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ABSTRACT The recent developments in the areas of the Internet of Things (IoTs) have provided a rapid
growth in the epoch of the novel information-centric collections (IC-IoTs). In the IC-IoTs, expanding the
ranges of information collections and reducing the costs are important issues for the information required
platform. In the previous scenarios, the information is collected in a random manner, which leads to lower
coverages and higher costs. Thus, a ‘‘optimizing the coverage via the unmanned aerial vehicles (UAVs)
with lower costs for information-centric Internet of Things’’ (OCLC-IoTs) approach is established, which
targets to improve the coverage ratio and to reduce the costs of the information-required platform via the
cooperation of the information collectors and the UAVs. First, to improve the coverage ratio, an intensive
strategy is proposed to inspire the information collectors to bid for the tasks published by the platform and an
improved rolling horizon strategy (IRHS) strategy is designed to plan the flying routes of the UAVs to reach
more coverage ranges. Then, to reduce the costs factor, the IRHS strategy is designed to shorten the flying
routes of the UAVs under the prerequisite of guaranteeing coverage ratio to achieve fewers costs. Finally,
a comprehensive theoretical analysis and experiments are provided, which indicates the advancements of the
OCLC-IoTs scheme. Compared with the previous studies, the OCLC-IoTs scheme can improve the coverage
ratio of information by 21.42% approximately and can reduce the cost ratio by 13.335% to 34.32%.

INDEX TERMS Coverage, costs, unmanned aerial vehicle, information-centric Internet of Things.

I. INTRODUCTION
Recently, the Internet of things (IoTs) which can support
the information exchanges among human-to-human, human-
to-applications and applications-to-applications by utilizing
the communications among various of smart sensor devices
have gained enough attentions in a smart city [1]–[4]. With
the rapid growth of the various information [5], a novel
communication model named information-center network-
ing (IC) is arisen [6], [7], which concentrates to collect
the information with a novel and effectively manner. Prob-
lems arise in plenty of aspects in the IC-IoTs networks, such
as the energy-consumption issue [8]–[10], novel communica-
tion methods [11], [12], time-consumption issue [13], [14],
transfer-efficiency issue [15], security issue [16]–[19],

privacy issue [20]–[23] and delay issue [24], [25], etc. Those
schemes have given novel thoughts in promoting the advance-
ments of the IC-IoTs networks.

In the IC-IoTs, both the applications and the humans with
smart sensor devices, such as the mobile-phones, the iPads
and the computers, can accomplish the processes of the
receptions, sensors and transmissions [26]. A virtual appli-
cation can publish the tasks and require information. This
virtual application is called ‘‘platform’’ in this paper. Obvi-
ously, the IC-IoTs have provided a novel environment for
the platform which requires information of the whole smart
city. It is convenient for the platform to reach the infor-
mation (such as the fog-haze condition monitoring) by
both the applications and the humans with smart sensor
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devices [11]. And the platform will pay for the information
collectors.

However, there are many issues accrued during the infor-
mation collection processes. Without selections, the collected
information will be redundant [26] and the coverage ratio of
them will be lower [27]–[30]. The rewards of the information
collectors will directly lead to the costs of the platform, with-
out a suitable selection method. In addition, the deficiencies
of the previous researches are reflected as follows.

(1). In the IC-IoTs networks, because of the nonuniform
distributions of both the applications and humans with sensor
devices, the information in the urban regions will be redun-
dant and the information in some of the suburban regions can-
not be collected timely. Meanwhile, arranging plenty of the
static sensor devices will lead to huge costs for the IC-IoTs,
which is unrealistic. Therefore, if a platform published a task,
such as the weather monitoring and the fog-haze conditions,
the data in some suburban regions may not be obtained by
the applications or the humans, which would have a great
impact on the analysis results of the platform. The platform
might make a wrong decision on the weather or the fog-
haze predictions. Therefore, in the IC-IoTs, improving the
coverage ratio of the information collections is an urgent
problem.

(2). In the previous approaches, few of them have a
research on the redundant issue of the information collec-
tions in one region. In some conditions, such as the weather
monitoring or the fog-haze condition monitoring, clearly,
a piece of information can represent a limited region. In some
regions, especially in the urban regions, there will have much
collected information due to the large number of humans in
those regions. Therefore, there is no need to collect more
information in one limited region. In addition, more informa-
tion collections in this region will lead to the redundant issue
and will have a directly influence on the costs of the platform.
Simplifying the information collections can reduce the costs
of the platform in an efficiency way. Therefore, considering
the cost issue, it is important to handle with the data redundant
problem while guaranteeing the coverage

Obviously, the platformwhich publishes the tasks targets to
require for more information of a smart city. And the platform
needs to reach the information within a limited time period.
Based on the precious schemes, the coverage ratio of the
information cannot reach to an ideal level and the costs of
the platform are high.

Therefore, based on the previous schemes, this paper pro-
poses a novel approach named ‘‘Optimizing the Coverage via
the UAVs with Lower Costs for Information-Centric Internet
of Things’’ (OCLC-IoTs) to handle with the coverage issue
in the information-collection processes, as well as minimize
the costs of the platform. The main contributions of this paper
are shown in the following.

(1). The OCLC-IoTs approach improves the coverage
ratio by the utilizations of the unmanned aerial vehicles
(UAVs). To satisfy the coverage ratio, the UAVs which have
the characteristic of high-mobility, can be utilized as the

information collectors. Firstly, based on the incentive strat-
egy and the selection method, with the participations of
the sensor-devices people, the platform can obtain the data
information in some regions via the wireless networks. Then
for the rest of the regions in a city, the information cannot
be achieved by the platform. Therefore, in the OCLC-IoTs
approaches, the UAVs are used to collect the information
in the rest of the regions. With the participations of UAVs,
the platform can obtain the information in the regions without
participants of sensor-devices people, which will improve the
coverage ratio of information collections to a great extent.

(2). The OCLC-IoTs approach also focus on the way to
reduce the costs of the platform. For the sensor-devices peo-
ple, the redundant information collections in a limited region
will cause more costs of the platform, because the platform
need to pay those participant people rewards. Therefore,
the OCLC-IoTs approach focuses on reducing the costs paid
for the people by selecting the one with minimum distance.
In the intensive strategy, the rewards of the urban regions are
less than those of the suburban regions. In a limited region,
the one with smallest distance (between this people and the
platform) will be chosen as the information collector to reach
minimum costs. Moreover, with the utilizations of the UAVs,
how to organize them to reach lower costs is a significant
issue. Considering the costs of the UAVs, the OCLC-IoTs
proposes an improved rolling horizon strategy (IRHS) to
minimize the flying routes of them.With the optimized IRHS,
when guaranteeing the coverage factor, the UAVs can reduce
the travelling distances. Thus, the energy consumptions of the
UAVs are reduced, which will decrease the costs of the UAVs
and reduce the costs of the platforms in an effectively manner.

