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WITM: Intelligent Traffic Monitoring Using
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and Hai Jin, Fellow, IEEE

Abstract—With the rapid development of the traffic volume,
intelligent traffic monitoring technologies have attracted more
and more attention, which can support a broad range of appli-
cations including traffic congestion mitigation, traffic violation
management, and automated driving assistance. Therefore, it is
important to realize convenient, effective and intelligent traffic
monitoring at low cost. In this paper, we develop a comprehensive
traffic monitoring system named WITM, which achieves vehicle
detection, vehicle type classification, and vehicle speed estimation
by measuring the changes of wireless channel state information.
The system shows the advantages of convenient deployment, low
cost and easy to expand. The proposed detection processes include
three key components, a traffic detection method with moving
variance, a CNN-based learning engine to classify the vehicle
types, and a combination method of gradient-based and curve
fitting to estimate the vehicle speed. By using the fine-grained
wireless signal information, WITM achieves vehicle detection
with the accuracy of 93.12% and differentiates vehicle types with
an accuracy of 87.27%. In addition, the average error of the
vehicle speed estimation is less than 5 km/h.

Index Terms—Intelligent Traffic Monitoring, WiFi, CSI, Ma-
chine Learning.

I. INTRODUCTION

W ITH the substantial growth of urban traffic volume, the
traffic condition monitoring has essential significance

for traffic safety, urban road planning, and traffic management.
Moreover, with the rise of the automatic driving technology
and the safety driving assistance system, there are several
application requirements for intelligent traffic system (ITS),
such as providing necessary traffic information for automated
driving systems [1], [2] and detecting pedestrians to improve
traffic safety for drivers.

Over the years, a variety of intelligent traffic monitoring
technologies are developed to monitor traffic condition. In
general, traffic monitoring technologies are based on loop
detectors [3], magnetic sensors [4], camera [5], infrared [6],
and microwave radar [7], while these existing systems have
different disadvantages. The traditional technologies based on
the loop detectors or magnetic sensors are intrusive as the
ground will be destroyed when the detectors or sensors are
buried. Besides, the deployment cost of the inductive loop
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detectors and sensors is high. Cameras are widely used for
traffic monitoring. However, they have the disadvantages of
being susceptible to light, weather, and brightness. The non-
intrusive technology based on infrared is sensitive to traffic and
weather. Detection with the microwave is relatively expensive
and generally requires manual control, and the continuous
wave Doppler sensor cannot detect the stopped vehicles.
Therefore, how to effectively realize traffic monitoring without
additional expensive facilities, without interfering with the
normal traffic operation, and work well under the dark or
bad weather conditions have always been important issues.
To overcome these issues, previous studies use wireless sensor
network [8], [9], [10] or wireless signals [11], [12] to measure
the traffic information. For example, the authors in [11], [12]
use the received signal strength (RSS) to monitor the traffic
condition.

In recent years, researchers find channel state information
(CSI) could provide more detailed wireless information than
the classical RSS. Current commercial devices such as Atheros
NICs (network interface cards) can obtain these channel in-
formation. In recent years, a lot of work has been put forward
for action recognition [13], human tracking [14] and state
detection [15] based on CSI. The success of these research
work and the popularization of wireless networks in traffic
monitoring systems [16] inspire us to apply CSI to traffic
condition monitoring. However, there are several challenges
need to be addressed for traffic information monitoring with
CSI. The first challenge is how to extract useful signal infor-
mation from collected CSI signals to detect the vehicles. It
is necessary to detect the actual time segment (start point to
finish point) of the vehicles using CSI signals, to estimate the
vehicle’s type and speed. Furthermore, we need to work out
effective methods to measure the traffic information accurately.
Another challenge is how to eliminate the interference and
noise from other devices or external environment. The raw
CSI data contains a lot of irrelevant noise, which makes
it impossible to apply the raw CSI values to data analysis
directly.

