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A B S T R A C T   

Air transport supports economic growth and prosperity through the movement of passengers and 
goods. As it grows more extensive and more complex, the more vulnerable its operations to 
unexpected natural disasters (e.g., typhoon and volcanic eruption) will become. In Japan, many 
active volcanos are affecting its airspace and considered a threat to the national air transportation 
and critical aviation equipment such as aircraft. The study focuses on solving the evacuation of 
the affected aircraft during the volcanic eruption by proposed the shelter airport selection model 
using the historical data of volcanic eruption, aircraft movement, and airports data in Japan. The 
model was applied to the genetic algorithm (GA), the metaheuristic algorithm to provide the 
approximate solution of the suitable shelter airport with minimum flight time and no exceeded 
shelter airports’ capacities for the aircraft evacuation.   

1. Introduction and background 

Airports are the critical aviation infrastructure and essential to their regions’ economic activities and even more critical during the 
disaster (Smith, 2010) such as earthquakes, volcanic eruptions, and human-made disasters. Recently, the airline industry had 
encountered the uncertain situations of volcanic eruption and its ash cloud when the Eyjafefjallajökull and Merapi Volcano erupted in 
2010, which had significantly disrupted air transport and economy in Europe and Indonesia’s central (Langmann et al., 2012; Maz-
zocchi et al., 2010; Picquout et al., 2013). In Japan, the volcanic eruption is one of the national air transportation threats as there are 
more than 100 active volcanos, and many of them are located in the busy airspace and large hub/regional airports. Although the safety 
operation regulations during the volcanic eruption have been established by ICAO and Japan Meteorological Agency (JMA), there is no 
shelter airport selection system with integrated air flight and airport data available, which is considered as a problem in this study. 
Therefore, we aim to develop a shelter airport selection model for the event of a volcanic eruption. 

In the disaster times, the surrounding unaffected airports are expected to quickly respond and fulfill the affected airports’ loss 
capacity to reduce the disaster’s wide-effect (Button et al., 2010; Hanaoka et al., 2013). The Japan catastrophic earthquake in March 
2011 caused the loss of Sendai international airport, one of the major air transportation hubs in East Japan. Other regional and smaller 
local airports’ role became more important on bypassing, maintaining the connections between remaining airports, and securing the 
unoperated equipment included aircraft (Cidell, 2006; Kita et al., 2005). These unforeseeable conditions can reduce the level of airport 
operation performance, create air traffic congestion, and put pressure on airport resources from limited resource utilization (Harsha, 
2003). 
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The airport’s practical resource utilization could be achieved by integrating various operations, including aircraft maintenance, 
flight operations, ground handling, fueling services, airside services, and air traffic control (Harriman et al., 2009). Madas and Zografos 
studied airport slot allocation under the situation of air traffic congestion by airport’s classification, capacity and size, and air traffic 
demand to measure the airport handling capability before choosing the suitable slot allocation for aircraft (Madas and Zografos, 2010). 
The other studies showed that airport capacity had a significant impact on aircraft and passenger relocation in the event of disruptions, 
which was also mentioned in other studies concerning airport slot allocation problems (Hu et al., 2016; Lordan et al., 2015, 2014; 
Lordan and Klophaus, 2017). Hence, the large airports (hub and regional airports) are expected to become emergency airports in 
surging air traffic demands during the disaster from their operations and capacities readiness. 

