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Abstract—Three-dimensional (3D) scene understanding is of great significance to many robotic applications. With the huge
development of the deep learning methods, especially the convolutional neural network (CNN), 3D robotic vision has achieved a
satisfactory performance. However, in most scenarios, sustainability becomes a severe problem, and few existing approaches pay
enough attention to energy consumption. In this paper, we propose an energy-aware system for sustainable robotic 3D vision. Our
contributions mainly include: 1) an effective CNN model for the 3D scene understanding; 2) an offloading strategy to make the deep
model more sustainable. First, we design a deep CNN model to analyze the 3D point cloud data. The proposed model contains 92
layers for a state-of-the-art recognition accuracy, which, however, bring a big burden to the computing hardware. Then, we formulate
this deep learning computation problem as a non-cooperative game, and adopt a heuristic algorithm to balance the local computing
and cloud offloading, in order to obtain an optimal solution, in which both the efficiency and energy-saving are taken into account.
Simulations demonstrate that our approach is robust and efficient, and outperforms the state-of-the-art in several related tasks.

Index Terms—Sustainable computing, convolutional neural network (CNN), 3D scene understanding, robotic.
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1 INTRODUCTION

COMPUTER vision is always a hot area in the past few
decades. It is an essential component in many au-

tonomous systems, such as the robotic, self-driving, indoor
localization, action recognition, etc. During its long history,
a lot of scene understanding methods have been proposed
to analyze the input images for their semantic meanings,
e.g., K-means, decision tree, Support Vector Machine (SVM)
and convolutional neural network (CNN). Among all these
approaches, deep learning methods, including CNN, are in
evidence due to their strong abilities of automatic feature
extraction and pattern recognition [1]. CNN and other deep
learning methods are widely used in various fields. As
the most successful application, these deep models have
been the de facto standard for computer vision applications,
as they have shown a huge advantage on the recognition
accuracy.

Meanwhile, with the recently emerged three-
dimensional (3D) sensing technologies [2], computer
vision has evolved to the next stage. Compared to the
traditional two-dimensional (2D) sensors, 3D sensors are
able to obtain the spatial information as well as the RGB
data, and they are more robust and stable [3]. Therefore, 3D
image is inherently a better choice for these autonomous
systems. However, 3D image processing also brings a
huge burden to the underlying hardware when using the
state-of-the-art deep learning models, which require a lot
of computation. This has become a severe problem to the
devices which have limited battery. We have proposed a
distributed robotic system in [4]. This system can perform
efficient object detection and recognition on 3D input
images. However, the proposed system leads to serious
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energy problems in the wirelessly-connected robots, even
with a simple CNN model. As the recently proposed
models grow deeper and deeper [5], [6], it is the trend
to make more complicated models for better recognition
precision. Energy-saving has become indispensable for the
robotic applications. We find it necessary to completely
modify our model in two aspects. One is to make a larger
model which contains dozens of neural layers for better
accuracy; the other one is to offload the computation from
the energy-limited robots to the cloud servers, in order to
make a sustainable robotic system.

For the former one, we propose a new CNN model in
this paper. This model is based on our former work [4].
We extend the existing eight-layer model to 92 layers, in
order to achieve higher precision. To adapt the CNN model
into the offloading game, we deploy the same models on
all the mobile robots and central servers, and the servers
can restore the calculation from any breakpoints with the
intermediate values uploaded by the mobile robots.

Computation offloading is important to build an energy-
efficient system. This is because that the battery-limited
devices always care about their energy consumption and
prefer to save the battery for longer usage time. And on
the other hand, the computation burden does exist, and
has to be processed, therefore, can only be offloaded to
some other devices. In this work, we focus on a multi-user
offloading strategy, which is designed to simulate an actual
robotic application, where multiple robots exist and attempt
to analyze the captured 3D images, as shown in Fig. 1. The
adopted robots in our system are equipped with depth sen-
sors, and can obtain the 3D information of its current field
of view (FOV). For energy-saving, the offloading controller
will decide the computation allocation among the mobile
robots and the cloud servers. These robots need to know
to what degree they should compute the deep model on
their own and leave the remaining part to the cloud servers.
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Fig. 1. Computation offloading for the robotic 3D CNN models. Each
robot is equipped with depth sensors, and can capture the 3D data of its
current field of view (FOV). For energy-saving, the offloading controller
will decide the computation allocation among the mobile robots and the
cloud servers. Robots only calculate for part of the CNN model, and
upload the intermediate result to the cloud by wireless communications.