In this paper, we develop an intelligent vehicle monitoring
system using WiFi, including the advantages of non-invasive,
deploying conveniently, inexpensive, and working well under
the darkness. The core theory using CSI for traffic information
measurement is that the vehicle will cause interference to the
radio signals when the vehicle passes through the wireless link.
Because CSI contains more fine-grained information compared
with RSS, it becomes a better indicator that measures the
signal interference caused by vehicles. At last, we extract
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Fig. 1. The experiment layout with a wireless transmitter and a receiver.

traffic information by measuring the changes of CSI. The
main contributions of our proposed system are summarized
as follows:
• Various signal processing mechanisms are adopted to

mitigate the interference of the noise signals. Further-
more, through moving variance, we detect the vehicles’
appearance.

• We propose the multi-branch convolutional neural net-
work (CNN) based solution to realize vehicle type classi-
fication. The input of CNN is the CSI matrices generated
from CSI time series data. In addition, we compare
the deep learning method with some traditional machine
learning methods.

• A gradient-based approach is developed to find out the
start and the finish positions of the signal fragment when
the vehicle passes through the wireless link. Then the
curve fitting method is used to estimate the vehicle speed.

The rest of the article is organized as follows. First, we
discuss the up-to-date studies about traffic monitoring and CSI
in Section II. Then, some basic knowledge about CSI is listed
in Section III. Next, in Section IV, the overview framework of
the traffic monitoring system is illustrated. This is followed by
the experimental setup in Section V. After this part, we conduct
a real experiment and show the performance of the developed
system. Finally, we close this paper with the conclusion in
Section VII.

II. RELEATED WORK

A. Traffic Monitoring Technologies

The surveillance of the traffic condition can help us under-
stand the changes and the distribution patterns of the traffic
volume in time and space. In addition, it can provide the neces-
sary data support for traffic planning, road construction, traffic
management, and engineering economic analysis. Existing
traffic monitoring systems adopt a variety of techniques such
as inductive loop, computer vision, infrared, etc. The sensors
contain two types, which are aggressive and no aggressive
sensors. The aggressive sensors mainly include loop detectors
[3] and magnetometers [4]. The intrusive sensors have the

advantages of high accuracy but have the flaws of expensive
installation, traffic disruption for installation or repair, and high
maintenance cost. The non-intrusive sensors such as camera-
based sensors [17], microwave radar [7], infrared [6], and
ultrasonic [18] sensors are mainly installed above the road or
nearby the road. These non-intrusive ones are susceptible to
outside environment, including the weather and power hunger.

Mousa et al. [18] combine the passive sound wave sensors
and heat sensors to build a novel vehicle monitoring system.
The system has the ability to monitor the vehicle velocity, the
vehicle numbers, the vehicle density, and the vehicle types.
Barcellos et al. [19] use the video camera to achieve traffic
detection and count the cars’ number. The method based on
Gaussian Mixture Models and similarity in adjacent frames
is used for vehicle detection and vehicle count. A vehicle
classification system is developed in [20] to realize vehicle
classification and speed estimation with wireless accelerome-
ters and magnetometers. Adrian et al. [21] focus on the issue
of vehicle detection and low power consumption. The authors
design, produce and test the vehicle detection module using
the magnetic sensors. Al-Tarawneh et al. [22] adopt the SVM
algorithm to work out the problem of vehicle classification.
They use the grating sensors buried in the pavement to monitor
the vehicles’ condition. Amal et al. [11] present the RF-
based system named Monitor to realize traffic detection and
identification, they choose the sliding average and sliding
variance techniques to detect moving objects and identify
humans or cars with the RSS data. Under the foundation of
their work, Kassem et al. [12] develop the RF-based vehicle
motion detection and speed estimation system ReVISE to
detect vehicles and estimate the vehicle speed.

