emergence of AVs will revo-
lutionize the transportation industry in the near future. It is a
challenge to introduce AV smoothly and safely into the road
network, especially for roads sharing vehicles with different
levels of autonomy [34]. Zhang et al.’s work [35] has pro-
posed a route planning method based on vehicle and driving
environment to save driving time and reduce fuel consump-
tion. Lam et al.’s [36] focused on the parking and charging of
electric vehicles, and how to guide the self-driving vehicles to
appropriate parking facilities to support V2G services. It can
be seen that many current studies focus on route selection
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for serving driverless vehicles, while few studies focus on
route selection based on the characteristics of ICN data
exchange.

III. PROPOSAL OF SYSTEM ARCHITECTURE
In this section, we present a cognitive-based route plan-
ning system architecture in IC-IoV, as shown in Fig1. First,
we introduce the principle of edge-based big data analy-
sis architecture and task allocation system. Based on these
principles, we propose this system architecture. After that,
we outline the overall system structure. We further intro-
duce the two subsystems: 1) Edge-MapReduce Architecture;
2) Task distribution and information sharing mechanism.

FIGURE 1. Route planning in IC-IoV.

A. ARCHITECTURAL PRINCIPLE
1) BIG DATA PROCESSING IN ICN
Unlike TCP/IP networks, ICN uses a data name-based con-
tent request method. Big data analysis in traditional networks
requires data to be collected and stored before further data
analysis can be performed. The introduction of a naming
mechanism in ICN has changed this approach. After obtain-
ing the required data name, we do not need to determine the
storage location of the data, and can directly send interest
packets to the network for the data request. Introducing the
big data analytics architecture to ICN, the entire network
logically becomes a distributed database that stores massive
amounts of data. The data names in the ICN can reflect
the content data to a certain extent, so we can perform
preliminary classification and screening of the content data
according to the data name. Therefore, direct manipulation of
data in the routing process can be achieved. Since the data is
directly filtered by the data name, this will greatly reduce the
transmission of the data packets in the network, and achieve
more efficient transmission efficiency. At the same time, big
data analysis has become more timely and convenient.

2) COGNITIVE-BASED DATA ACQUISITION
As a kind of important intelligent mobile nodes in smart
cities, vehicles are also an important part of the IoV. The
Road Side Units(RSUs) and mobile vehicles in the IoV have
provided powerful help for information collection in ITS and
even the smart city. Faced with a large vehicle group and a
complex road environment, it is necessary to accurately and
timely analyze the acquired information, which places great
demands on the cloud computing center and network trans-
mission. Therefore, we use the edge computing resources to
actively request the required data from the nodes in the IoV
based on the historical data analysis results, and provide the
obtained traffic information data to the computing center in
the recommended form. This will greatly reduce the compu-
tational load of the computing center and the transmission
tasks of the core network.

3) TRAFFIC TASKS AND ROUTES
In the future traffic system, AVs will become an important
part. In order to better realize the dispatch and service of
driverless vehicles, we believe that the vehicle routing should
be bound to the tasks issued by ITS, rather than to the fixed
vehicle individuals and specific driving routes. By analyzing
the traffic demand put forward by users, we bind and publish
the traffic task and route, and then determine the vehicle to
undertake the task.

4) GAME IN TASK/ROUTE PUBLISHING AND
INFORMATION SHARING
In order to meet the traffic needs of users, we need to find
vehicles in the network that can undertake the task. At the
same time, vehicles that are unable to carry out traffic tasks
but still want traffic information need to make requests to
vehicles that undertake traffic tasks. Vehicles may refuse mis-
sion requests or traffic information sharing due to their selfish
nature, so there is a game problem in this scenario. Analyzing
this problem, our aim is to satisfy the traffic demand of
users, encourage information sharing among vehicles, and
guarantee the rights and interests of vehicles and users.

B. EDGE-MAPREDUCE ARCHITECTURE
In this section, we propose an edge-MapReduce architecture
to implement big data analysis at the network layer.

A traditional big data center is a collection of computing
resources in a network, or the computing resources in a
network are unified through the center of a logical collection.
The routing method of ICN gives the initiative of nodes in
the network. The computing node no longer needs to perform
calculations through the data distribution of the computing
center. It only needs to understand the tasks it undertakes
and actively request the calculation data to complete the
computing task. Therefore, we introduce the MapReduce
architecture into IC-IoV to implement edge-based big data
analysis mechanisms.