Airport disaster management (ADM) studies have put the focusing on the airport resources capacity utilization on both landside and 
airside, which airside capacity is defined into three parts: runway(s), taxiway(s), and apron area (the aircraft stands area for loading, 
unloading, and refueling) within the airport capacity constraints (Jimenez Serrano and Kazda, 2017). In particular, the aircraft stands 
allocation (SA) for accommodating the affected aircraft but rarely the study on SA during the disaster. Instead, a bundle of studies on 
airport gate assignment problem (AGAP) is available. Most of them had set on the four main minimization objectives, i.e., the pas-
senger’s walking distance, the number of ungated flights, dispersion of idle gate periods, passenger travel time, and the number of 
flights exceeds the number of available gates. Many studies had applied various meta-heuristic algorithms to solve these optimization 
problems on aircraft stand allocation and proved to be necessary to solve such NP-hardness of the optimization problem as SA (Guépet 
et al., 2015). Those applied meta-heuristic algorithms included simulated annealing (Cheng et al., 2012; Ding et al., 2005), bee colony 
optimization (Dell’Orco et al., 2017; Marinelli et al., 2015), tabu search, and genetic algorithm (Aktel et al., 2017; Cheng et al., 2012; 
Ding et al., 2005; Liu and Kozan, 2016; Marinelli et al., 2015). Although the studies mentioned above did not intend to solve airport 
selection and aircraft assignment during the disaster. However, they had given a big picture of the concerning factors on airport 
disaster management, resource utilization, and optimization algorithms, which can develop the computational optimization model on 
shelter airport selection for aircraft evacuation during the natural disaster. 

In principle, the optimization model for shelter location selection was built for large-scale emergencies to select shelters from the 
exited safe and suitable locations according to both evacuee and shelter location criteria. The main goals are responsiveness and cost- 
efficiency by minimizing total evacuation cost, time, and the entire transport distance between demand points (an affected area and 
candidate facilities). Regularly, the evacuation is evaluated its efficiency by distance or time (Toregas et al., 1971). Thus, the first 
objective function aims to focus on the travel distance and time criterion. The minimization of total or minisum formulation had widely 
applied to the optimization models on the facility selection of humanitarian relief supply distribution in the various natural disasters, i. 
e., hurricane and earthquake (Horner and Downs, 2010; Lin et al., 2012). The metaheuristic approach, such as the genetic algorithm 
(GA), has recently introduced to the complex multi-criteria objective optimization problems of optimal shelter selection on the 
flooding evacuation planning, earthquake shelter location selection, and the facility location selection in response to large-scale 
emergencies (Hu et al., 2014; Kongsomsaksakul et al., 2005). 

Therefore, this study aims to propose an airport selection model for aircrafts evacuation in a volcanic eruption situation by 
considering the airport’s available aircraft stands capacity, aircraft size, and enclosed area to avoid volcanic ash cloud. The proposed 
model has been developed and applied to the genetic algorithm (GA), then analyzed its performance according to the study’s objective 
and subject. The study also compared GA’s performance with the Greedy Randomized Adaptive Search Procedure (GRASP), the basic 
multi-start meta-heuristic algorithm on the same developed model. Although GRASP does not equip with the crossover and mutation 
operators like in GA. GRASP has a similar mechanism to GA in its ability to randomly generate initial solutions, evaluate, select the 
better solution, and replace it with a better new local optimal solution in each iteration. Even though both GA and GRASP may or may 
not promise the global-optimal results, their procedures could ensure that the best result or approximate results will be generated at the 
end of all running iterations. Therefore, their results could suggest aviation authorities and related parties, e.g., air traffic control 
agencies, airports, and airlines, on which airport could be the critical shelter airports for aircraft evacuation of the volcanic eruption 
minimize effected of the event. 

This paper’s remainder is organized as follows: Section 2 presents the methodology, dataset, and proposed mathematical model of 
research. The case study of Mt.Hakone is presented in Section 3 with models’ validations in Section 4 and computational results in 
Section 5. Finally, the conclusion, future research suggestions, and research limitations are presented at the end of the study. 