B. CSI-based Sensing

Most of the previous WiFi-based sensing systems are imple-
mented with RSS, and RSS is widely used for indoor location
[23], behavior recognition [24], human-computer interaction
[25], etc. Different from RSS, which depicts the superpo-
sition effect of multipath propagation, CSI is the physical
layer information. Earlier pioneering CSI-based studies mainly
focus on human activity recognition such as gesture recog-
nition [26], fall detection [27], human location [14], human
identification [28] and environment awareness [29]. Tan et al.
[13] propose WiFinger to achieve fine-grained finger gesture
recognition. Zheng et al. [30] build the passive smoking
system to detect the smoking gesture recognition. WiFall [27]
enables to achieve real-time detection of the fall behavior,
which is significant for old people living alone. Different
from WiFall, Anti-Fall [31] can detect the fall and similar fall
actions and identify fall from other similar actions using the
signal information. Li et al. [14] present the system MaTrack
with the Dynamic-MUSIC method. The developed system can
locate the moving human by finding out the angle of the
object without any offline training phase. Qian et al. [32]
built a system to detect the moving people using the radio
signals without any extra devices. The humans can mobile
with different velocity values in their experiments. Unlike the
previous studies, we apply CSI to intelligent traffic monitoring,
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and a system is built to realize vehicle detection, vehicle type
classification and vehicle speed estimation.

III. PRELIMINARIES

Popular WiFi standards like IEEE 802.11a/g/n have the
ability to support the Orthogonal Frequency Division Mul-
tiplex (OFDM). The signal is transmitted through multiple
orthogonal subcarriers, and different subcarriers have different
amplitude values and phase values. Currently, CSI can provide
rich phase and amplitude information of the subcarriers. They
describe the comprehensive dynamic changes which include
scattering, fading, and power decay of the wireless signal as
the places of the wireless devices changes. For each signal
captured packet, the data matrices can be presented as

H = [H(t1),H(t2), · · · ,H(tm)] (1)

where m is the total number of sub-carriers. Notice that
channel matrix H can be obtained with the normal NICs and
the fine tuned drivers [33], [34].

CSI contains the subcarriers’ phase information and ampli-
tude information. A subcarrier’s CSI presents a complex value,
where we can denote it as

H(ti) = ‖(H(ti))‖e jsin{∠H(ti )} (2)

where ‖(H(ti))‖ represents each individual sub-carrier’s am-
plitude, using ti as the middle frequency of sub-carrier (i =
1,2, · · · ,30). Besides, ∠H(ti) represents the phase of the sub-
carrier i at the center frequency of ti .

Then, we give some introduction about the classical
Multiple-Input Multiple-Output (MIMO) technology. To im-
prove the data throughput and transmission distances, this
technology allows no increment of additional bandwidth and
power resource. Generally, multiple antennas are used as
transmitters and receivers, where the current standards like
802.11n standard are supported for normal WiFi devices. We
use one pair of transmitter and receiver as a stream. Therefore,
all the pair of these streams’ CSI can be expressed, using
M×N ×P. The N and M indicate the number of receivers and
transmitters. Besides, the number of sub-carriers is noted as
P. A general setting of P is 30, which contains a link from the
transmitter to the receiver. As different streams have different
propagation paths, the CSI values captured by different streams
are various.

Through each received packet, we extract the amplitude and
phase data set for one time slot. By analyzing raw phase data
captured by the CSI subcarriers, we find that there are no
obvious and regular changes of the CSI phase information
when the vehicle passes through the wireless devices. The
raw phase information of the CSI subcarriers is considered
meaningless [32]. In general, most of the vehicles on the road
are metal properties, and the impact of metal products on the
wireless signal is reflected in the signal amplitude attenuation.
Therefore, we use the CSI amplitude information to realize
traffic monitoring and discard the phase information.

Fig. 2. The architecture overview of WITM, which is composed of data
processing, vehicle detection, vehicle classification, and speed estimation.

IV. SYSTEM OVERVIEW

WITM mainly consists of four parts: data preprocessing,
vehicle detection with the moving variance method, vehicle
classification based on CNN, and vehicle speed estimation
using the curve fitting approach. Fig. 2 illustrates the basic
structure of the system. First, to get rid of the high frequency
signals, the system employs the low-pass filtering. Then, it
adopts the normalization approach to eliminate the effect of
central frequency diversity. After that, the vehicle is detected
by observing the CSI variance changes. If the variance is larger
than the predefined threshold, a vehicle is regarded as passing
by. After the vehicles are detected, they are used as the input
of the multi-branch CNN to train the classification model and
achieve the vehicle type identification. At last, for the same
type vehicles, the method based on gradient is used to find
the start and finish position of the vehicles passing by. The
polynomial curve fitting methods which include linear fitting,
quadratic fitting, and cubic fitting, are adopted to estimate the
vehicle speed.