VOLUME 7, 2019 50551
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As shown in the figure, the nodes with computing
resources in the ICN are divided into Mapper nodes and
Reducer nodes to undertake computing tasks at different
stages of big data processing. After the central node assigns
the task to the mapper and the reducer, the mapper and the
reducer respectively call different algorithms according to
different task requirements, and send interest packets to the
network to obtain the calculated data. ICN is logically a
database for big data centers.

The Edge-MapReduce architecture requires simultaneous
analysis of user needs and traffic information:

• Obtain traffic information. According to the historical
traffic information, the edge node sends interest packets
to the nodes, such as the vehicle and the roadside unit in
the IoV, requesting real-time traffic data.

• Analyze traffic information data. TheMapReduce archi-
tecture analyzes traffic data in real time and updates the
corresponding traffic parameters.

• Get user requirements. The edge node obtains the user’s
needs in the area in real time and determines the corre-
sponding traffic task.

• Analyze user interests. Extract user demand character-
istics, classify users, and confirm the traffic resources
required by users.

• Comprehensive user interest and traffic conditions form
the corresponding driving route. According to user
requirements and real-time traffic conditions, the big
data center calculates and generates tasks and corre-
sponding driving routes.

C. TASK DISTRIBUTION MECHANISM OF EDGE NODES
In this section, we propose a task distribution mechanism
based on game theory.

After analyzing the user’s needs and traffic conditions to
obtain the traffic tasks and the corresponding driving routes,
we need to find the vehicles to undertake these traffic tasks,
and there is a game problem between the vehicles.

First of all, when the task is assigned, we encourage the
vehicle to request the task by auction. The task is bound to
the relevant route, and after the vehicle confirms the task,
the vehicle will get the corresponding driving route.

When the vehicle is unable to complete the traffic task but
still needs to obtain the driving route and traffic information,
we encourage the vehicle to share the traffic information
and the driving route through the game information sharing
incentive mechanism based on the game theory.

IV. COGNITIVE ROUTE PLANNING SYSTEM
In the future of social life, autonomous driving is already the
way we want to travel. Faced with the gradual popularization
of unmanned vehicles, public transportation can be com-
pleted by multiple unmanned vehicles, gradually replacing
the traditional modes of travel such as buses. Therefore, it is
very important to analyze the user’s needs efficiently and
arrange the traffic tasks and driving routes of the self-driving

vehicles. In this section, we introduce a cognitive IC planning
framework based on intelligent IC-IoV.

According to network big data analysis, we can get traffic
information and user needs in real time. Through the network
layer big data analysis architecture, real-time data analysis in
the network transmission process can be realized. According
to the data analysis result and the user demand analysis result,
the intelligent ICN network actively analyzes the required
data, and actively acquires the required data by sending the
interest package. It will also mean that according to the
needs of users and the traffic conditions that the network
has acquired, and actively seeking additional required data,
through the intelligent analysis of the network, the corre-
sponding traffic tasks, and corresponding traffic routes are
obtained.

The traffic conditions acquired by the roadside unit,
the real-time road information acquired by the smart vehicle,
the distribution of the charging piles and the corresponding
energy information, and additional information provided by
other intelligent terminals. IC-IoV actively recognizes this
information, and further analyzes the obtained data through
analytical methods such as artificial intelligence and machine
learning to obtain corresponding traffic information. This
information forms the topological weight map of the traffic
network in the big data analysis architecture.

FIGURE 2. Edge-MapReduce based cognitive route planning.

As shown in Fig2, the intelligent IC-IoV based on big
data analysis actively seeks real-time data in ITS through
historical analysis results. After active knowledge of the
data, the big data architecture analyzes the acquired data
by calling different analysis algorithms to obtain real-time
traffic topology weights. The network simultaneously rec-
ognizes the user’s needs, and according to the user’s needs,
the big data architecture requests the traffic weight topology
and calculates the corresponding driving route. Finally, the
IC-IoV assigns the calculated corresponding tasks and routes
to the smart vehicles in the ITS.

At the same time, the user’s needs and related information
are also obtained by IC-IoV in real time. By analyzing the
user information, according to the topology weight map of
the transportation network, the big data architecture performs
data analysis and calculation, thereby obtaining the traffic
task and the corresponding driving route. Finally, these tasks
and routes are delivered to the vehicles in the intelligent
transportation system.
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FIGURE 3. MapReduce-ICN architecture specific network [37].