2. Methods and materials 

This section discusses a conceptual model and assumption, Genetic algorithm (GA) and Greedy Randomized Adaptive Search 
Procedure (GRASP), the collaborative actions for the renovation of air traffic systems (CARATS) flight dataset, and the proposed 
mathematical model and its pseudocodes as follows: 

2.1. Genetic algorithm (GA) and Greedy Randomized Adaptive Search Procedure (GRASP) 

Genetic Algorithm (GA) is a type of evaluation algorithm. Darwin’s theory of evolution is an optimization method based on 
concepts of natural selection and genetics. They work with individuals’ populations; each evolves by adapting itself to the 
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environment, repeating crossover, mutation, and selecting a possible solution to a given environment’s conditions or problem. The 
appropriate solution can be found by using the series of numerical computation. GA typically works by iteratively generating and 
evaluating individuals using an evaluation function. The basic process flow of GA is shown in Fig. 1. 

The performance of the model applied on GA is compared with the basic meta-heuristic algorithm, Greedy Randomized Adaptive 
Search Procedure (GRASP). GRASP is the basic multi-start meta-heuristic algorithm for combinatorial optimization problems proposed 
by Feo and Resende in 1995 (Feo and Resende, 1995). In each running iteration of the GRASP algorithm consists of two steps: con-
struction and local search. In the construction step, a feasible candidate solution is built using randomized greedy heuristic. The second 
step, the solution is used as the initial solution for the local search procedure. If an improved solution is found in the local search, the 
best candidates or restricted candidate list (RCL) will be replaced by the better one (see Fig. 2.). 

Moreover, the study adopted the haversine formula for distance and flight time calculation. Since the study’s distance is the 
geodesics or curve line between two points on earth’s surface using Latitude and Longitude of given aircraft I and shelter airport J set. 
The flight time of any affected aircrafts took from their current position to the safe shelter airports was calculated by flying distance 
divided average cruising speed of commercial aircraft at 880  km/h. It helps to measure the solution’s performance, so-called fitness 
value for both algorithms. When termination criterion is met, such as the maximum number of iterations or the optimal solution has 
been found, the algorithm will be terminated and return the best solution. 

Fig. 1. The process flow of the Genetic Algorithm (GA).  
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2.2. The collaborative actions for renovation of air traffic systems (CARATS) flight dataset 

The Collaborative Actions for Renovation of Air Traffic Systems (CARATS) dataset is a historical flight record cover all Japan’s area 
control centers; Sapporo, Tokyo, and Fukuoka Area Control Center (ACC), consist of raw flight data of individual aircraft, i.e., date, 
timestamp of 10sec interval, latitude, longitude, altitude, and model of aircraft (e.g., B777 and A322) provided by Japan MLIT (MLIT, 
2018) as shown in Table 1. 

Fig. 2. The process flow of the Greedy Randomized Adaptive Search Procedure (GRASP).  

Table 1 
Example of CARATS flight dataset provided by Japan MLIT.  

Time Flight_ no. Latitude Longitude Altitude AC_type Latitude Longitude 

00:03.9 FLT1861 27.420048 124.383047 38,000 B77W 27◦25′12.17 124◦22′58.97 
00:13.9 FLT1861 27.408566 124.369262 38,000 B77W 27◦24′30.84 124◦22′09.34 
00:23.9 FLT1861 27.396312 124.353317 38,000 B77W 27◦23′46.72 124◦21′11.94 
00:33.9 FLT1861 27.384821 124.339389 38,000 B77W 27◦23′05.36 124◦20′21.80 
00:43.9 FLT1861 27.373473 124.326036 38,000 B77W 27◦22′24.50 124◦19′33.73  
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2.3. Proposed models 

The Computational model for genetic algorithm (GA) and Greedy Randomized Adaptive Search Procedure (GRASP) is proposed for 
shelter airport selection and evacuation planning. The developed models’ objective is to minimize the total flight time of aircrafts taken 
from their current position to safe shelter airports. The models had considered the limitation of shelter airport accommodation capacity 
by the number of available aircraft stands and their sizes, and the affected aircraft sizes. The assumptions of the problem on model 
construction, indices, parameters, decision variables, objective function, constraints, genetic algorithm’s operators, including GA and 
GRASP pseudocodes in Algorithm 1 and Algorithm 2, are described as follows: 

Algorithm 1. (Proposed model pseudocode for Genetic Algorithm (GA))   

Input: J, a set of candidate airport locations; M, a set of candidate airport locations capacity; and I, a set of affected aircraft locations; 
Output: A list of the nearest Xj selected shelter airports for each Eij affected aircraft;  
Initialize Populations: 500 solutions of all affected aircraft i ∈ I with 42 random candidate airports j ∈ J as candidate solutions.  