A. Data Preprocessing

Due to the interference from external environment and
hardware devices, such as noise caused by moving people
around the wireless devices or the abrupt change of emission
intensity of WiFi NICs, the original signal data contains a lot
of irrelevant information. Hence, it is inadequate to put the
raw CSI data into analysis directly. In this paper, the high
frequency waves with noise are removed through the low-pass
filter. The data normalization is adopted to solve the problem
of the center frequencies diversity.
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(a) The raw CSI amplitude values
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(b) The CSI amplitude after filtering
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(c) The CSI amplitude after normalization

Fig. 3. Thirty CSI sequences described with different colors from a pair of transmitting and receiving antennas.

1) Low-pass Filtering: As mentioned in [13], the noise
caused by the hardware devices such as the carrier frequency
offset and the channel propagation is relatively high frequency.
The signal changes introduced by the moving vehicles have a
relatively low-frequency. Through low-pass filter, we can get
rid of the noise in higher frequency. In Fig. 3(a), it shows
the amplitude waveforms of CSI before filtering. Fig. 3(b)
demonstrates the result of amplitude waveforms after filter-
ing. We find that the low-pass filter effectively removes the
abrupt part of the CSI signals and makes the CSI waveforms
formatted.

2) Data Normalization: The center frequencies of different
subcarriers are diverse, which result in the diverse ranges of the
CSI amplitude, while different CSI waveforms have the same
trend under the same condition. To lighten the impact of the
different center frequencies on CSI amplitude, we normalize
the subcarriers’ amplitude separately. For a set of CSI signal
data D = {d1, d2, · · · , dm}. The data dmin is the minimum
of among all the values, and dmax is the maximum. The
normalized data for di states d̃i , which is calculated with the
following equation.

d̃i =
di − dmin

dmax − dmin
(3)

Fig. 3(b) is the filtered CSI amplitude waveforms before
normalization. In Fig. 3(c), we can observe the CSI waveforms
after normalization. We figure out that the trends of the signal
amplitude curves are almost consistent after normalization,
which illustrates that the data normalization method can elim-
inate the influence of the diverse CSI signal amplitude ranges
caused by the diverse central frequencies.

B. Vehicle Detection

Before measuring the traffic information, we need to seg-
ment the continuous sampled CSI signal to find out the time
of the vehicle passing by. When the vehicle passes through the
transmitter and the receiver, the wireless signal will fluctuate
greatly due to the shielding of the vehicle to the wireless
signal. As a result, the interference of the vehicle to cause a
great influence in the variance of the CSI signal. In our work,
the moving variance is able to estimate the time segment of
the rushing vehicle. The moving variance method is composed
of two steps. First, we slide the CSI time series values into
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Fig. 4. The CSI amplitude moving variance when the window size is 30.

fixed window sizes with the pre-defined step length. Then, we
calculate the variance of CSI data in the windows. The CSI
signal sequence can be represented as D = {d1, d2, · · · , dm}.
The formula of the moving variance can be described as

vi =

∑n
j=1(di+j−1 − d)2

n
and d =

i+n∑
x=i

dx/n (4)

where we use the symbol n to represent the window size of
the sliding window. The window size is set to 30 empirically
which means every window contains 30 packets from the
CSI sequence. The symbol vi represents the variance of the
window. In the experiments, we use the CSI data from a
transmitting antenna and three receiving antennas. For each
packet, we can obtain a total of 90-dimensional data composed
of 1 × 3 × 30. Before computing the variances, we weight
the normalized 90-dimensional data to get 1-dimensional
data. Then we calculate the variances of the weighted 1-
dimensional data. If the calculated variance is bigger than a
pre-set threshold, a vehicle is considered as passing by. The
variance threshold is determined by the experiments.