(3). Through a comprehensive evaluation and experiment,
we demonstrate that both the performances of the cov-
erage ratio and the cost factor can be optimized by the
OCLC-IoTs approach. Compared with the previous schemes,
our approach can make a better performance in the aspect of
information collections. To be specific, with the OCLC-IoTs,
the coverage ratio of the information collections can be
improved by 21.42% approximately, and the cost factor of the
platform can be reduced by 13.33% to 34.32% approximately.
The OCLC-IoTs approach can improve the coverage ratio as
well as reducing the costs of platform, which has achieved
the initial requirements and is difficult to be achieved in other
schemes.

The remainders of this paper are organized as follows.
In the Section II, the related works are described. In the
Section III, we explain the system models and problem state-
ments. In the Section IV, the research motivations and the
designs of the OCLC-IoTs scheme are presented. Both the
experimental settings and the simulation performances are
analyzed in the Section V. Finally, Section VI concludes the
whole paper.

II. BACKGROUND AND RELATED WORK
The IC-IoTs are highly correlated systems among things to
things. Thus, the optimization of the information collections
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implies a comprehensive consideration of both the cover-
age ratio and the costs. In the recent years, there are many
researches proposed to deal with this problem, many of them
optimize the performances in the aspects of network frame-
work [31]–[34] and new transmission protocol [35]–[37], etc.

The information can be collected by people with sensor
devices like mobile-phones in the IoTs networks [38]. The
paper [39] proposed a novel framework to optimize themobil-
ity of the UAVs as well as reduce the uplink power. It firstly
utilized the locations of the active devices in the IoTs to
optimize the locations of the UAVs, and determine the associ-
ations among those UAVs. Then it analyzed the mobility pat-
terns of the UAVs to serve the IoT devices with a dynamically
with a minimize energy consumptions. This approach mainly
focuses on reducing the transmission power by redefining
the mobility patterns and associations of the UAVs. How-
ever, it didn’t take the issue of the transmission power for
the UAVs into considerations. Collecting the information of
amounts of active devices will lead to large costs of the UAVs.
Manuscript [40] proposed a new framework which relying
on the modified Louvain method for the communications of
the UAVs. It targeted to save the power of the information
collectors. However, in the most situations, the users, with
the characteristics of uncertainty and emotional, are hard to
be clustered. Even they are clustered in a time period, in the
next time period, those clustered results may not satisfy the
real situation. Therefore, it is hard for the UAVs to define
the locations and collect the information in the centroids of
the user clusters. To make a balance between the transmission
energy of the sensor devices and the consumptions of the
UAVs. Paper [41] proposed a novel and effective framework
to control the UAVs with the deep reinforcement learning.
With the convolutional neural networks, the features of infor-
mation can be obtained. With the guidance of deep learning
networks, it indicated that the UAVs can travel in the smart
city without controls. However, the neural networks are lack
of interpretations and this framework will be crushed by the
adversarial examples easily, which will lead to the network
crash issue without a reasonable security solution. Those
existed problem can lead to increasing the energy costs of
the UAVs and reducing the coverage ratio. Bujari et al. [42]
consider to use the coordinates to route greedily by the nodes’
locations, and expanded the location-based packet routing
mind to the 3-D UAVs’ environments, which built a novel
framework for the transmission process.

The above researches are based on the framework con-
structions. In the paper [43], it studied the UAVs-information
collection system by assuming the situation that a UAV is
dispatched to collect the information at a fixed location.
This scheme proposed a novel mind which is to make a
tradeoff between those two energy factors in the transmission
processes to improve the system performances. However,
it didn’t consider the problem of how to reach higher cover-
age ratios with less energy consumptions. In the paper [44]
targeted to maximize the energy efficiency via optimizing
the flying routes of the UAVs. With general constraints of

the trajectories, it could optimize the energy efficiency of
the UAVs. And it didn’t consider the coverage ratio. And
paper [45] introduced a scheme to reduce the energy con-
sumptions and make full use of the energy of the UAVs.
Firstly, it solved the route planning problem by either
dynamic programming or genetic algorithms, and then solved
the task assignment problem by the Gale-Shapley algorithm.
The method in the [45] researched the revenue of the infor-
mation carriers. With the method in the [45], the energy
consumptions of the UAVs can be reduced and the revenue
of the information carriers is improved. Baek and Lim [46]
discussed the usages of the UAVs in the area of the mili-
tary and commercial domains, for the UAVs can be seen as
the relay nodes while transmitting information. This paper
researched on building a future UAV-relay tactical informa-
tion link. However, those above schemes didn’t consider the
coverage factor of information. And if the platform requires
for the information distributed in the whole city, only with the
collections of the UAVs’ will lead to a high cost.

A new framework in the paper [47] introduced an approach
to improve the stationary coverage of the target region by
three sub schemes, the centralized optimal solution, the dis-
tributed game-theory-based strategy and the bio-inspired
scheme. This paper optimized the performances of the trans-
mission processes between the UAVs and the information
owners in many aspects, including the UAV positioning and
deployments, and the cost-benefit tradeoff of information
exchange. And derived the approximation of the centrally
computed optimum.

However, less of the above schemes studied on reaching the
information by utilizing both the UAVs and the smart-devices
humans or applications in the IoTs networks. Therefore, in the
IC-IoTs, it is significant to develop a novel scheme to improve
the coverage ratio, as well as reduce the platform costs by
using the UAVs and the smart-devices humans. In the OCLC-
IoTs scheme, both the smart-devices people and the UAVs
are utilized to sense the information. With the participation
of UAVs and the incentive strategy, we believe that our works
can improve the coverage ratio of collected information, and
reduce platform costs with an effectively manner.

III. THE SYSTEM MODEL AND PROBLEM STATEMENT
A. THE SYSTEM MODEL
In this subsection, the system model of the OCLC-IoTs
scheme is provided.

In the OCLC-IoTs scheme, suppose that there is one plat-
form in a smart city. The platform is responsible for publish-
ing different kinds of tasks (such as the weather condition
monitoring and fog-haze monitoring), which requires higher
coverage ratios. In the IoTs, firstly, with the intensive strategy,
the users with smart phones can take part in the published
tasks and then get rewards from the platform. The information
in the rest of regions with less users’ collections will be
obtained by the UAVs, the system model is provided in the
Fig. 1.
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FIGURE 1. The system model.