1 Evaluate each solution’s fitness using the minimum total flight of the solution do 
2 compute flight time, the distances between each affected aircraft i ∈ I and all candidate shelter airport j ∈ J; using haversine formula;  
3 Repeat Until termination condition is satisfied; 500 iterations do 
4 Select parents; 3 solutions parents 
6 Crossover pairs of parents using two-points crossover operator; 
7 Mutate the offspring using the mutUniformInt operator to change the solution’s value randomly; 
8 Evaluate each solution’s fitness using the minimum total flight of the solution do 
9 compute flight time from the distances between i and all j ∈ J for each population Eij;  
10 Foreach Eij, aircraft i to candidate airport j do 
11 check sum of assigned aircraft at shelter airport j; 

∑
jEij, compare to NCj, the available stands and stands’ sizes at airport j;  

12 if 
∑

jEij ≤ NCj; exit;  
13 else then 

compute add additional flight time (penalty) according to number of exceeded aircraft at airport j to the solution; 
hj = |a*(

∑
i∈IEij − NCj)|; exit;  

14 End for 
15 Select the 3 best solutions: minimum fitness by total flight time 
16 Store the results in a list of selected airports 
17 Add the new best solution to the population list for the next iteration 
18 Terminate   

Algorithm 2. (Model pseudocode with limited airport capacity constraint for Greedy Randomized Adaptive Search Procedure (GRASP))  

1 Input: J, a set of candidate airport locations; M, a set of candidate airport locations capacity; and I, a set of affected aircraft locations; 
Output: A list of the nearest selected shelter airports Xj for each Eij affected aircrafts;  
Initialize Solution: a set of all affected aircraft i ∈ I population with 42 random candidate airports j ∈ J as candidate solutions. **the total number of selected 
candidate airports in each population set must not exceed maximum handling capacity by aircraft size of each airport; capacity by aircraft size: small, 
medium, and large.  

2 Foreach affected aircraft i ∈ I do  
3 compute flight time, the distances between each affected aircraft i ∈ I and all candidate shelter airport j ∈ J; using great-circle distance;  
4 sort the computed flight time, smallest to largest; 
5 select the nearest airport by the shortest flight time; 
6 Foreach affected aircraft i to candidate airport j do 
7  check sum of assigned aircraft at shelter airport j; 

∑
jEij, compare to NCj , the available stands and stands’ sizes at airport j;  

8 
9   

if 
∑

jEij < NCjthen 
assign aircraft i to the candidate shelter airport j; exit;  

10   else then 
select the new next nearest shelter airport j  +  1; 

11 End for 
12 End for 
13 Evaluate a solution’s fitness using minimum total flight time of the solution do 
14 Store the results in a list of selected airports if fitness value better than min(fitness) of all previous solution in the list 
15 Repeat Until termination condition is satisfied;500 iterations do  

Generate a new solution by randomly select airports with distance and capacity constraints the same as items 1–15 
16 Terminate   
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2.3.1. The assumptions of the problem on model construction 
According to ICAO’s volcanic ash effect on aircraft engine’s performance, all aircraft must avoid contact with volcanic 

ash particles and rocks by flying into or park inside the volcanic eruption affected areas and airspace in any ash cloud 
density level. It can be assumed that at any volcanic eruption, warning level has been delivered both airborne and on-ground 
(I) need to avoid those areas by rerouting, rescheduling, or cancel their schedules and evacuate to the safe shelter airports; 
J, at all causes.  