Each robot, or "player" in other words, can select among the
following three choices, i.e., directly uploading the raw data,
calculating the whole model or part of it. The remaining part
of the CNN model, which is not processed by the mobile
robots, will be calculated by the central servers.

The main contributions of our work include:
• We design a complex CNN model for the 3D scene

understanding task. Results demonstrate it has a higher
recognition performance.

• We formulate the deep learning computation problem
as a non-cooperative game, and adopt a heuristic al-
gorithm to balance the local computing and cloud of-
floading, for better energy-saving and sustainability. We
propose two different models to respectively represent
the computation and communication cost.

• We conduct extensive experiments to test the perfor-
mance, on both the scene understanding accuracy and
the system cost-saving effect.

2 RELATED WORKS

As the paper mainly consists of two subtopics, i.e. 3D scene
understanding and computation offloading, some related
works in these areas will be introduced in this section.

2.1 3D Scene Understanding
The rise of 3D sensing technologies gives a huge boost to
computer vision field. Using 3D sensors, robots can obtain
much more information than the traditional cameras, which
can only output simple RGB data. However, 3D images
also bring a big problem, i.e., the well-developed scene
understanding methods, which are designed for 2D images,
cannot work well in the new 3D world. Many researchers
are working on this topic.

One of the earliest attempts on applying CNN in 3D
image recognition is the CRNN [7], which is a combination
of the recursive neural network (RNN) and CNN. The CNN
part is responsible for the extraction of lower-level features,

and RNN is used to organize the lower layers into one
hierarchical operation. Su et al. try another approach by
rendering the 3D shapes into a set of multi-view images
[8]. The authors present a new CNN architecture to utilize
the data from multiple views. Eitel et al. design their model
as two separate streams, one for the RGB channel and the
other one for the depth channel [9]. This network can fuse
RGB and depth data, and output the final recognition result
based on the combination of these two streams. Maturana
and Scherer study the specific effects of several different
designs of their CNN architecture [10]. The input data of
their CNN model is the point cloud from LiDAR sensors.
One distinctive point of this work is that the model conducts
the feature extraction and recognition directly on the raw 3D
data, rather than converting it into 2D images. We also work
out a view-invariant CNN model with several specially-
designed multi-task loss functions [4]. This model can ex-
tract similar features of a 3D object, even from different
views. This is an essential ability when deploying robots in
the real world, which is highly disordered and changeable.

In this paper, we continue to improve our scene un-
derstanding model, which can achieve a higher accuracy,
but brings a significant increase of the model complexity
and computational cost. To solve this problem, we work
out a mathematical model of its computation cost, and
successfully adapt the proposed CNN to an offloading game
for better sustainability.

2.2 Computation Offloading and Sustainable Learning

Computation offloading is a novel paradigm to balance the
calculation burden among the mobile devices and central
servers, and to decrease the energy cost of the battery lim-
ited devices, especially in the era when a large size of data
are captured by sensors, mobile devices, robots, etc. [11],
[12], [13]. Many encouraging works have been proposed in
this area.

Kosta et al. [14] build a framework called ThinkAir
for developers to migrate the mobile applications to the
central cloud servers. It is one of the first attempts of mobile
offloading, and shows a good effect on energy-saving. Wen
et al. [15] obtain the energy-optimal policy by solving two
constrained optimization problems. One is how to set the
CPU clock frequency, and the other one is how to schedule
the network communication. The optimization objective is
to minimize the energy cost within time delay. Munoz et al.
[16] work on the tradeoff between energy consumption and
latency, and provide a joint optimization model. They also
design a method to calculate the optimal strategy to allo-
cate the computational load among the mobile devices and
the cloud. Kwak et al. [17] jointly consider three dynamic
problems in the actual application scenarios, and present
an algorithm using Lyapunov optimization to minimize the
energy cost of CPU and network communication while meet
given delay constraints. The research of Yang et al. [18]
is one of the first work allowing the dynamic partitioning
and computation instance sharing among multiple users in
the cloud. And their framework is highly scalable and the
results demonstrate its performance. Chen et al. [19] focus
on a multi-user offloading problem. The authors study a
mobile-edge scenario where multi-users and multi-wireless
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channels exist. They prove that this game always has a
Nash equilibrium, and propose an algorithm to achieve it.
Dynamic cloudlets based methods are used to decrease the
energy cost of the wireless communications brought by the
edge computing [20], and the results demonstrate their effi-
ciency. The works on remote cloud servers or heterogeneous
core processors [21], [22] also provide some solutions to
address the energy problem in computation offloading.