At time T , with the intensive strategy, the platform
publishes a task ∅ (such as gathering the information of
the haze conditions in a city). Then part of the users
distributed in the city will bid for the task ∅. The set of
bidding users for the task ∅ is defined as U∅, where U∅ =
(u∅1, u∅2, u∅3, . . . . . . u∅(n−1), u∅n). Then the platform will
select several users to participant in the task ∅. At time
T + 1, the selected users will sense the information, which
is required by the platform. And transmit the information to
the platform. Then the platformwill pay for the selected users
according to the intensive strategy. At time T + 2, we can
obtain the regions without information. The information in
those regions can be collected by the UAVs.

If several users bid for the task in a region, then the platform
will choose the nearest one. Then, the regions with less
mobile-phone users will be collected by the UAVs.

B. THE PROBLEM STATEMENT
There are many researches that have focused on the
information-collections issue [8], [21], [29], [41]. However,
the distribution characteristic of the mobile-phone users is
nonuniform, which will lead to missing the information in
the regions without user participations. This will have a great
impact on the collection performances of a task.

Thus, the problem statements focused on in this paper
is shown as follows: in the IoTs, a platform can publish
different kinds of tasks. Most tasks, such as the air condition
monitoring and the fog-haze conditions, need to achievemore
regions’ information in a city. The users with mobile-phones
can bid for the tasks and obtain the surrounding information
within the limited sensor region r. In the regions without
users’ participants, the platform will arrange the UAVs to
get the information in those regions. With the cooperation of

those two types of sensor applications, the coverage ratio of
the collected information can be expanded.

To inspire the users with mobile-phones to take part
in the tasks, the platform utilizes an intensive strategy.
For the regions without the collection users, the UAVs
are utilized to sense and collect the information. To keep
a balance between the cost ratio and the coverage ratio,
the flying trajectories of the UAVs are defined by the
IRHS strategy in the OCLC-IoTs scheme. The experimen-
tal results illustrate that with the intensive strategy and
the IRHS strategy, both the performances of coverage and
costs have been optimized. The set of UAVs is defined as
UAV = (uav1, uav2, . . . . . . , uavm−1, uavm). And the set
of tasks published by the platform is defined as Tas =
(task1, task2, . . . . . . , task∅−1, task∅).

(1). Coverage improvement.

Cov =
N
(
Cov
i∈I

(ui)
)
+ N

(
Cov
i∈I

(
Uj
))

N (range)
(1)

where N (range) represents the total number of ranges,

N
(
Cov
i∈I

(ui)
)
is the number of coverage regions of the users

with mobile-phones. And N
(
Cov
i∈I

(
Uj
))

is the number of

coverage regions of the UAVs. In the OCLC-IoTs scheme,
the city is divided into several small regions, which is defined
as range = (r1, r2, r3 . . . . . . , rk−1, rk ). Each small region is
a data collection area. The size of each region in the set range
is the same, defined as n× m.
(2). Cost reduction.

Cos = Cuser + CUAV =
∅∑
i=1

n∑
k=1

min
(
diski
D

)
× Costki

+

∅∑
i=1

m∑
j=1

Timeij × ω (2)

where Cuser is the costs of the mobile-phone users and the
CUAV is the costs of the UAVs. The diski represents the
distance between the user uk and the platform in a task task i,
and D is a constant number. For a task task i, the Costki is the
reward basis in the region where the user uk is in. The Timeij
represents the flying time of the UAV uavj for the task task i.
And ω is a static value, which represents the costs of UAVs
in a time interval.

To make it convenient for the readers to understand this
paper, the related parameters and some notations have been
listed in the Table 1.

IV. THE DESIGN OF OCLC-IOTS SCHEME
A. RESEARCH MOTIVATIONS
The research motivations of OCLC-IoTs scheme are based on
the comprehensive analysis in the Internet of Things (IoTs).
The main two motivations are shown as follows.
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TABLE 1. Related parameters and notations.

1) MOTIVATION ONE
The first motivation is to reduce the costs of the platform.
In the previous cost distribution schemes, the costs are paid
to participants according to a static cost basis, which cannot
inspire users to take part in. Moreover, without selections,
this can lead to the data redundancy issue. Therefore, in the
OCLC-IoTs scheme, a model to reduce the cost ratio is
introduced.

2) MOTIVATION TWO
The second motivation is to improve the coverage ratio of
the information-collection ranges of a task published by the
platform. In the previous scheme, the information in many
regions cannot be obtained, owing to many kinds of reasons.
Therefore, in the OCLC-IoTs scheme, both the users and
the UAVs are utilized to collect the information required by
the platform. In the regions without users’ participations,
the UAVs are arranged to reach the information, routing
by the IRHS strategy in the OCLC-IoTs scheme. With the
cooperation of users and UAVs, the coverage ratio can be
optimized to a large scale.

Based on the above two research motivations, the OCLC-
IoTs scheme is proposed to achieve the purposes of coverage
improvements and cost reductions by means of the utiliza-
tions of both the mobile-phone users and the UAVs.

B. COST REDUCTIONS
In this subsection, the method to reduce the cost ratio in the
OCLC-IoTs scheme is introduced.

The city is divided into several big ranges, defined as
R = (R1,R2,R3 . . . . . . ,Rq−1,Rq). The size of each region
division is static, defined as A × B. The basis stations of the
UAVs are in the intersections of the big regions, defined as
L = (L1,L2, . . . . . . ,Lp−1,Lp). The locations of the UAVs’
basis are shown in the Fig. 2.

FIGURE 2. The location of the UAVs’ basis station.

As defined above, there are many small regions in a big
region. The information in each small region is required to
be collected. The size of a small region is static, defined
as a × b. To be specific, a small region division is the
basic unit of information collection. And there are A×B

a×b small
region divisions in a big region division, which indicates that
there should have A×B

a×b pieces of information in a big region
division.

In the cost reduction model, the city is divided into α
regions, according to the density degree of a city, defined in
the equation (3).

Cost =


Cost1, in the density class1 D1

Cost2, in the density class 2 D2

. . .

Costα, in the density classα Dα

(3)

The costs of the platform for the users can be also called the
rewards of users. Therefore, improving the rewards of users
can inspire the users to participant in the tasks, especially in
the suburban regions. For a task ∅, the costs of the platform
for a user uz is defined in the equation (4).