1. Since volcanic ash particles can cause severe damage an aircraft’s engine, no shelter airport can be located within the affected area; 
F, is allowed.  

2. Each shelter airport has limited capacity to accommodate the evacuation demand, the limited number of aircraft handling 
by sizes of aircraft, and the runway’s length. The maximum occupancy rate of aircraft stands (OCj) were used to determine the 
maximum number of occupied stands at the affected airport (considered as the number of affected on-ground aircrafts), 
and available stands at the shelter airports. The occupancy rate can be calculated using; the maximum cumulative number 
of arrival and departure flights in one hour during the busiest day of the airport and its maximum number of aircraft 
stands.  

3. The aircrafts assignment to available aircraft stands will be in sequential according to their size and available stands by 
aircraft sizes at the shelter airport. Each aircraft size: small, medium, large, and extra-large aircraft has its specific handling 
equipment and size defined by ICAO. Even though all available aircraft stand can accommodate various sizes and types of 
aircraft, selecting the most appropriate one will cost the airport less to accommodate those aircrafts in an emergency. Each 
airport also has its specific aircraft handling capacity by which size of aircraft it could handle by wingspan (ICAO, 2019, 
2016). See detail of runway length by aircraft wingspan detail in Table A5. Hence, an affected aircraft will be assigned to an 
aircraft stand that matched its size as a primary assignment, i.e., a small aircraft to a small-size stand, a medium-size aircraft 
to a medium-large size stand, a large and extra-large size aircraft to a large size stand. If the size-matched stand is fully 
occupied, an aircraft could be assigned to the next larger size stand, i.e., a small-size aircraft to a medium-large size stand. 
The sequence of aircraft stands assignment for each aircraft’s sizes is shown in Fig. 3.  

Fig. 3. The sequence of aircraft stands assignment for each aircraft’s sizes matching, airport available aircraft stands, and field (runway) length.  
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Index sets 

I Set of affected aircrafts; i ∈ I  
J Set of candidates shelter airports; j ∈ J  
S Set of affected aircraft sizes; s ∈ ξ, associated with I  
F Set of affected airports; f ∈ F  
Parameters 
Mj  Maximum number of aircraft stands of selected shelter airport; j ∈ J  
Dij  Distance (km) from the current position of affected aircrafts i ∈ I, to shelter airport j ∈ J  
OCj  Occupancy rate of the aircraft stands’ maximum number Mj at candidate shelter airports j ∈ J  
NCj  Non-occupancy rate of the aircraft stands’ maximum number Mj at candidate shelter airports j ∈ J  
P(ρ)j  Available medium-size aircraft stands, at shelter airport j ∈ J  
P(τ)j  Available large-size aircraft stands, at shelter airport j ∈ J  
ρsj  Equal to 1 if a medium-size aircraft s ∈ ξ been assigned to a medium or large-size aircraft stand at shelter airport j ∈ J, 0 otherwise.  
τsj  Equal to 1 if a large-size aircraft s ∈ ξ been assigned to a large-sized aircraft stand at shelter airport j ∈ J, 0 otherwise.  
ςsj  Equal to 1 if a small-size aircraft s ∈ ξ been assigned to any stand at shelter airport j ∈ J, 0 otherwise.  
hj  Penalty value or additional flight time (hr) value gives a candidate shelter airport j ∈ J according to the number of aircraft i ∈ I, which has been exceeded 

assign from the airport’s available capacity.  
tij  Flight time (h) of each affected aircraft i ∈ I to shelter airport j ∈ J; tij = DijÃ ⋅ 880(km/hr)
Decision variables 
Xj  Equal to 1 if the selected shelter airportj ∈ J is in the affected airports f ∈ F, 0 otherwise.  
Eij  Equal to 1 if assigned aircraft i ∈ I to shelter airport j ∈ J with the correct size of stand, 0 otherwise.  
T  Total flight time of all assigned aircrafts i ∈ I.   