In Fig. 4, the x-axis represents the packet index of CSI
sample, and y-axis means the calculated variance. We can see
that there is a sharp fluctuation in the CSI variance waveform
when a vehicle passes by. Therefore, the CSI amplitude
variances can be regarded as a clear indicator of the vehicle
detection.
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Fig. 5. A convolutional neural network structure for vehicle type classification.

C. Vehicle Type Classification

Due to the size of the vehicles are diverse, the signal
changes caused by the vehicles on the wireless signal are
different. After the vehicle is detected, we can extract the
effective wireless signal information and choose the appropri-
ate approach to judge the vehicle types. Most of the previous
researches based on CSI achieve classification using traditional
machine learning methods, which require two stages of feature
extraction and classification. CNN is a typical deep learning
approach, which uses multiple neural cells to generate useful
information and achieves classification end-to-end. In view of
the successful research work of using CNN to realize location
[35], gesture recognition [36] and user authentication [37]
based on CSI, we adopt the CNN learning engine to achieve
vehicle type classification in this article. Usually, the input
of the conventional CNN is the image information. However,
when CNN is used to classify the vehicle types in this article,
the input is the time series values of the CSI amplitude from
different subcarriers. The vehicle types can be classified into
three main categories, namely: truck, bus, and two-wheeler.

We can get three streams from one transmitting antenna and
three receiving antennas, and every stream can extract 30 CSI
subcarriers’ values at a time slot. A CSI matrix with the size of
30× t can be obtained from a stream, and t represents the time
segment for the vehicle passing by. We propose a multi-branch
CNN structure to solve the vehicle type classification problem.
The network framework consists of three branches, and each
branch is composed of three convolutional layers. The CSI
matrix with the size of 30 × t from a stream as the input
of a branch network. The final outputs of the three branches
are considered as the input of the full connected layer. In
Fig. 5, we give the adopted CNN structure for vehicle type
classification. Three branches have the same convolutional
layers structure such as the kernel numbers and kernel sizes.
The kernel number of the convolutional layer is 6 for the first
part, and the kernel size is 30×5. There are 12 different kernels
for the second layer and the kernel size of the second layer is
still 30 × 5. After three convolutional layers, 12 feature maps

are generated for each branch network. The kernel size of the
last convolutional layer is the same as the second convolutional
layer. Then, we concatenate the results of the three branches,
so the final outputs of the convolutional layer are 36 feature
maps. There are two fully connected layers to achieve the
classification. The neuron number of the final fully connected
is 3 which is equal to the vehicle types.

The width of the input data for CNN is 30, which is equal
to the number of subcarriers. Due to the differences in vehicle
sizes and vehicle speeds, the time of the signal fluctuation
caused by different vehicles is not consistent. While the input
data of the CNN requires the same size, it is a problem to
choose the appropriate length of the input map. Because of the
limitation of the vehicle speeds and the vehicle sizes, we find
that the time of the signal fluctuation caused by the vehicles
is less than 1.2 seconds by analyzing the experimental data.
We choose the packet delivery rate as 100 packets per second
in the tests. Therefore, we set the input data length of the
neural network to 120 in this article. As a result, the input of
each branch network is a 30×120 matrix. The size of the CSI
matrix is still relatively small. We take two measures to ensure
that the wireless data information is not lost. On one hand, to
keep the size of the map does not change after convolution,
the step data of the convolutional layers is one in the network.
On the other hand, the sub-sampling layer is not adopted in
the neural network structure.

D. Vehicle Speed Estimation
After the vehicle types are judged, we estimate the vehicle

speeds of the same type vehicles. The previous work [12]
mentions that the vehicle speeds are related to the time length
of the signal waveform fluctuation. They use the statistic
method and curve fitting method to estimate the vehicle
speeds. By analyzing the lengths of fluctuation time of the
CSI waveforms, we find that the lengths of time of the signal
fluctuation are relevant with the vehicle speeds. In other words,
the faster the speed, the less time it will affect the waveform.