Cu∅z =
disu∅z
Du∅z

× Costu∅z , u∅z ∈ U∅ (4)

where the disu∅z is the distance between the user uk and the
platform in the task ∅, the Du∅z is a static value in a region
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division, defined as half of the maximum distance in the
density class Dα where the user uk is in. And the Costu∅z is
a basis cost value in the region division where the user u∅z
is in. The definition of Du∅z is same as the Costu∅z , shown as
D = (D1,D2, . . . . . . ,Dα−1,Dα).
Then for the users in a small region rk , the one with

minimum distance is selected, shown in the equation (5).

MIN
u∅1→u∅n
z∈[1,n]

Cu∅z , ∀u∅z ∈ rk (5)

Then we can derive the costs of the platform paying for the
users for the task ∅, shown in the equation (6).

Cuser =
rk∑
r1

MIN
u∅1→u∅n
z∈[1,n]

Cu∅zCu∅z , ∀u∅z ∈ rgandrg ∈ [r1, rk ]

(6)

With the selection scheme of users’ participants, the plat-
form can reduce the costs of users to a great extent. And with
the intensive strategy, the users can be inspired to bid for the
tasks.

However, the information in many regions still cannot be
collected, owing to two reasons. The first reason is, the users
in those regions cannot be inspired because they think the
rewards aren’t enough. The second reason is that there are
no users in those regions. For the first reason, the platform
can improve the rewards within a limited range to inspire
the users to participant in, shown in the equation (7). For the
second reason, the platform will hire the UAVs to collect the
information.

C
′

u∅z =
disu∅z
Du∅z

× Costu∅z + β, u∅z ∈ U∅ ∩ C
′

u∅z < ϕ (7)

ϕ = ωθ =
ω ×

√
a2+b2
v

η
(8)

where the ϕ is themaximum costs of the UAVs in a region and
v is the static speed of a UAV.When the employment cost of a
UAV is less than the C

′

u∅z , the platform will hire the UAVs to
collect the information. η is a static value to restrain the value
of ϕ.

And for the value of ω of a UAV uavf , the definition is
shown in the equation (9).

ω (v) = ϑf ,1v3 +
ϑf ,2

v
(9)

In the simulations, the v of each UAV is a constant value.
The ϑf ,1v3 in the equation (9) is the required power to balance
the parasitic drag and the ϑf ,2v is the required power to balance
the drag force of air redirections. The calculations of the ϑf ,1
and ϑf ,2 are shown in the equation (10).

ϑf ,1 ,
1
2
ςGQf

ϑf ,2 ,
2H2

f(
πeεf

)
ςQf

(10)

where the Qf is the region of the UAV uavf and the G is
the coefficient of zero-lift drag force. The ς is the air mass
density. εf is the wing aspect ratio of the uavf and the Qf is
the weight for the uavf .
After improving the rewards of users, the extra costs of

those users can be derived, shown in the equation (11).

C
′

user =
∑

u∅z∈U∅

MIN
(
disu∅z
Du∅z

× Costu∅z + β
)

(11)

In a time period, the costs of the UAVs are the same,
defined as ω. Therefore, with the time increases, the costs of
a UAVwill increase at the same time. Thus, the flying time of
the UAVs needs to be minimized. For a task ∅, the costs of the
UAVs are defined in the equation (12). Because the costs of
the uavf when changing its heading direction is much smaller
than the flying costs, therefore, the head-changing costs of the
UAVs will be ignored.

Cuav =
uav∅m∑
uav∅1

ωTuav∅f , uav∅f ∈ [uav∅1, uav∅m] (12)

where the Tuav∅f represents the time of the UAV uavf spend
for the task ∅. To reduce the costs of the UAVs, a routing
method is proposed to minimize the flying time of the UAVs,
which is introduced in the next subsection.

Then the costs of the platform for a task ∅ can be derived,
shown in the equation (13).

C∅ = Cuser + Cuav + C
′

u∅z

=

rk∑
r1

MIN
u∅1→u∅n
z∈[1,n]

Cu∅zCu∅z +
uav∅m∑
uav∅1

ωTuav∅f

+

∑
u∅z∈U∅

MIN
(
disu∅z
Du∅z

× Costu∅z + β
)

(13)

In general, the details of the OCLC-IoTs scheme in this
subsection are summarized in the Algorithm 1.

C. COVERAGE IMPROVEMENTS
In this subsection, the method of coverage improvement
model in the OCLC-IoTs scheme is introduced.

The OCLC-IoTs scheme utilizes both the users with
mobile-phones and the UAVs to optimize the coverage ratio
of information required by the task. For the users, the
OCLC-IoTs scheme inspires them to collect information via
improving the rewards, which is introduced in the above sub-
section. And for the UAVs, the OCLC-IoTs scheme defines
the improved rolling horizon strategy (IRHS) scheme to
optimize the coverage ratio of the information, which is
introduced in the following.

The main target is how to organize the flying routings of
the UAVs to collect the information in the regions which
haven’t been collected. As defined above, the basis stations
of the UAVs are located in the intersections of the big regions.
In the IRHS scheme, for a task ∅, the regions which have been
collected by the users can be treated as blocks, the number of
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Algorithm 1 Algorithm to Reduce the Costs in the
OCLC-IoTs Scheme

Input: p, task∅, a, b,A,B, q
Output: costs of platform costp
1: For a task ∀task i ∈ task∅, i : 1→ ∅
2: For users of task i range: uiz ∈ Ui, z : 1→ n
3: ForX = X + a ∩ X ≤ qA // the range of X
4: ForY = Y + b ∩ Y ≤ qB // the range of Y
5: If the uiz.x ≤ X ∩ uiz.y ≤ Y
6: Record the uiz in the list rXY
7: // plot the users in each small region
8: End if
9: End for
10: End for
11: End for
12: // for the small region r1→ rk
13: ForX = X + a ∩ X ≤ qA
14: ForY = Y + b ∩ Y ≤ qB
15: For the users in a small region
16: Calculate the distance
17: Select the minimum distance mind
18: End for
19: Calculate the costs cos of the selected one
20: c = c+ cos//calculate the user’ costs
21: End for
22: End for
23: costpi = c+ cuavi = c+

∑uavim
uavi1 ωTuavif

24: // the costs of task task i
25: costp = costpi + costp
26: End for
27: End algorithm 1

them is defined as x. Then the number of regions without data
information is k − x.
In the IRHS scheme, the next step of a UAV is decided

according to the distance priority and then the time-stamp
priority. The number of neighbor regions of each small region
ranges from 0 to 4. If a small region has been collected, them
this region will be treated as a block. Each step of a UAV will
record the nearest regions’ ID to a list. The definition of IRHS
scheme is show in the equation (14).