The specific network diagram of the Edge-MapReduce
architecture is shown in Fig3. Edge-MapReduce specific
steps are as follows [37]:

Step 1.According to the analysis requirement of the whole
network, network users send requests to the master and set up
tasks in job tracker.

Step 2. Job tracker sends tasks to mappers according to the
type of requirement.

Step 3.Mapper sends interest packets to adjacent ICN
nodes according to the specific information of tasks. Through
the forwarding of interest packets in ICN, mapper obtains the
corresponding returned data. Mapper calls different functions
and algorithms to analyze and calculate the data.

Step 4. When Mappers complete their tasks, they
inform job tracker and storage-and-forwarding node of the
completed message. After receiving the message of task
completion, job tracker sends the corresponding task to
Reducers.

Step 5. Reducer sends interest packet according to the spe-
cific information of the task, and the storage-and-forwarding
node forwards them to the corresponding mapper to request
data. After receiving the corresponding data packet, reducer
calls different functions or algorithms to analyze and calcu-
late the data.

Step 6. After Reducers complete the task, they notify the
master and job tracker of the completed message and provide

the calculated results to users. So far we have completed the
entire MapReduce task.

Big data analysis is divided into three processes: content
filtering, content acquisition, and route generation.

For content filtering and content acquisition, Mapper sends
the interest packet to the edge node for recommendation
requesting, then Mapper classifies the traffic data through
the recommended information. And the Reducer determines
the specific data types needed according to the classification
result. After getting the required data, Mapper requests the
data and performs data analysis.

The big data analysis mechanism in IC-IoV is done through
ICN’s interest\data routing, as shown in Fig4. The edge node
requests traffic information and user requirements in real
time. The Mapper node requests the traffic information at
the edge and analyzes it to update the traffic topology weight
value in real time. TheReducer node obtains the trafficweight
through the mapper, and calculates the traffic task and the
driving route according to the user requirements of the edge.

V. MODEL AND PROBLEM FORMULATION
OF TASK PUBLISHING
In this game, the task publisher acts as the buyer and the
vehicle acts as the seller. The reward of the task publisher to
the vehicle that completed the mission (such as the evaluation
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FIGURE 4. Route planning sequence diagram.

of the vehicle) is paid as a result of the completion of the
transaction.

A. AUCTION TRADING RULES
In the course of the transaction, the buyer and the seller must
abide by the following rules:

a) First the vehicle and the task publisher evaluate the
same task. Set the vehicle’s estimate to Jv, and the task
publisher’s estimate to Jtask .

b) The vehicles participating in the auction give quotes for
this task. The quote given by the vehicle is pv, and the
lowest quote is ps.

c) If ps≤Jtask , the vehicle giving the lowest quote is con-
cluded with the mission publisher; otherwise, the trans-
action is not made.

B. THE VALUATION FUNCTION
When there aremore idle vehicles, there will bemore vehicles
seeking missions, so the valuation is lower. When the task
has not found the vehicle to be taken for a long time, it is
necessary to raise the price to realize the task assignment
as soon as possible. Therefore, we set the task publisher’s
valuation function to:

Jtask = Rt + αT + β(1−
Nf
Ns

) (1)

α > 0 and β > 0. T is the time the task has waited, Nf is
the number of idle vehicles,Ns is the total number of vehicles,
Rt is the lowest reward.
Every time the vehicle is auctioned for a mission, it must

hope to receive no less than the previous reward. When
the vehicle has more energy remaining, the vehicle will be
more active in seeking tasks, thereby reducing the quotation.
Therefore, we set the valuation function to:

Jv = Rv − µkv + ν(1−
Nf
Ns

) (2)

µ > 0 and ν > 0. kv is the percentage of remaining energy
of the vehicle.

C. GAME ANALYSIS
According to the trading rules: If the winning vehicle evalu-
ates the mission as Jv, the quote is ps, and ps≤Jtask , the task
publisher selects this vehicle to complete the task.We abstract
the transaction process of N (N > 1) vehicles for the same
task as a first-class sealed price auction model, and encourage
vehicles to voluntarily participate in task requests to maxi-
mize their own interests, thereby improving task publishing
efficiency.