However, to our best knowledge, there is few offloading
approaches focused on the energy-saving problem of the
deep learning models. Although the calculation cost of the
deep models is very high, the current mainstream is still
to merely find some ways to decrease this cost, using some
methods like decreasing the number of weights, simplifying
the deep models, deleting some layers, etc., rather than
offloading the calculation tasks to the cloud. Guo et al. [23]
give a model surgery method to compress the CNNs, which
can significantly reduce the network complexity. There are
also other similar approaches, such as [24], [25], [26]. In
addition, although there exist several offloading methods
designed for deep models, they are not focused on the
energy problem. For example, Zhang et al. [27] design a
privacy-preserving offloading model for the security prob-
lem; Das et al. [28] propose a distributed Stochastic Gradient
Descent (SGD) algorithm to accelerate the training speed;
Ran et al. [29] make a prototype of mobile deep learning
application using offloading, in order to implement a real-
time Augmented Reality (AR) mobile application.

Therefore, we find it necessary to find another way to
realize the sustainable deep learning for 3D scene under-
standing tasks. In this paper, we successfully formulate the
offloading game and design an algorithm for computation
offloading.

3 OVERVIEW

3.1 System Framework
The framework of the proposed system is presented in
Fig. 2. Our system mainly consists of three components,
including the mobile robots, the offloading controller, and
the computing servers. As shown in Fig. 1, the controller
and servers are located in the remote cloud, and the mobile
robots are deployed in different spots to conduct various
tasks, such as exploring, rescuing, transport, etc. We choose
the cellular network to connect the mobile robots with the
remote cloud servers, because this kind of wireless network
is commonly used and can save the extra expenditure re-
garding the network infrastructure and deployment. Robots
use their onboard depth sensors to capture the 3D images
from their FOVs, and save the data in their memory for the
following recognition process. The controller is responsible
for the control of the whole offloading process. It not only
cares about the load allocation, but also the communication
cost. Although both mobile robots and computing servers
have the ability to perform the forward computing of the
CNN models, the servers are more powerful in computing
ability than the energy-limited robots, and also has larger
storage including memory, hard disk, and database, which
can keep the records for further analysis.

In each scene understanding scenario, the robots will
wait until that offloading controller has made a decision,

TABLE 1
Main Notations

Notation Description

P Set of the game players P = {p1, ..., pr}
D Set of the player decisions D = {d1, ..., dr}
G Set of the possible decisions G = {0, 1, 2, ..., gmax}
r The total number of the players.
b Bandwidth of the wireless network.
γa Uploading rate of the arbitrary player a.
ρ Transmission power.
gci Channel gain between player a and base station c.
s Uploading data size.

Ccomm
a Total communication cost caused by player a
Ccomp

a Total computation cost caused by player a
Clocal

a Local-computing factor
Ca Overall cost caused by player a

tcomm
a time cost of the network transferring.
ecomm
a energy cost of the network transferring.
l Layer number of the adopted deep model.
M Set of the input image numbers.M = {m1, ...,mr}
E layer Set of the layer-wise energy cost.

E layer = {elayer1 , ..., elayerl }
T layer
player Set of the layer-wise time cost for the players.

T layer
player = {tlayerplayer,1, ..., t

layer
player,l}

T layer
server Set of the layer-wise time cost for the servers.

T layer
server = {tlayerserver,1, ..., t

layer
server,l}

Slayer Set of the layer-wise output data size.
Slayer = {slayer0 , slayer1 , ..., slayerl−1 , 0}

and receive this decision using their interfaces of wireless
networks. According to the decision, the robots will either
pull the images from their memory and use their CNN
modules to calculate part of the installed CNN model, or
simply upload the unprocessed images. The intermediate
values and the raw data are transferred to the cloud servers
for further processing, and the servers will complete the
remaining computing and output the recognition results.