timeε+0= list
{
neiε1 , neiε2 , . . . . . . , neiεσ

}
;

timeε+1= list

{
neiε+1ε1 , neiε+1ε2 , . . . . . . , neiε+1εσ ,

list (timeε+0)

}
;

. . . . . . . . . ;

timeε+λ= list

{
neiε+λε1 , neiε+λε2 , . . . . . . , neiε+λεσ ,

list(timeε+0)→ list(timeε+λ−1)

}
;

where σ ∈ [0, 4] and MIN
[
dis
(
(ε + λ)→neiε+λεσ

)]
∩ MIN

[
TS
(
list

(
neiε+λεσ

))]
(14)

The neiε+λε1 in the equation (14) indicates the neighbors of
the small region number rε+λ. The TS is the time stamp of the
neighbors in the list

(
neiε+λεσ

)
. To sum up, the next step of

FIGURE 3. An example of IRHS scheme.

a UAV will choose the minimum distance and the maximum
time stamp.

For a big region R1, an example is introduced in the Fig. 3.
In the Fig. 3, suppose that there are 16 small regions

(ranging from r1 to r16) in a big region R1. The information
in the small region r1, r7 and r12 has been collected by the
users with mobile phones. The r1, r7 and r12 can be looked
as blocks. According to the definition, the basis station of the
UAVs is set in the bottom right corner. The UAV needs to
collect the information in the rest of the small regions.

The collection route of the UAV uav1 follows the IRHS
scheme. The uav1 chooses the least distance to start. In the
Fig. 3, obviously, the uav1 will fly at the small region r16. In
the r16, the neighbor-region is only r15, recorded as {r15},
thus the next region is r15. In the r15, there are two small
regions, r14 and r11 respectively. Both the distance priority
and the time-stamp priority of the r14 and r11 are the same,
recorded as {r11, r14}. Thus the uav1 will randomly select a
small region in the and the set {r11, r14}. Suppose the uav1
chooses the r11 as the next step. Then the rest of the list is
{r14}. For the r11, the neighbor region is {r10}, then add
the {r10} to the list {r14}. In the list {r10, r14}, according
to the distance priority firstly, the uav1 will choose the r10
as the next step. The rest of the list is {r14}. Then the uav1
will move to the small region {r10}. At r10, there are three
neighbor regions, the r6, r9 and r14 respectively. Add the three
regions to the list and then we can obtain {r6, r9, r14}. The
distance priorities of them are the same, thus according to the
time priority, the time-stamp of r14 is larger. Thus, the next
step of the uav1 is r14.

To sum up, at each small region, the UAV decides the next
step according to the distance priority and then the time-
stamp priority.

Via the IRHS scheme, the flying routing of the
uav1 in the Fig. 3 can be organized as follows:
{r16, r15, r11, r10, r14, r13, r9, r5, r6, r2, r3, r4, r8}.
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If a small region rk is in the list at time t1, the time-stamp
of the rk is defined in the equation (15).

TSrk = 1+ t2 − t1 (15)

where the t2 indicates the next step of the UAV is rk .
In reality, after the users’ participants, the rest of regions

may cannot form into a connected graph. Therefore, the IRHS
scheme defines a threshold number σ for each big region. The
value of σ in a big region Rq is defined in the equation (16).

σRq =
1
2
× MAX
`1→`τ

N (`γ ), `γ ∈ [`1, `τ ] (16)

where the `γ is a connect graph in the big region Rq, and τ is
the total number of the connect graph in the region Rq. If the
number of the small regions in a `γ is larger than the threshold
σRq , then a UAV is hired to collect the information. Else the
information will be dropped; the trade-off strategy is shown
in the equation (17).{

N
(
`γ
)
≥ σRq , arrange UAVs

N
(
`γ
)
< σRq , drop the `γ

(17)

The IRHS scheme can reach an ideal coverage ratio as well
as reduce the costs of platform in hiring the UAVs. With the
intensive strategy of users and the IRHS scheme of the UAVs,
the coverage ratio of the information required by the platform
can be improved to a large scale.

After defining the trade-off strategy in the IRHS scheme,
the connected graphs in a big region Rq can be selected,
shown as `Rq = (`1, `2, . . . . . . , `δ). The station which needs
to arrange theUAVs to the `Rq in the big rangeRq is discussed.
The selection definition of the basis station LRq is defined in
the equation (18).

LRq = MIN
`1→`δ
L1→Lp

Dis
(
`µ,Lρ

)
= MIN

`1→`δ
L1→Lp

√(
x`µ − xLρ

)2
+
(
y`µ − yLρ

)2 (18)

With the equation (14), the basis station which need to
serve the big region Rq can be obtained.
In the OCLC-IoTs scheme, the IRHS scheme is introduced

in the Algorithm 2.

V. THE EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETTINGS
In this subsection, the experiment settings and evaluation
environments are introduced detailly. The experiments are
made based on the Beijing T-driver datasets in the 2008. The
T-drivers are the users with mobile phones in a smart city.
In the T-driver datasets, there are 10,357 taxis (which are
the users) which are recorded by the GPS services. The time
period ranges from Feb. 2 to Feb. 8, 2008 and the dataset
includes 15 million geographical points, which can provide
a suitable environment to carry on the simulations.

In the simulations, the abscissa of themap is from 116.07 to
116.7 and the ordinate is from 39.68 to 40.22. And the costs of

Algorithm 2Algorithm to Improve the Coverage Ratio in the
OCLC-IoTs Scheme
Input: p, x,Rq,L
Output: coverage ratio cov
1: n = x;
2: For big regions Rξ : R1→ Rq
3: Record the connect graph in the Rξ to listRξ
4: For the connect graph in listRξ
5: Calculate the value of σRξ
6: Form a new list list

′

Rξ
7: End
8: For the Lρ in the L
9: Calculate the distances among list

′

Rξ and Lρ
10: Record the minimum distance disRξ → list

′

Rξ
11: Record the Li
12: End
13: For the connect graph `γ in the list

′

Rξ
14: While (`γ is not empty)
15: Record the neighbor of the current small region

rtj at time tj in the list l
`γ
Rξ

16: Decide the next step at time tj+1 via the distance
priority and the time priority

17: % = the number of small regions
18: n = n + %;
19: End while
20: End
21: End
22: cov = n

k //k is the total number of small regions
23: Return cov;
24: End algorithm 2

the region divisions are determined according to the density
degree of the Beijing city, shown in the equation (19).