The two sides of the task release transaction dynamic
game are: the task publisher (buyer) and the vehicle for the
tasks application (theN sellers participating in the auction).
We give the following assumptions:
a) Information is incomplete. The buyer only knows the its

estimate Jtask of this task, and the seller i only knows the
its own estimate Jviof the task;

b) Jv of any seller is distributed over the same interval
[ρ1, ρ2] and is the same distribution. Wherein, the distri-
bution function F and its density function f are common
knowledge;

c) The seller node i gives the quotation pvi according to
its own estimate Jvi and the game strategy. Moreover,
the higher the estimate Jv, the higher the quotation pv.
For any two different seller nodes i and j, if Jvi > Jvj,
then pvi > pvj.

For the buyer, the game strategy is to select the vehicle with
the lowest quote and lower than its estimate Jtask .

For seller i, if it is quoted the lowest in the auction and
lower than the buyer’s estimate, it is selected as the winning
vehicle, and the expected external income obtained is pvi−Jvi,
otherwise the return is 0.

The vehicles participating in the auction use the same game
strategy:

pvi = Q(Jvi) (3)

For any two seller nodes i and j participating in the game,
the probability that the quotation of node i is lower than the
quotation of node j is:

P{Q(Jvi) ≤ Q(Jvj)} = 1− F(Q−1(pvi)) (4)

Then the expected value of the additional income of the
vehicle i is: ∏

j 6=i

[1− F(Q−1(pvi))](pvi − Jvi) (5)

Maximize revenue and get:

max
∏
j 6=i

[1− F(Q−1(pvi))](pvi − Jvi)

= max [1− F(Q−1(pvi))]N−1(pvi − Jvi) (6)

To get the maximum value, make the first derivative equal
to 0. Get the equation:

ps = pvi = Jvi +

∫ ρ2
ρ1

[1− F(x)]N−1dx

[1− F(Jvi)]N−1
(7)
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Assume ρ1 = 0, ρ2 = 1, we can get the equation as
follows:

ps = pvi = Jvi +
1− Jvi
N

(8)

Users who participate in the auction will be quoted higher
than their estimate. And the more nodes involved, the closer
the transaction price is to its estimate.

VI. MODEL AND PROBLEM FORMULATION OF
INFORMATION SHARING
In IoV, vehicles are connected to each other, so they have the
function of a network communication node in addition to their
own driving functions. However, the resources contained in
the vehicle are limited. Each node will try to save resources
and show selfishness. In this chapter, we propose two incen-
tives to encourage route sharing, and node caching in IC-IoV.

A. GAME MODEL
In IC-IoV, when a vehicle requests a traffic task, it transmits
a corresponding interest package. The interest package is
forwarded between vehicles and eventually reaches the task
publisher in the edge node. After receiving the interest packet,
the edge node requests the content packet according to the
interest packet, and returns the corresponding data packet.
These packets are simultaneously returned to the requested
vehicle by the vehicle’s forwarding. Vehicles that do not apply
for a traffic mission need to seek route sharing with other
vehicles when they have the same form of route demand.

Caching after receiving data and responding actively when
requested by other nodes will greatly improve the transmis-
sion efficiency of the network, but at the same time bring
certain storage resources and energy loss to the vehicle. Some
vehicles themselves may save energy and save storage space,
and adopt a negative attitude towards cache content data and
response route sharing requirements, thereby affecting the
efficiency of task/route publishing in the Internet of Vehicles.

In game theory, participants are allowed to make corre-
sponding countermeasures by considering the countermea-
sures of other participants under certain constraints to obtain
the maximum benefit. There is a conflict of interest between
the participants, and the use of game theory to design the
incentive mechanism can better solve the conflict of use
between participants. Therefore, we propose an evolutionary
dynamic game model released by the edge task to suppress
the selfish behavior of the vehicle, and encourage the vehicle
to share the driving route and cache the data packets passing
through the node.

B. INCENTIVE MECHANISM FOR VEHICLE
NODE CACHING
In IC-IoV, large-scale distributed caching of data can greatly
reduce the request response time of vehicle nodes, but it
also occupies the storage space of the vehicle. We use the
evolutionary game model to motivate vehicles to actively
cache data and improve network forwarding efficiency.

Vehicles with additional storage resources in the IoV con-
stitute the group A. These nodes can choose to cache route
data or reject cache route data while forwarding data. The
strategy set of the group A isGA = {a1, a2}. a1 represents the
node caching the data packet and forwarding the data packet
at the same time; a2 indicates that the node does not cache the
data packet and directly forwards the data packet.