We will introduce the CNN module deployed in the
robots and computing servers in the next section. The
computation offloading algorithm, which is the focus of
this paper, is detailed in Section 4. In this paper, we use
calligraphic-font letters to represent sets, e.g. P , and nota-
tions are listed in Table 1.

3.2 Scene Understanding Model
We have proposed a 3D scene understanding framework in
[4], which includes two sub-networks respectively for object
detection and recognition. As we focus on computation
offloading in this paper, we simplify this model for better
understanding, as shown in Fig. 3a. This CNN model con-
sists of six layers, including four convolutional layers and
two full-connected layers. In our past work, we have shown
that this model has a good performance in recognition speed
and accuracy. However, in actual applications, we find a
severe energy problem due to intense computing needs,
which can quickly use up the battery.

In order to further improve the recognition performance,
and more importantly, address the problem of energy con-
sumption, we propose a newly-designed CNN model in this
section. As shown in Fig. 3b, the modified model is much
deeper than the former one, which brings more potential
to this model for even higher performance. This model has
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Fig. 2. System framework. The proposed system mainly consists of
three components, i.e., the mobile robots, offloading controller, and the
computing servers.

90 convolutional layers and two fully-connected layers. We
divide them into four virtual classes with the layer number
as 20, 25, 35, 10, and each of them corresponds to one
convolutional layer in the former CNN model.

To adapt this model into the offloading game, we need
to clarify the computation cost of each layer, including the
energy consumption and time cost, and import these in-
formation into the following offloading algorithm. Because
over 99% operations in convolutional layers are multiply-
and-accumulate (MAC) operations [30], [31], they account
for most of the energy consumption and time cost nearly
in all of the state-of-the-art CNN models. Chen et al. have
implemented an evaluation framework in [32] to estimate
the energy consumption of each layer in the deep mod-
els. And in [33], Chen et al. give a detailed performance
breakdown of the AlexNet model [34]. In their paper,
they give out many useful data regarding the layer-wise
consumption, including both energy cost and time cost.
Although their work is focused on the traditional 2D CNN
models, but the relationship between time cost and energy
consumption still illuminate the way of our offloading
strategy design, because both of them are caused by the
same factor. Therefore, we can infer the rough relationship
between time cost and energy consumption in our newly-
designed 3D CNN model, which is very useful in designing
our cost estimation models. Based on the aforementioned
theories, we can now suppose an estimation of the layer-
wise energy cost E layer = {elayer1 , ..., elayerl } of the adopted
model. Then we can give a rough estimation of two different
time cost on robotic hardware and computing servers, i.e.,
T layer
player = {tlayerp,1 , ..., tlayerp,l } and T layer

server = {tlayers,1 , ..., tlayers,l },
respectively for the player and server. In addition, the
data size S layer = {slayer0 , slayer1 , ..., slayerl−1 } can be directly
obtained by the model structure. All of these information,
including energy cost, time cost, and data size, are adopted
in the following cost estimation model, which will be de-
tailed in the next section.
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Fig. 3. The comparison between the newly-designed CNN model and
the one of our past work. (a)The existing model, which contains six
layers. (b)The modified model, which contains 92 layers.

4 OFFLOADING STRATEGY

In this section, we will give several cost models, and based
on that, formulate the proposed computation offloading
strategy.

We denote the robots, which are also the players in the
offloading game, as P = {p1, ..., pr}, where r is the total
number of the players, and represent the player decisions
as a set D = {d1, ..., dr}, where da is the final decision of
player a.

As the robots may belong to different individuals and or-
ganizations, we suppose each player wants to find the most
energy-efficient and time-saving solution for itself, in order
to make its onboard computing system more sustainable.
But their own optimal solutions may be contradictory, and
cannot exist at the same time. Therefore, it is necessary to set
a controller to look for the global optimal solution, which
can minimum the overall cost of the whole system. This
controller should respond the requests from the players, and
we must design an algorithm for it to decide which requests
should be satisfied, and which should be not. We will
demonstrate the proposed heuristic algorithm can achieve
good performance in the experiment section.