Cost =


Cost1 = 90, in the density class 1
Cost2 = 130, in the density class 2
Cost3 = 170, in the density class 3

(19)

where the region division 1 ranges from 116.295 to
116.52 and 39.853 to 40.036. The region division 2 ranges
from 116.22 to 116.595 and 39.7615 to 40.0909, except for
the range division 1. And the rests are the region division 3.

The abscissa of the map is from 116.07 to 116.7 and the
ordinate is from 39.68 to 40.22, which is equals to the abscissa
value is 50km and the ordinate value is 60km.

The size of the big range is defined as A × B, where
(A = 18 km) × (B = 20 km). And the size of the small
range is defined as a × b, where the (a = 2 km) × (b =
2 km). Thus, for example, in a big range L1, there are A×B

a×b =
18×20
2×2 = 90 small regions, which indicates that there are
90 collection units. Therefore, in the simulations, there are
750 small collection regions in general. And the platform is
located in the center of the Beijing city, the coordinate of it is
(116.385, 39.945).
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TABLE 2. The coordinate of the basis stations.

According to the definitions of the basis station, there
are four basis stations of the UAVs in the simulations. The
coordinates of the basis stations L1, L2, L3 and L4 are shown
in the Table 2.

The basis stations are responsible for arranging the UAVs
to collect information of the small regions.

1) CALCULATIONS OF COVERAGE IMPROVEMENTS
In the simulations, to verify the coverage factor, the Beijing
city is divided into 750 small regions according to the abscis-
sas and the ordinates.

Based on the realistic situations, the definition of cal-
culation for the coverage improvements is shown in the
equation (20).

Icov =
N (ucov1 + uavcov1)− N (ucov2)

N (ucov1 + uavcov1)
(20)

where the N (ucov1 + uavcov1) is the number of the regions
covered by both the users ucov1 and the UAVs uavcov1 in
the OCLC-IoTs scheme. And the N (ucov2) indicates the
regions that the users ucov2 covers in the previous scheme. The
evaluation results will be described clearly in the following
subsections.

2) CALCULATIONS OF COST REDUCTIONS
In this subsection, the calculation methods of cost reductions
will be provided. Based on the traditional methods, the costs
of the platform are the rewards to the users without selections,
which will cause the data redundancy. Without selections of
the mobile-phones users, the costs of the platform are large.
In the OCLC-IoTs scheme, the costs of the platform are both
the rewards to the mobile-phone users with selections and the
employment costs of the UAVs.

The calculation methods of the costs based on the former
methods is summarized in the equation (21).

cosf =
∑

u1→um

cosui , ui ∈ [u1, um] (21)

where the cosui indicates the costs of the user ui that has
participated in the task of the platform, on the basis of the for-
mer method. The total number of the participant mobile-users
is m.

Then the costs of the platform based on the OCLC-IoTs
scheme is defined in the equation (22).

cosoc = Cuser + Cuav + C
′

uz (22)

where the Cuser is the costs of users in the first selection
round, the Cuav is the costs of UAVs and the C

′

uz is the costs
of users in the second selection round.

Then the calculation method of the cost reductions is
shown in the equation (23).

Icos =
cosf − cosoc

cosf
(23)

To compare the performances of the OCLC-IoTs scheme
comprehensively, the evaluation standard φ is proposed in the
equation (24).

φ =
2× Icov × Icos
Icov + Icos

(24)

The value of φ illustrates the efficiency and advancement
of the proposed scheme.

B. THE COVERAGE IMPROVEMENTS
In this subsection, the coverage ratio of both the OCLC-IoT
scheme and the former scheme is compared. In the simula-
tion, a task is published at time 17: 49: 16. Themobile-phones
users in the T-driver datasets will participate in the task. With
the simulations, there are 3683 mobile-phones users bid for
the task one, shown in the Fig. 4.

FIGURE 4. The mobile-phones users bids for the task.

In the Fig. 4, the horizontal purple lines and the in the
vertical purple lines are the division lines of the big regions.
According to the definitions, there are nine big regions in
the Beijing city. The intersections of the four lines are the
locations of the basis stations of the UAVs. With the inten-
sive strategy, the number of users who bid for the task
is 3683, distributed in each small region ununiformly. The
mobile-phones users in the Fig. 4 include two types. One is
the users bid for the task in the first selection round, the other
is the users who are inspired by the platform in the second
selection round. The number of mobile-phones users in the
first situation is 3577, the number of mobile-phone users in
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the second situation is 106. Based on the proposed selection
scheme, the users who are selected to finish the task is shown
in the Fig. 5.

FIGURE 5. The distributions of the mobile-phones users with selections.

With the selection scheme in the OCLC-IoT scheme,
the Fig. 5 shows the distributions of the mobile-phones users
after selections. There are 353 small regions in which the
information can be collected by the users. If only with the
participants of the mobile-phones users, the coverage ratio of
the information required by the task is 47.067%.

In the former scheme, the coverage regions are shown in
the Fig. 6.

FIGURE 6. The distributions of the mobile-phone users based on the
previous scheme.

In the previous scheme, the rewards to the users are the
same, which cannot meet the demands of some mobile-phone
users. The static value of the rewards is defined as 100.

With the simulations, there are 2699 mobile-phone users who
participant for the task. With the intensive strategy, the par-
ticipant improvement of the user is 26.72%. On the basis of
the previous scheme, the platform will choose the nearest one
in each small region to serve for the task. The distributions of
the selected users based on the former scheme are shown in
the Fig. 7.

FIGURE 7. The distributions of the mobile-phones users on the basis of
the former scheme.

Based on the former scheme, the number of the cover-
age regions is 208. With the intensive strategy in the pro-
posed scheme, the coverage ratio of the information can
be improved by 41.07 %. Some regions especially in the
suburban regions cannot be covered by the mobile-phone
users based on the previous scheme. It is because that the
rewards of the platform cannot meet the demands of some
mobile-phone users. Therefore, they won’t bid for the task.
In the proposed scheme, the platform will pay more rewards
for the mobile-phone users in the suburban regions to inspire
the them to bid for the task. Therefore, there are more mobile-
phone users take part in the task and the coverage ratio of the
information will be improved.

Then the comparisons of the number of the collected small
regions in each big region is shown in the Fig. 8.

In the Fig. 8, it shows that with the intensive strategy,
the number of coverage regions is increased. The improved
coverage ratio is shown in the Fig. 9.

For the rest of the small regions, the platform will arrange
the UAVs to collect the information in them. The collec-
tion routings of the UAVs follow the IRHS strategy in the
OCLC-IoTs scheme. With the UAVs, the number of the cov-
erage regions in each big region is shown in the Fig. 10.