We set the reward for getting a fast data request to be Rr ,
the reward for data caching is Rc, the resource for cached data
is E , and Rc > E .
According to the evolutionary game rules, we can get the

participant’s payoff matrix as Table 1.

TABLE 1. The payoff matrix of game theory.

x(t) is the probability of selecting a1, then the probability
of selecting a1 is 1− x(t).
The reward of selecting a1 is shown as follows:

Ua1 (t) = x(t) ∗ (Rr + Rc − E)+ [1− x(t)] ∗ (Rc − E)

= x(t)Rr + Rc − E (9)

The reward of selecting a2 is shown as follows:

Ua2 (t) = x(t) ∗ Rr + [1− x(t)] ∗ 0

= x(t)Rr (10)

So the reward of group A is shown as follows:

UA(t) = x(t)Ua1 (t)+ [1− x(t)]Ua2 (t)

= x(t)(Rr + Rc − E) (11)

In each evolutionary process, each vehicle node evaluates
its own revenue with other vehicle nodes and chooses a
higher-yield strategy the next time.

The replication dynamic equation is shown as follows:

dx(t)
dt
= x(t)[Ua1 (t)− UA(t)]

= x(t) ∗ [1− x(t)] ∗ (Rc − E) (12)

Theorem 1: In the evolution process, the ESS exists and
there is only one evolutionarily stable strategy.

Proof: Let dx(t)dt = 0, we get:

dx(t)
dt
= x(t) ∗ [1− x(t)] ∗ (Rc − E) (13)

Rc−e > 0, so there are two stable points x1(t) = 0 and
x2(t) = 1.
Let F(x) = dx(t)

dt , x∗ is the ESS, so{
F(x∗) = 0
F ′(x∗) < 0

(14)
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According to (12),{
x∗ ∗ (1− x∗) ∗ (Rc − E) = 0
(1− 2x∗) ∗ (Rc − E) < 0

(15)

So x∗ = x2(t) = 1, x∗ is the only ESS.
As explained above, after time evolution, all participating

vehicles will choose strategy a1.

C. INCENTIVE MECHANISM FOR ROUTE SHARING
When the vehicle cannot take on the traffic task but still needs
to obtain the driving route and traffic information, the vehicle
needs to seek route sharing with other vehicles. We use the
evolutionary game model to motivate vehicles to share routes
and improve the efficiency of request response.

Group B is composed of vehicles that travel routes and
traffic information needs. These nodes may choose to accept
traffic data sharing or reject traffic data sharing. The strategy
set of group B is GB = {b1, b2}. b1 indicates that the vehicle
accepts traffic sharing data, and b2 indicates that it refuses to
accept traffic sharing data.

Group C is composed of vehicles with driving routes and
traffic information. These nodes can choose to share traffic
data or refuse to share traffic data. The strategy set of group
V is GC = {c1, c2}. c1 indicates sharing traffic data and c2
indicates refusing to share traffic data.

Assume that the node accepts the traffic data as Rb, and
the energy consumed is Eb; the revenue of each node sharing
traffic data is Rs, and the energy consumed is Es.
In group B, the probability of selecting b1 for vehicle nodes

is y(t), where y ∈ [0, 1];In group C , the probability of
selecting c1 for vehicle nodes is z(t), where z ∈ [0, 1].
According to the evolutionary game rules, we can get the

participant’s payoff matrix as Table 2.

TABLE 2. The payoff matrix of game theory.

In group B, if the node chooses b1, the reward is as follows:

Ub1 = z(t)(Rb − Eb)− [1− z(t)]Eb
= z(t)Rb − Eb (16)

If the node chooses b2, the reward is 0. So the reward of
group B is shown as follows:

UB = y(t)[z(t)Rb − Eb] (17)

In groupC , if the node chooses c1, the reward is as follows:

Uc1 = y(t)(Rs − Es) (18)

If the node chooses c2, the reward is 0.So the reward of
group C is shown as follows:

UC = y(t)z(t)(Rs − Es) (19)

The replication dynamic equation is shown as follows:
dy
dt
= y(t)[1− y(t)][z(t)Rb − Eb]

dz
dt
= y(t)z(t)[1− z(t)](Rs − Es)

(20)

After time evolution, all participating vehicles will choose
strategy b1 and c1.

VII. EXPERIMENTAL
In this section, we simulate and analyze the incentive mech-
anism of caching and sharing information in IoV based on
evolutionary games.