In order to get the time length, we need to find out the
signal boundary of the signal fluctuation caused by a passing
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Fig. 6. The real experiment deployment of WITM.

vehicle. We use the gradient-based method to judge the signal
boundary in our work. After the vehicle detection module,
we can obtain the CSI time series values which contain the
start and end points with a fixed length window. The values
in a same window can be represented as D = {d1, d2, · · · , dm}
after filtering, normalization and weighting preprocessing. For
a fixed window, the position of maximum slope change is
defined as the start point, and the position of minimum slope
change is the end using the gradient-based approach. The
methods of calculating the start and end points of the vehicle
passing through the transmitter and receiver can be expressed
as

ps = max(
dx+l − dx

l
) (5)

pe = min(
dx+l − dx

l
) (6)

where ps and pe represent the start point and end point,
respectively. The values of dx and dx+l are the CSI data at
time x and time x+ l, respectively. The l value is the step size,
and the value of l is determined by the experiment. When we
get the start and finish position of the signal boundary, we can
get the length of time t that the vehicle affects the CSI signals.

As the amount of the same type vehicles is small, and
the distribution range of the vehicle speed values is wide.
It is not suitable to use relatively complex models such as
the deep neural network to estimate the vehicle speeds. In
our work, we use the polynomial curve fitting method to
estimate the speed values by fitting the speed V and the
length of time t. Polynomial regression is a typical method for
fitting continuous values. In our experiments, three degrees are
used for the curve fitting: linear, quadratic, and cubic. Three
streams can be obtained from one transmitting antenna and
three receiving antennas. In order to improve the accuracy
of the speed estimation, we build models for each stream
and combine the estimated results of different streams. The
result of the weighted averaging of three streams as the final
estimated speed.

V. SYSTEM IMPLEMENTATION
A. Experimental Setup

We evaluate the performance of the WITM by conducting
real experiments with the current WiFi devices, and Fig. 6

shows the experimental environment. We use the Tp-Link
WiFi router to send the signal. The laptop equipped with Intel
5300 network interface card is considered as the receiver. The
bandwidth of the channel is 20 MHz, and the frequency band
is 2.5 GHz. We carry out the experiments with a machine
equipped with the Intel Core i7-6700K CPU, 32GB memory
and NVIDIA GTX 1080 graphics card. We conduct the data
collection on the road for two weeks, and we collect a total
of nearly 700 marked vehicle values. The width of the road is
6m. Since the time that the vehicle passes through the wireless
devices is relatively short, the packet delivery rate is defined as
100 packets per second. The transmitting device and receiving
device are placed on either roadway’s side. When collecting
data with the WiFi devices, we use the camera to record the
traffic conditions so that we can tag the dataset conveniently.

B. Vehicle Speed Calculation

To judge the results of the approaches proposed in this
article, we need to tag the dataset. The presence of the vehicles
and the vehicle types can be marked by observing the video
camera easily. The real speed values can be obtained with
the video camera using the method proposed in [38]. The
process of vehicle speed calculation contains four steps: (1)
we mark two points on the road and record its length L;
(2) the frame difference method is used to detect the moving
vehicle in the video. The frame difference method is one of
the most common approaches for moving object detection and
segmentation; (3) the time interval ∆T can be obtained with
the frames per second f ps and the total frames ∆ f of the
vehicle passing through the two points in the video;

∆T =
∆ f
f ps

(7)

(4) according to the length L and time interval ∆T , the real
vehicle speed V can be calculated using the following formula.

V =
L
∆T

(8)

VI. PERFORMANCE EVALUATION

A. Evaluation Metrics

First, we discuss the metrics for comparing our proposed
system’s performance.
• Precision: TP

TP+FP , where TP is the true positive, and
FP states the false positive. Precision means the average
ratio of vehicles estimated by the model that are indeed
vehicles.

• Recall: TP
TP+FN , where FN represents the false negative,

and recall represents the ratio that a real vehicle can be
correctly detected.

• F1-score: 2×PR
P+R , where P and R represent precision and

recall, respectively. It stands for the average of precision
value and recall value.

• Accuracy: TP+TN
TP+FP+TN+FN , where T N is the true negative.

It is used to highlight the most important standard of our
proposed the system can correctly identify each vehicle’s
type.
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(a) Precision of the detection
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(b) Recall of the detection
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(c) F1-score of the detection

Fig. 7. The results of the vehicle detection experiments when choosing different variances.