Objective function 
Minimize total flight time of all affected aircrafts i ∈ I to safe shelter airports j ∈ J 
minT =

∑
j
∑

itij +hj∀i, j (1) 
Subjective to 
Evacuate to the airport in the safe zone: selected shelter airport must not be located in the affected area, or the affected airport set F.  

Xj ∕∈ F∀j (2a)    

∑

j∈J
Xj = 0∀j (2b) 

Candidate shelter airport capacity limitation by aircraft stand sizes: according to aircraft assignment by sizes in Section 2.3.1 and Fig. 3, 
each affected aircraft could be assigned to the same or larger sizes of the stand to its size. The aircraft stand size constraint has focused 
on the medium and large aircraft to the smaller size of the aircraft, unlike the small-size aircraft, which could be assigned to any size of 
available stands as shown in equation (3b) to (3d). However, constraint 3e and 3f states the total number of assigned aircraft of all sizes 
must not exceed the available or non-occupied aircraft stands (3a); NCj, of the shelter airport of j ∈ J.  

NCj = (1 − OCj)*Mj∀j (3a)    

∑

s∈ξ
ςsj ≤ NCj∀j (3b)    

∑

s∈ξ
ρsj ≤ P(ρ)j ∨ P(τ)j∀j (3c)    

∑

s∈ξ
τsj ≤ P(τ)j∀j (3d)  
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∑

i∈I
Eij =

∑

s∈ξ
τsj +

∑

s∈ξ
ρsj +

∑

s∈ξ
ςsj∀j (3e)    

∑

i∈I
Eij ≤ NCj∀j (3f)  

2.3.2. Penalty function 
In this study, the penalty function has been used to penalize infeasible solutions on the genetic algorithm by disadvantage to 

its individual’s fitness value, force the algorithm to avoid constraint violation. Giving an additional flight time to each violation 
solution depended on the degree of constraint violation (number of available or non-occupied aircraft stands violation) to control 
the number of assigned aircraft at shelter airport not to exceed its available capacity. It can be done by assigning constant value 
hj to its flight time to disadvantage its fitness according to the degree of constraint violation. Thus, the degree of constraint 
violation can be calculated from the difference between the total number of assigned aircrafts 

∑
i∈IEij at shelter airport j ∈ J with 

the correct size of aircraft and stand, and non-occupied aircraft stands NCj of shelter airport j ∈ J multiply by constant a where 
a ≥ 1 according to ~1  h (65 min) of the average duration on the landing take-off cycle (LTO) and turnaround operations of an 
aircraft. The LTO cycle contains four operations involved take-off, climb, approach, and taxi with an average duration of 33 min 
(ICAO, 2013). Moreover, 44 min on average of turnaround time (minimum 29 and maximum 55 min) depend on the size of the 
aircraft, which included some of these activities; unload and reload its passenger, baggage and cargo, potable and waste-water, 
and refueling (Airbus, 2005; Costea, 2011; Mota et al., 2017).  

δj =
∑

i∈I
Eij − NCja ≥ 1, ∀j (4a)    

hj = a*max(δj, 0)
{

δj, δj ≤ 0
0, otherwise a ≥ 1, ∀j (4b)  

2.3.3. Genetic algorithm operators 
In this study, an evaluation algorithm was based on DEAP, a Python operation framework for evaluation algorithm for primary 

operators and settings (De Rainville et al., 2012). The value of each operator based on the case study used in this study gives the 
example of operators’ values. However, these values are adjustable to different study cases. The details of GA process flow and sitting 
are shown in Algorithm 1. 

Chromosome encoding: the chromosome N represents a list of destination shelter airports j ∈ J for all of affected aircraft i ∈ I. Each 
chromosome consists of I genes, which refer to the number of affected aircrafts I and contain one random number of possible shelter 
airports j ∈ J. Hence each gene is represented by two elements i and j. For instance, in this study, 261 affected aircrafts needed to 
evacuate to any 42 possible safe shelter airports. The randomly generated chromosome is shown in Fig. 4. A single chromosome will be 
consisted of 261 genes. 