In order to design the computation offloading algorithm,
we need to give out the estimation models regarding the
communication cost and the computation cost. The costs
mainly contain two aspects, i.e., the energy consumption,
which is vital for the battery-limited devices, and the time
cost, which brings the delay of the response and deteriorate
the overall performance.

4.1 Communication Cost Estimation
First, we need to find a general model for the wireless
transfer rate, because all the robots communicate with the
remote cloud via the wireless networks, such as the cellular
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networks. Then the uploading rate of one arbitrary robot p
can be expressed as

γa = b log2

(
1 +

ρag
c
a

ρb +
∑
i∈P,di<gmax

ρigci

)
(1)

where γa represents the transfer rate of robot a, b is the
bandwidth of the wireless network, ρa is the transmission
power of player a, and gca represents the channel gain
between player a and base station c. According to the
wireless interference model, the channel gain gca is related
to the distance between player a and its corresponding base
station c, and can be expressed as

gca =
1

La,c
α (2)

where L is the distance between player and base station,
and α is the path loss factor. Since we focus on an of-
floading game for deep learning applications, we can omit
several communication details to simplify the equations. We
suppose each player a has the same transmission power.
Therefore, Eq. (1) can be presented as

γa = b log2

(
1 +

ρaga
ρb + rρa

∑
i∈P,di<gmax

gci

)
(3)

With the defined uploading rate, we can now calculate
for the time cost of the offloading process. Supposing player
a will offload part of its tasks to the cloud servers, and the
data size is s, the time cost of the network transferring can
be expressed as

tcomm
a (da) =

s

γa
(4)

One more important cost in network communication is
the energy consumption, which can be written as

ecomm
a (da) = ρa

s

γa
+ etail (5)

Since the commonly deployed cellular networks usually
keep the connection even when the communication is fin-
ished [19], [35], there will be extra energy consumption in
the uploading process. We denote this cost as etail. In ad-
dition, we have omitted the communication cost of control
signals in our work, because they are usually in very small
size, and have little cost on both energy and time.

According to Eq. (4) and Eq. (5), the total communication
cost of player a can be written as

Ccomm
a (da) = λeae

comm
a (da) + λtat

comm
a (da)

, λea + λta = 1
(6)

where λea and λea are weights for energy consumption and
time cost. Each player can set different weight values de-
pending on which cost it cares more.

As we have defined the estimation equation of the
communication part, we will continue to introduce the cost
estimation of the computing part in the next section.

4.2 Computation Cost Estimation
We denote the set of input image numbers as M =
{m1, ...,mr}, and player a has ma images in its memory.
These images are captured by the depth sensors, and wait
to be recognized by this player, one by one. These ten
images need to be processed by the deep model for once,
forwarding through all the l layers. Although we design a
l = 92 model in section 3.2, l can be set to any integer,
because we want to make a universal algorithm which can
be used for CNN models with arbitrary structures. Thus,
the computation task is to compute for ma ∗ l layers. The
player needs a decision regarding to which image and to
which layer it should calculate for. We define the possible
game decisions as a set G = {0, 1, 2, · · · }, which represents
the layer number that the player want to calculate. Player
a should select a g ∈ G as its game decision, making
0 ≤ g ≤ mal. When g equals 0, player a will conduct no
computation on the input images, and directly upload the
raw data to the central servers; when g = mal, player a will
perform all the calculation without the help of computing
servers, and in this scenario, no image data or intermediate
values need to be transferred.

Having the layer-wise information of the cost, namely
E layer and T layer, and intermediate data size, namely S layer,
we can define precise estimation models for the computa-
tion process. For player a and its game decision da, the
player will calculate for da layers, corresponding to ddal e im-
ages. After sending the intermediate values, whose data size
is slayer[da mod (l+1)] + slayer0 dmal−da

l e, the server will complete
the remaining works, i.e. mal−da layers, corresponding for
dmal−da

l e images. When the computation is complete, the
server will output the recognition result, and send it back to
the player a. Since this data is very small, we omit it in this
research. Therefore, the energy consumption of computation
process for player a can be expressed as

ecomp
a (da) =

∑
i∈[1,da]

elayer(i mod l) (7)

and the time cost of player a is

tcomp
a (da) =

∑
i∈[1,da]

tlayerplayer,(i mod l) (8)

As mentioned above, both the energy and time cost of
CNN forwarding are mainly caused by MAC operations.
Therefore, there is roughly linear relationship between E layer
and T layer

player. Thus,

elayera = σtlayerplayer,a (9)

and
ecomp
a (da) = σtcomp

a (da) (10)

where σ is the parameter that the energy consumption rate
during per time unit.