• During speed estimation, we use the cumulative probabil-
ity distribution to present the relative speed error between
the estimated speeds and real speeds. The relative velocity
error can be calculated with the formula |St−Sp |

St
, where

St is the actual speed, and Sp is the predicted speed.

B. Vehicle Detection
When we choose different variance thresholds, the result of

vehicle detection changes. If the threshold is set too high,
small fluctuation of the waveforms caused by the vehicles
cannot be detected. If the threshold is too small, errors caused
by the noise may result in the decrease in the accuracy of
the result. Therefore, it is essential to select the appropriate
threshold for vehicle detection. Fig. 7(a) and Fig. 7(b) describe
the results of precision and recall when we choose different
variance thresholds. By analyzing the results, we find that the
precision of vehicle detection is relatively higher when the
variance increases, which means the rate of a detected vehicle
is indeed a vehicle is higher. However, when the variance is
set to a large value, the recall becomes smaller. It can be
understood that some vehicles cannot be detected when the
variance is set to a larger value. Therefore, it is not appropriate
to use precision or recall as the evaluation criterion alone.

To emphasize the robustness and accuracy of our proposed
system, we use F1-score rather than precision or recall as the
final evaluation criteria of the vehicle detection. The results of
the F1-score corresponding to different variances, as shown in
Fig. 7(c). Through the figure, we know that when the variance
value is set to 0.5, the corresponding F1-score can get a larger
value of 93.12%. As a result, the variance threshold selected
for vehicle detection is 0.5 in this article.

After the variance is determined, we analyze the vehicle
detection results as the number of vehicles increases. In Fig.
8(a) and Fig. 8(b), the precision and recall accumulation
results increase with the increment of the vehicle numbers.
We observe that the precision of vehicle detection is between
95.3% and 96.4%, and the recall of the vehicle detection is
between 87.3% and 92%. The experimental results show that
the moving variance process is effective enough for vehicle
detection.

C. Vehicle Type Classification
We now investigate the performance of vehicle type classi-

fication using CNN. Fig. 9 shows the accuracy result of the
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(a) The vehicle detection precision
with different vehicle numbers

� �� ��� ��� ��� ���
��������	����

���

���

���

���

���

���


�
��
��

(b) The vehicle detection precision
with different vehicle numbers

Fig. 8. The vehicle detection results of the experiments when using different
vehicle numbers.

CNN classifier with the increment of vehicle numbers. In this
experiment, the total train number for CNN is set as 1000
by default. The results demonstrate that the accuracy results
of classification are slightly increasing as training set size
becomes large. When the training sets’ number is 550, the
best classification results can be obtained with the accuracy of
about 87.3%.

Existed researches based on CSI use the traditional machine
learning methods to solve the classification problems such as
SVM [39], [40] and KNN [41], [42]. To fully demonstrate
the effectiveness of the CNN, we use our proposed method to
compare with SVM and KNN. The features adopted in SVM
and KNN are listed as follows: (1) root mean square, (2) mean,
(3) variance, (4) first quartile, (5) median absolute deviation.
Table I shows the average accuracy results of the vehicle type
classification for CNN, SVM, KNN with different iteration
times. In the experiments, k is set to 5 for KNN because it
can achieve the best performance. The results show that the
classification accuracy of CNN is consistently better than that
of SVM. We find that the accuracy results of CNN are increas-
ing with the iteration numbers increasing. When the iteration
number is set to 1000, the accuracy of the classification result
of CNN is approximately 87.27%. The classification accuracy
results of SVM change with the iteration numbers increasing,
and the best classification result is no higher than 77.92%.
KNN does not need iteration, so the classification results of
KNN don’t change with the iteration numbers increasing. The
classification accuracy results of KNN are slightly worse than
those of SVM and CNN.
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TABLE I
THE AVERAGE ACCURACY RATE OF TYPE CLASSIFICATION OF KNN,

SVM, CNN AND WITH THE INCREASE OF THE NUMBER OF ITERATIONS.