A. CACHING INCENTIVE MECHANISM SIMULATION
In group A, we assume that the probability of initial selection
strategy a1 is 10%, that is, the vehicle has 10% probability
of choosing to cache and then forward. The net benefit of the
vehicle’s cache is Rc−E = 3. Over time, the percentage of
vehicles that choose to cache data and reject cached data is
shown in Fig 5.

FIGURE 5. Simulation results of the method’s effectiveness.

It can be seen that when only 10% of the vehicles initially
select data buffering, all vehicles will eventually choose strat-
egy a1 over time, and the proportion of vehicles selecting
strategy a2 will be reduced from 90% to 0. This shows that the
vehicle that initially refused to cache the data will eventually
choose to cache the data after a period of the evolutionary
game.

When the probability of initial selection strategy a1 is 10%,
20%, 30%, 40% and 50%, the percentage change of vehicles
selecting strategies a1 and a2 is as shown in Fig 6.
It can be seen that at different initial probabilities, all

vehicles will eventually choose strategy a1. Moreover, as the
initial probability increases, the proportion of vehicles select-
ing strategy a1 converges to 1 more quickly. This shows that
the higher the initial proportion of the selection strategy a1,
the less time required for all vehicles to select the strategy a1.

The probability of initial selection strategy a1 is set to 10%,
the energy consumed by the cache isE = 1 , andRc is set to 3,
4 and 5. The trend of the vehicle proportion change of the
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FIGURE 6. Influence of initial strategy selection probability on the
evolution process.

FIGURE 7. Influence of rewards on strategy choices.

selection strategy a1 is as shown in Fig 7. It can be seen that
the more the revenue is selected, the easier it is to stabilize
the vehicle to 100.

Through the above simulation, we can know that by setting
appropriate parameters, the purpose of stimulating the vehicle
for content caching can be achieved.

B. INFORMATION SHARING INCENTIVE MECHANISM
SIMULATION
In group B, we assume that the proportion of vehicles that
choose strategy b1 is 10%. At the same time in group C ,
we assume that the proportion of vehicles that choose strategy
c1 is also 10%. As time passes, the percentage of vehicles that
choose strategies b1 and c1 is as shown in Fig 8.

It can be seen that, with the remaining variables fixed,
that is, the incentive measures are certain, the probability of
selecting the strategies b1 and c1 among the two groups is
increasing with time and is stable at 1.

When the vehicle requests the acquisition of the traffic
information Rb is 6, 10 and 14, and the remaining variables
are unchanged. As time passes, the percentage of vehicles that
choose strategies b1 and c1 is as shown in Fig 9 and Fig 10.

FIGURE 8. Simulation results of the methodâĂŹs effectiveness.

FIGURE 9. Effect of Rb on strategy choices in Group B.

FIGURE 10. Effect of Rb on strategy choices in Group C .

It can be seen that when the income is small, the probability
of selecting b1 in group B is gradually reduced, and the
selection strategy c1 in group C is not basically increased.
When the income is large, the ratio of the selection strategies
b1 and c1 in the two groups increases with time and stabilizes
at 1.

When the revenue Rs of the vehicle for data sharing is 2,
4 and 6, the remaining variables are unchanged. As time
passes, the percentage of vehicles that choose strategies
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FIGURE 11. Effect of Rs on strategy choices in Group B.

FIGURE 12. Effect of Rs on strategy choices in Group C .

b1 and c1 is as shown in Fig 11 and Fig 12. It can be seen
that the more the revenue is, the easier it is to stabilize the
vehicle probability of selecting b1 and c1 to 100%.
Through the above simulation, we can know that by setting

appropriate parameters, the purpose of stimulating vehicles
for information sharing can be achieved.

VIII. CONCLUSION
In this paper, we proposed an edge-MapReduce architecture
to implement big data acquisition and analysis in IC-IoV
to achieve efficient AVs route planning. By introducing a
big data processing architecture, we realized data analysis
at the network layer and realized the cognitive and active
acquisition of traffic data through intelligent networks. Intel-
ligent IC-IoV analyzed traffic data and user needs to get
traffic tasks and corresponding driving routes. At the same
time, using the evolutionary game model, we have realized
the incentive mechanism of task allocation and information
sharing. The simulation results showed that our strategy can
promote information sharing in IoV and stimulate vehicles to
share data. In future research, we will consider providing a
wider variety of services to IoV through intelligent networks
with big data analysis capabilities. In addition, considering

user privacy and traffic safety, edge information protection is
also our research direction in the future.
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