Then we can formulate the total cost for local computing
as

Ccomp,player
a (da) = λeae

comp
a (da) + λtat

comp
a (da)

, λea + λta = 1
(11)

Then we need to define a similar estimation model for
the server side. As the servers are not limited by energy, they
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only cares about the time cost. Therefore, its cost model can
be written as

tcomp
a (da) =

∑
i∈(da,l]

tlayerserver,(i mod l) (12)

and the cost value caused by player a in the server side can
be expressed as

Ccomp,server
a (da) = λtat

comp
server,a(da) (13)

According to Eq. (11) and Eq. (13), the total computation
cost of player a can be written as

Ccomp
a (da) = Ccomp,player

a (da) + Ccomp,server
a (da)

= λeae
comp
a (da) + λta

[
tcomp
player,a(da) + tcomp

server,aa(da)

]
, λea + λta = 1

(14)

In addition, we can also refine Eq. (4) and Eq. (5) as

tcomm
a (da) =

slayer[da mod (l+1)] + slayer0 dmal−da
l e

γa
(15)

and

ecomm
a (da) = ρa

slayer[da mod (l+1)] + slayer0 dmal−da
l e

γa
+ etail

(16)

4.3 Offloading Algorithm
Based on Eq. (6) and Eq. (14), we can now obtain the overall
cost function

Ca(da) = Ccomm
a (da) + Ccomp

a (da)

= λea

[
ecomm
a (da) + ecomp

a (da)

]
+ λta

[
tcomm
a (da) + tcomp

player,a(da) + tcomp
server,aa(da)

]
, λea + λta = 1

(17)

In addition, except the energy consumption and com-
munication cost, the privacy protection is also a key factor
which should be seriously considered. Privacy leakage is a
common threat to the network security. However, it is not
easy to find a strictly secure cloud computing approach,
because there are too many possible vulnerabilities which
can lead to unauthorized data access. Cloud network, no
matter how many safety strategies are deployed, cannot ab-
solutely guarantee the data security. In general, the higher-
level features are more difficult to be reversed. Therefore, in
order to protect the raw data captured by the mobile robots,
which can be owned by personal users, we should limit
the directly uploading without any forward calculating.
Another important fact is that the central cloud may be
overloaded due to the super large data uploaded from
numerous robots. As a result, they will be unable to respond
to too many CNN computing requests. Thus, we should
encourage the players can help with the calculation tasks,
and perform at least a small part of the CNN layers. Because
of these two reasons, we propose another cost factor to give
the local robots to positively take some responsibility. This

factor is called local-computing factor C local
a , and it can be

expressed as

C local
a (da) =

1

da/mal
(18)

Combining Eq. (17) and (18), we define the final cost
function as

Ca(da) = Ccomm
a (da) + Ccomp

a (da) + C local
a (da)

, λea + λta = 1
(19)

Then using Eq. (8), (10), (15), (16), and (17), we can get
the final cost estimation used for the offloading algorithm.

To formulate the offloading game, we suppose a scenario
where each player desires to minimize their overall cost,
but must follow the instructions made by the offloading
controller. In other words, for an arbitrary robot a, it will
seek a decision leading to the minimal cost, i.e.,

min
d∈G

Ca(d) (20)

The controller and the game players will jointly make the
decisions regarding how much computation should each of
the players take. According to these decisions, the play-
ers will correspondingly calculate for some parts of the
deployed CNN model, and leave the remaining tasks to
the central servers. The game objective is to minimize the
overall cost, i.e.,

min
da∈G

∑
a∈P

Ca(da) (21)

However, Eq. 20 and Eq. 21 are not equivalent in most
cases. The optimal decisions of the game players are usually
contradictory, and cannot be performed at the same time.
Therefore, each player must publish its desired decision,
and contend for the update chance to make the decision ac-
knowledged. But finding an optimal solution to meet Eq. 21
is a NP-hard problem. Therefore, we design a heuristic
algorithm to address this problem, as shown in Algorithm 1
and 2.