Iterations 25 50 100 500 1000

CNN 76.36% 78.18% 81.82% 85.71% 87.27%

SVM 55.09% 74.15% 77.92% 77.64% 77.57%

KNN – – 74.53% – –
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Fig. 9. The accuracy of the vehicle type classification with different vehicle
numbers using CNN.

D. Vehicle Speed Estimation

When we get the time length of the vehicle passing by with
the gradient-based method, the curve fitting method is adopted
to estimate the speed for the vehicles of the same type. Three
different degrees which include linear, quadratic and cubic are
used to fit the speed V and the length of time ∆T for each
stream. The final estimated speed is calculated by weighted
averaging the results from all streams. In order to compare
different polynomial curve fitting methods, the cumulative dis-
tribution probability of the relative speed error is applied. Fig.
10 shows the results of the cumulative probability distribution
of the relative speed error. The figure demonstrates that the
curve fitting using the linear and quadratic performs better
than the cubic. The reason for the poor fitting performance
of the cubic is overfitting, and the same results can be gotten
when the degree increases. We also find that the fitting result
of the quadratic is relatively superior, and the corresponding
root mean square (RMS) error of vehicle’s moving speed is
less than 5 km/h with the gradient-based method.

E. Application Evaluation of the System

1) System Latency: The methods proposed in this paper are
required to provide timely detection results in some specific
scenarios such as the automated driving assistance or the high
vehicle velocity. We test the latency time of different modules
of the system when the test batch number is 10. The latency
for the data preprocessing step is 0.22 seconds which includes
the low-pass filtering and data normalization procedures. The
time spent on vehicle detection module using moving variance
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Fig. 10. The cumulative probability distribution of the relative speed error
using linear fitting, quadratic fitting and cubic fitting.

method is 0.06 seconds. The time latency for the test phase of
the CNN-based classification module is about 0.07 seconds,
and test phase of the speed estimation module costs around
0.01 seconds. The latency values are obtained by averaging
the results of 10 runs. The mean total latency time is no more
than 0.36 seconds for a batch of 10 vehicles. Therefore, the
system can provide timely results and respond quickly to the
external environment.

2) System Adaptability: In some countries such as Japan,
the statistics of the traffic volume parameters are usually com-
pleted by the traffic investigators. Due to the portability and
easy deployment of the wireless devices, it is very convenient
for the system to replace the investigators to investigate traffic
volume parameters under the low traffic condition. In addition,
the wireless devices have the advantages of the low price and
strong scalability, it is easy to deploy multiple pairs of devices
to work together and to extend the system. The system is
available for the low traffic scenarios that require large scale
deployment devices and low investment such as rural roads. It
is also valuable as an auxiliary system when combining with
other devices such as cameras or loops.

However, the mechanism of the proposed system is inad-
equate in the case of the overlapping vehicles. The impact
on wireless signals become particularly complicated when
multiple vehicles passing by at the same time. Due to the
limitations of the current technologies and equipments, more
efforts should be made by researchers to effectively separate
the superimposed wireless signals to achieve separate detec-
tion. Therefore, the proposed method using CSI is designed to
get higher accuracy in single-lane or when there is low traffic
volume in multiple-lane road.

3) System Potential: In the future research work, we intend
to improve the accuracy of the traffic information monitoring
under the condition of overlapping vehicles or large traffic
volume with a variety of measures such as combining with
other sensor devices or mining the internal laws of the wireless
signals. Deploying multiple pairs of wireless devices and
making full use of wireless signal information such as RSSI,
CSI phase information to improve the system stability and
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accuracy is also in our plan.

VII. CONCLUSION

In this paper, we develop a system called WITM for intel-
ligent traffic estimation using the fine-grained wireless signal
information CSI. First, low-pass filtering is used to process the
raw CSI data to remove the interference of the high frequency
noise, and data normalization is used to eliminate the diversity
of the center frequencies. Then, the moving variance method
is presented for vehicle detection. After the vehicle detection,
the vehicle type classification is realized using CNN. For
the vehicles of the same type, we apply the combination
method of gradient-based and curve fitting to vehicle speed
estimation process. The results of the experiments show that
our developed system can achieve effective traffic monitoring.
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