Fig. 4. The GA’s chromosome encoding.  
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Where 

I is the number of observable affected aircraft, e.g., 261 aircrafts. 
J is the duplicatable number of available shelter airports, e.g., 42 airports. 
N is the number of initial chromosome population, e.g., 500 chromosomes. 

Initial population: The initial population represents the number of parents’ chromosomes at the start point of the algorithms, which 
equal to or greater than the toursize value as mentioned in the following “Chromosome replacement”. The larger number of initial 
populations could lead to less running iteration for GA to find an approximate solution. However, it could cause a longer calculation 
duration in each iteration as well. Refer to DEAP: basic setting for the number of initial populations, this study had set the number of 
initial chromosome population N to 500 chromosomes. 

Chromosome evaluation and fitness function: the chromosome was evaluated by the total flight time of every gene calculated using a 
haversine distance formula divided by average aircraft speed per hour in the form of fitness value. It was also evaluated by the total 
number of each assigned shelter airport number against the airport’s available capacity constraint. For capacity evaluation, the penalty 
function was used to give the capacity violation genes a disadvantage by giving additional flight time to aircraft if it exceeded-assigned 
to the airport capacity as defined in Section 2.3.2 penalty method. 

Crossover and mutation: the crossover method in this study is based on the two-points crossover operator (cxTwoPoints) (De 
Rainville et al., 2012), the random gene sequence integer i in I selection to select two crossover positions i within chromosome N and 
exchange genes between two parents, which reserved original genes values in the chromosome and give diversity to the offspring 
(child chromosome). Unlike crossover operation, the mutation method used the “mutUniformInt” operator (low  =  0, up  =  41, 
inpb  =  0.05), which performs an integer replacement between lower and upper bound values probability 5% uniformly, caused the 
value of gene to change from the original value within the range of the candidate shelter airport J. 

Chromosome replacement: the study used the steady-state approach in which the population size remains constant according to the 
number of initially generated chromosomes. This process was done through the chromosome replacement using the “selTurnament” 
operator equal to 3, in which the 3 best suitable solutions from offspring replaced the 3 initial parent chromosomes. This process has 
led to better fitness value on the next generation of offspring in each new running iterations until the GA process was terminated at the 
end of the setting iteration. 

Chromosome decoding: at the termination phase at iteration  =  500, the chromosome with the smallest fitness value (the minimum 
flight time according to objective) is selected as the best chromosome/solution. The chromosome is an array of selected shelter airports 
j ∈ J for affected aircraft i ∈ I, which can be translated into the best-selected shelter airports for each affected aircraft with the nearest 
distance and shortest flight time from their current position. 

3. Case study 

This section presents a case study of a volcanic eruption, applying the mentioned approaches to a real situation of Mt.Hakone in 
Kanto peninsula, Kanagawa, Japan. One of Japan’s most active volcanoes (JMA, 2019a) located in the middle of the busiest airspace 
and near air transportation hubs of Japan (i.e., Haneda and Narita airport international airport). The historical data observation from 
many sources included volcanic ash cloud pattern, and flight dataset (CARATS) was used to determine the affected area, airport, and 
aircraft from Mt.Hakone eruption. The data present in this section will be used in the proposed model validation (Section 4) and 
computational results (Section 5). 