Algorithm 1: Computation Offloading (Controller)
Input: Robot Set P , Max steps N
/* Initialization. */
COUNT = 0;
D = {0, 0, · · · , 0};
/* Decision-making. */
while TRUE do

COUNT += 1;
if COUNT >= N then

SendTerminate(P);
break;

SendStart(P);
U = ReceiveUpdates(P);
if U = ∅ then

SendTerminate(P);
break;

D = SelectUpdate(D, U );
SendUpdate(D);

Algorithm 1 is for the offloading controller and Algo-
rithm 2 is conducted on mobile robots. First, the controller
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Algorithm 2: Computation Offloading (Robot)
Input: Deep Model M , Robot ID i
Output: Decision Set D
/* Initialization. */
D = {0, 0, · · · , 0};
/* Decision-making. */
while TRUE do

if receive TERMINATE then
return D;

if receive START then
P = MeasureInterference();
u = ComputeUpdate(D,M ,P );
if u != Di then

ContendUpdate(u);

D = ReceiveUpdate();

will reset the counter and decision set for initialization, and
start a new computation offloading process, which is a loop
with termination conditions. On the other hand, the robots
will also reset their decision sets at the initialization step,
and start their running loop, which can only be stopped by
the termination commands from the offloading controller.
The controller sends the START command to all the robots,
and after that, all the robots will first measure the wireless
interference P . Then each robot can compute its optimal
decision based on Eq. 20. If its current configure is already
the same with the calculated optimal decision, it can keep
the decision for the following offloading process; otherwise,
it should notice the controller that it has a new preferred
decision, and contend for the public acceptance, because this
new decision may be contradictory with other robots’ deci-
sions. After the controller receives all the uploading requests
from the robots, the controller will decide which request
should be satisfied using a random selection. The selected
robot will be granted the right to update its configuration
with its own optimal decision, while the others’ requests
are rejected and can only keep their current configurations.
Then the controller will continue to conduct a new round of
the loop. The algorithm terminates with two conditions, i.e.,
exceed the maximum loop numbers, or no robots contend
for the updating chances.

The proposed algorithm can well solve the offloading
problem, and find the optimal solution to meet Eq. (21). We
will demonstrate this in the experiment section with exten-
sive numerical analysis, including its ability to decrease the
overall cost and its coverage speed when applied with a
large number of robots.

5 PERFORMANCE EVALUATION

In this section, we conducted a series of experiments to
demonstrate the proposed method, mainly including two
aspects, i.e., the recognition experiment, and the computa-
tion offloading simulation.

The experimental settings are shown in Table. 2 for better
reproduction and evaluation of the proposed method. In
the experimental scenarios, every wireless base station can
cover a range of about 200m, and we respectively deploy

TABLE 2
The Settings of Offloading Experiments

Item Value

Station Cover Range 220 m
Station Number {1, 2, 3}
Bandwidth b 1.25 MHz
Path Loss Factor α 4
Background Noise ρb −100 dBm
Image Number m [1, 20]
Layer Number l 92
Energy/Time Ratio σ 20

(a) (b) (c)

Fig. 4. Device Locations. Sub-figure (a)(b)(c) are three different sets of
the offloading experiments. We respectively adopt single, double and
triple wireless base stations in these three experiments. The points in
the figure are the randomly-located robots. They connect to the closest
stations for better communication rate. We use different colors and
shapes to represent their belongings.

one, two and three stations in the three scenarios shown
in Fig. 4. The points in the figure are the mobile robots,
and they will connect to the closest stations for better
communication quality. The different colors and shapes can
represent which station the robots select.

5.1 Recognition Experiment

We jointly adopted several different datasets in this work,
including the RGBD Object dataset [36], Bigbird dataset [37],
and A Large Dataset of Object Scans [38]. 300 categories of
objects are selected, and each of them has 300 instances, in
which 250 instances were adopted as the training materials,
and the remaining 50 instances were used as the test set.