In the Fig. 10, it can be seen that with the UAVs, most
of the uncovered small regions can be collected. With the
IRHS strategy, the connected graph of some small regions
will be dropped to reduce the flying time of the UAVs,
under the condition of keeping the coverage ratio. In general,
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FIGURE 8. The coverage number in each big region divisions.

FIGURE 9. The improved coverage ratio based on the intensive scheme.

FIGURE 10. The covered regions of the UAVs in each big region.

the coverage ratio of the UAVs can reach to 72.583%. With
both the mobile phone users and the UAVs, the number of the
small regions which can be covered is 677, the coverage ratio
of the OCLC-IoTs scheme can reach to 90.267%, which has

been expanded to a large scale. Compared with the previous
scheme which only utilizes the mobile-phone users to collect
the information, the OCLC-IoTs scheme can improve the
coverage number in each big range with the usage of both the
mobile-phone users and the UAVs. The improved coverage
number is shown in the Fig. 11.

FIGURE 11. The improved coverage number based on the OCLC-IoTs
scheme.

The Fig. 11 shows that with both the cooperation of the
mobile-phone users and the UAVs, the number of coverage
regions can be improved by a large scale, compared with the
previous scheme which pays for the participants with static
rewards. Some users with mobile sensor devices may not bid
for the published tasks because of lower rewards, and there
are less mobile-devices users in the suburban regions. Due to
the two reasons, the information of the suburban regions is
hard to be obtained. Therefore, with improving the rewards
in the suburban regions, there are more probability for the
mobile-sensor-device users to take part in the tasks, which
will increase the total coverage number. For the rest of the
regions, the OCLC-IoTs scheme utilizes the UAVs to collect
the information under the plan of IRHS scheme. With the two
approaches, the number of coverage regions can be improved
to a large scale. The improved coverage ratio is shown in the
Fig. 12.

The Fig. 12 shows that the OCLC-IoTs scheme has a
better performance on the aspect of coverage ratio. We then
compared the performances of the OCLC-IoTs scheme with
the previous scheme which utilized both the mobile-sensor-
devices users without the intensive strategy and the UAVs
with the random route planning or the greedy route planning.
Based on the number of collection regions for the UAVs is
the same, the improvements of the coverage ratio are shown
in the Fig. 13.

In the urban regions, the ratio of coverage improvements
is less, as shown in the Fig. 13 when the value of vertical
coordinates is 5. It is because that there are many mobile-
sensor-devices users in the urban regions, as shown in the
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FIGURE 12. The improved coverage ratio compared with the previous
scheme which only utilizes the mobile-sensor-devices users.

FIGURE 13. The improvements of the coverage ratio based on the
OCLC-IoTs scheme.

Fig. 4 and Fig. 6. Therefore, the information of almost each
small region in the urban regions can be collected by the
mobile-sensor-devices users, as shown in the Fig. 5 and Fig. 7.
Thus, the improvement space of coverage in the urban regions
is less. The OCLC-IoTs schememainly targets to improve the
coverage ratio in the suburban regions, for example, when the
value of the vertical coordinates is 3, 7 and 9. In general,
the coverage ratio can be improved from 5% to 34.38%
approximately.

To further evaluate the performances, the number of
mobile-phone users in each density degree is compared in the
Fig. 14.

According to the experiment settings, there are three den-
sity classes in the Beijing city, shown in the Fig. 14. Clearly,
in the density class 1, the number of themobile-phone users of
the two schemes is similar to each other. In the density class 2
and the density class 3, the number of the mobile-phone users
on the basis of the OCLC-IoTs scheme is more than that on

FIGURE 14. The distributions of mobile-phone users in each density class
of the Beijing city.

FIGURE 15. The rewards to the mobile-phone users.

the basis of the previous scheme. It is because that with the
intensive strategy, there are more likely that the mobile-phone
users in the low-density regions taking part in the task, which
will increase the coverage ratio. And in the previous scheme,
the standards of the rewards may cannot satisfy the demands
of the users in the edges of a city, which will lead to a low
coverage ratio. The comparisons of the total number of the
users are shown in the fourth column in the Fig. 14.

C. THE COSTS REDUCTIONS
In this subsection, the performances of the cost reductions of
the OCLC-IoTs scheme are evaluated. When the time is 17:
49: 16, the comparisons of the mobile-phone users’ rewards
are shown in the Fig. 15.

Fig. 15 shows that in the proposed scheme, the users who
participate in the task can achieve more rewards compared
with the users in the previous scheme, which will inspire the
users to bid for the published tasks. The ratio of the improved
rewards is 17.037%. Even with the cost reduction scheme,
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the costs of the platform paid for the mobile-phone users
are still increasing, because the number of users who take
part in the task increases. In the Fig. 15, the tendency of
the OCLC-IoTs scheme is smoother than that of the previous
scheme. It is because that in the urban regions, there are more
mobile-phone users who can take part in the task, therefore,
the reward standards in the urban regions are less. Therefore,
even the participants’ number in the urban regions is more,
the costs of the platform won’t grow that much.

Based on the degree classes, the comparisons of the
rewards for the participant users are shown in the Fig. 16.

FIGURE 16. The rewards in each region division.

The first three columns in the Fig. 16 shows the rewards
of the participant users in each region division. The platform
pays more rewards for the participant users in the more
remote regions, which can utilize less costs to achieve more
coverage ratio. And on average, the costs of a participant user
in the OCLC-IoTs scheme are less than those in the previous
scheme by 28.97% approximately.

Based on the IRHS strategy in the OCLC-IoTs scheme,
we then compared the costs of the UAVs with the costs in
the previous scheme. Based on the same collection number,
firstly, the energy consumptions of the UAVs in the eight big
regions are shown in the Fig. 17.

Fig. 17 shows the energy consumptions of the three routing
schemes. The information in the fifth big region has been col-
lected enough, the coverage ratio of information collections
can reach to more than 90%. Thus, there is no need to hire the
UAVs to that region. Therefore, the value of the fifth column
is empty, shown in the Fig. 17. And with the IRHS strategy
in the OCLC-IoTs scheme, the energy consumptions of the
UAVs can be reduced. It is because that with both the distance
priority firstly and then the time priority, the collection routes
of the UAVs will be planned well to decrease the trajectory
time. Based on the same velocity, the energy consumptions
of the UAVs are related to the time consumptions. With
the flying time increases, the energy consumptions will be
increased. The IRHS strategy optimizes the routing of the

FIGURE 17. The energy consumptions of the nine big regions.