In this experiment, we mainly test the recognition per-
formance of the proposed system. Three CNN models were
selected, namely, the simplified VTCN model, a 30-layer
CNN model, and the proposed 92-layer CNN model. The
VTCN model was extracted from our last work, and we
simplified it into a six-layer model. The 30-layer model is
a small version of our 92-layer model, with all necessary
layers and parameters. We conducted this experiment to
obtain the comprehensive measurement of their recognition
performance, including the precision and the consumption.

As shown in Fig. 5a, with the increase of the model
complexity, the recognition accuracy also improved, which
is consistent with the recent findings in deep learning field.
Therefore, it is a good way to improve the model complexity
for better recognition precision. However, the problem is,
that the consumption also increased quickly with the model
complexity, which is also our focus in this research.
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Fig. 5. Experimental results. (a)The comparison experiment of the CNN
recognition performance. The selected methods include a six-layer
VTCN model, a 30-layer CNN model and the 92-layer model proposed
in this paper. The left y-axis is the precision, and the right y-axis is their
energy consumption. (b)The comparison results of the different settings.
Single, double, triple wireless base stations are respectively adopted in
these three experiments. The left y-axis represents the system cost, and
the right y-axis represents the number of benefited robots.
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Fig. 6. Algorithm running results. (a)The converge curve of the proposed
offloading algorithm. The x-axis is the loop number and the y-axis is the
overall cost. (b)The curve of benefited robots. The x-axis is the loop
number and the y-axis is total number of robots who decrease their own
costs with the propose offloading algorithm.

5.2 Offloading Experiment

In this section, we test the offloading performance of the
proposed method. Fig. 5b compares the total system cost,
benefited robot number, and the converge steps in these
three different scenarios. Generally, the more stations there
were, the higher the communication quality was. In this
experiment, the increase of the station number brought a
significant decrease on all of the three measurements.

Fig. 6a and Fig. 6b are some results recorded in single
station environment, where 100 mobile robots exist. The
former one shows the converge curve of our computation
offloading method. We can see that it is a monotonically
decreasing curve, and quickly reach that no robot can get
more benefits. Fig. 6b gives the change of benefited robot
number, it can be seen that more and more robots obtained
a decreased total consumption, with the execution of the
proposed offloading method. The final number of single
station scenario reached 100%, which means all of the robots
got benefits from the offloading algorithm. In other two
scenarios, a large number of the robots were benefited from
the offloading process.

Fig. 7 presents the change curve of the overall cost with
the increase of the robot number. One obvious influence
caused by the increase of the robot density was the severe
deterioration of the communication quality. Therefore, when
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Fig. 7. The relationship between the robot number and the overall cost.
The x-axis is the total number of robots, and the y-axis is the total system
cost. The blue line is the proposed offloading method, the magenta line
represents conducting all computational tasks locally, and the red line is
to directly transfer the raw data to the cloud servers. As a comparison,
we also present two CNN energy-saving methods as the green line and
the yellow line.

there exists a small number of robots, leaving all computa-
tion tasks to the server side is a good solution to decrease
the system consumption. However, with the increase of
robot number, the communication cost was significantly
increased, and the cost of cloud computing was corre-
spondingly increased. As a comparison, the cost of local
computing followed a near-linear relationship with the total
computation tasks. Although it costs more when the com-
munication condition is good, it is a better selection when
the robot density is too high. The best performance was
from the proposed method, and outperformed other two
approaches in all the conditions. In addition, we compare
our offloading method with two energy-saving approaches,
namely, the deep compression and the CNN pruning. Their
main concept is to decrease the computation cost of the
CNN models through some pruning processes. We can see
that these two methods show some advantages against the
original local computing method, but our offloading method
outperforms them in most cases. Even when the robot
density is very large, our method can still have a similar
performance.

6 CONCLUSION

In this paper, we proposed a novel CNN model for 3D scene
understanding tasks. For sustainability, we formulated the
computation and communication model of the proposed
network, and designed an offloading strategy to balance
the local computing and cloud offloading for better energy-
saving performance. The experimental results proved that
the proposed approach in this paper is efficient and effec-
tive.

In the future, we will continue to optimize the offloading
strategy, refining the cost estimations, communication mod-
els, which are not very satisfactory in some scenarios, and
the control algorithm for better performance and adaptabil-
ity.
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