UAVs, thus the energy consumptions will be reduced, com-
pared with the other schemes.

Then the average energy consumptions of each small
region are shown in the Fig. 18, based on the three route
schemes.

FIGURE 18. The energy consumptions of the UAVs in each big region.

Based on the mobile-phone users’ collections, there are
eight big regions which information need to be collected by
the UAVs, because the information in the urban big region
has been fully obtained. For the eight big regions, the average
energy consumptions of the UAVs based on the OCLC-IoTs
scheme are compared with both the random route planning
and the greedy route planning. The tendencies of the three
routing schemes are the same. Then the comparisons of the
reduced energy consumptions are shown in the Fig. 19.

Fig. 19 shows the reduced energy consumptions of the
OCLC-IoTs scheme compared with the random route plan-
ning. The reduction ratio ranges from 46.57% to 54.08%.
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FIGURE 19. The ratio of reduced energy consumptions compared with the
random route planning.

Compared with the greedy route planning, the ratio of the
reduced energy consumptions is shown in the Fig. 20.

FIGURE 20. The ratio of reduced energy consumptions compared with the
greedy route planning.

Compared with the greedy route planning, the Fig. 20
shows the reduced ratio of the OCLC-IoTs scheme. The
reduction ratio ranges from 24.74% to 32.61%.

Then based on the three-routing schemes, the costs of the
UAVs are compared. In the simulation, the value of the η is set
as 330. Therefore, the costs of the UAVs at a big range can be
obtained. The comparisons of the three routing schemes are
shown in the Fig. 21.

In the Fig. 21 it shows the costs of the UAVs in each big
region. Compared with the three schemes, the costs of the
OCLC-IoTs scheme is less than the other two schemes. It is
because that in the IRHS strategy, with both the distance
priority and the time priority, the flying distances of the UAVs
are decreased. With the static speed, flying time of the UAVs
can be reduced. There is a positive correlation between the
flying time and the energy consumptions. Therefore, time
reductions will have a direct effect on reducing the energy

FIGURE 21. The costs of the UAVs in each big region.

consumptions. The costs of the UAVs will be reduced with
less energy consumptions. The reduced ratio of costs is shown
in the Fig. 22.

FIGURE 22. The reduction ratio of costs for the UAVs based on the
OCLC-IoTs scheme.

The Fig. 22 shows the reduction ratio of the costs based
on the OCLC-IoTs scheme, compared with the random route
planning and the greedy route planning respectively. With
the IRHS scheme, the energy consumptions of the UAVs are
decreased, which lead to the reductions of the costs for the
UAVs.

To further evaluate the performances of the cost reductions,
for the energy consumptions of each small region in the eight
big regions, the comparisons of the three routing schemes are
shown in the Fig. 23.

In each big region, the average costs in each small region
are evaluated, shown in the Fig. 23. With the number of
the collected small regions increases, the UAV has a higher
probability to choose a longer flying route. Thus, the average
energy consumptions of each small region will increase, and
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FIGURE 23. The average costs of the UAVs.

the average costs of a small region will increase. But with
the OCLC-IoTs scheme, the UAVs can shorten the flying
route and reduce the probability of choosing the false way.
Thus, the average costs of each small region increase slowly,
compared with the random route planning and the greedy
route planning.

With both the mobile-phone users’ participants and the
UAVs, the coverage ratio can reach to 90.267%, which has
been introduced above. Then the total costs of the platform
are evaluated, shown in the Fig. 24.

FIGURE 24. The total costs of the platform.

Fig. 24 shows the total costs of the platform paid for the
tasks. With both the previous schemes of the mobile-phone
users’ selection and the random route planning or the greedy
route planning of the UAVs, the costs’ comparisons among
the three schemes are shown in the Fig. 25.

Fig. 25 shows the costs of the three schemes in each
big region, which shows the effectiveness of the proposed
scheme. Based on the OCLC-IoTs scheme, compared with

FIGURE 25. The comparisons of the total costs in the three schemes.

the random route planning and the greedy route planning,
the costs can be reduced by 34.32% and 13.335% respec-
tively. The cost reduction ratio is shown in the Fig. 26.

FIGURE 26. The total reduction costs of the big ranges compared with the
previous scheme with the random route planning.

The Fig. 26 shows the reduction ratio of costs in each
big region, compared with the previous scheme with random
route planning. Based on the previous selection scheme of the
mobile-phone users and the random route planning, the com-
parisons of coverage ratio are shown in the Fig. 27.

The Fig. 27 shows the comparisons of the covered regions.
Compared with the previous scheme with random route plan-
ning, the OCLC-IoTs scheme can improve the coverage ratio
of the required information by 21.42% approximately.

The number of the coverage regions in the greedy route
planning is the same as that in the random route planning.
Therefore, the improved coverage ratio of the OCLC-IoTs
scheme is also 21.42%, compared with the previous scheme
with greedy route planning.
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FIGURE 27. The number of covered regions.

TABLE 3. The experimental results of the coverage number.

TABLE 4. The number of UAVs.

To evaluate the performances of the OCLC-IoTs scheme
comprehensively, the value of φ is 26.38% and 16.44% com-
pared with the previous scheme based on the random route
planning and the greedy route planning respectively, which
shows the effectiveness of the proposed scheme. The number
of the covered regions is shown in the Table 3.

Where the OC indicates the OCLC-IoTs scheme and the
P indicates the previous scheme in the Table 2.

And the number of the UAVs in each big region is shown
in the Table 3.

VI. CONCLUSION
Information collections in the IC-IoTs system are critical
issues in guaranteeing the quality of services for the platform,
such as the fog-haze monitoring and the weather condition
monitoring. Therefore, the coverage ratio of the information
collection needs to be expanded. On the basis of improving
the coverage ratio, the platform expects to reduce the costs in
hiring both the information collectors and the UAVs.

Therefore, the OCLC-IoTs scheme is proposed in this
study. For the information collectors, an intensive strategy
is designed to inspire them to bid for the published tasks
via improving the rewards in the suburban regions and
reducing the rewards in the urban regions. For the UAVs,

an IRHS strategy is designed to plan the flying routes to
reach more coverage ranges, and shorten the flying time to
reduce the energy consumptions via utilizing the distance
priority firstly and time priority secondly. Under the pre-
requisite of guaranteeing coverage ratio, with less energy
consumptions of UAVs, the rewards the platform paid for
hiring them are less. The simulation results indicate that
the OCLC-IoTs scheme can reach better performances on
both the information-coverage improvements and the cost
reductions, compared with the previous schemes.
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