3.1. The affected airports 

From the ashfall observation on Mt.Sakurajima located in South of Japan during the year 2009 to 2015 had discovered the pattern 
of ashfall during the period of eruption, typical plume height of explosion was between 2 and 5  km with the traceable of ashfall at least 
70  km up to hundreds of kilometer away from the vent (JMA, 2019b). The ashfall direction and distribution were highly non-uniform, 
influenced by seasonal winds (Poulidis et al., 2018). During the selected period of the study in March, according to the latest CARATS 
flight dataset of March 2016 provided by Japan MLIT, wind’s direction in the Kanto peninsula moves toward the East across this area. 
However, the wind profile’s possible direction can be varied toward North-east and South-east to Pacific ocean with vary windspeed 
during day-time and night-time from 9.3  km/h. to 30  km/h. (JMA, 2019c). Based on these observations, the affected area was 
simulated by using geocoordinate (Latitude and Longitude) with the start point at Mt.Hakone volcano (35◦14′00′′N, 139◦01′15′′E) with 
varied direction toward North-east and South-east to the Pacific Ocean from 45◦NE to 45◦SE as shown in Fig. 5b. 

The number of affected airports has increased related to the volcanic ash cloud’s direction and coverage area/airspace. The 
simulated affected area and the CARATS dataset were used to determine the affected airports and the affected aircraft in the following 
sections. There were 5 airports within the simulated direction of ashfall; 3 of them were in the minimum range of ashfall, i.e., Oshima, 
Chofu, and Haneda (Tokyo) airport and others 2 airports within 200  km range from the vent. They could get impact from ashfall after 
the eruption within 2-7hrs and 5-16hrs, respectively. The 2 out of 5 airports are also Japan’s major domestic and international airports: 
Haneda and Narita international airport, as shown in Fig. 5. 
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3.2. The affected aircrafts 

Airborne aircraft: this study assumed that, at the moment of volcanic eruption, all pending departure aircraft with their 
itineraries to the affected airports would reroute their flight’s itineraries to other safe airports to avoid the impact from a vol-
canic eruption. Therefore, the study was considered only airborne aircrafts with their possible inbound to the affected airports. 
From the latest CARATS flight data on March 2016 observation, the week’s busiest day was on Sunday between 10:00 am – 
9:00  pm. There were 7383 airborne aircrafts in the Japan airspace, with an average of 671 flights per hour. Among those flights, 
15.8% or 107 aircrafts were inbound flights to the affected airports, which needed to be rerouted to safe shelter airports, and 
others were outbound or safe itinerary aircrafts. See Table 2. 

On-ground aircraft: In this study, the maximum occupancy rate (OCj) were used to determine the number of affected aircraft 
and the affected airports. Those data were obtained from the flight schedule on June 2020 during the busiest period from 10:00 
am to 9:00  pm of each affected airport; RJTO, RJTF, RJTT, RJAA, and RJAH at ~11%, 17%, 20%, 38%, and 20%, respectively 
(Central-Air, 2020; HND, 2020; IBR, 2020; NRT, 2020). Therefore, the number of affected on-ground aircraft at 5 airports was 
154 aircrafts from their overall capacities at 535. The total number of observable affected aircraft from both airborne and on- 
ground were 261 aircrafts, Table 3. 

Fig. 5. Observable airspace according to CARATS flight dataset (a) and Map of possible affected area and airports (b), Japan Civil Aviation Bureau 
(JCAB), Ministry of Land, Infrastructure, Transport and Tourism (MLIT). 

Table 2 
Aircraft size classification ratio by wingspan of 7,383 observable aircrafts in Japan airspace and 107 inbound airborne aircrafts to the affected 
airspace and airports.  

Size Categories 7383 Observable airborne aircrafts: CARATS dataset1 Airborne Aircrafts2 

ICAO Size Code_Letter Number of aircraft % of Total aircraft ICAO Size Code_Letter Number of aircraft % of Total aircraft 

Small B 281 3.80% B 2 1.90% 
Medium C 4,134 56.00% C 58 54.70%  

D 783 10.60% D 14 14.20% 
Large E 2,082 28.20% E 32 29.20%  

F 103 1.40% F 0 0.00%  
Total 7,383 100.00% Total 107 100.00%  

1 Total flight from the CARATS flight data on March 2016, the busiest day of the week, Sunday between 10:00 am and 9:00  pm. 
2 calculated from an average 671 flights per hour, 15.8% was an inbound flight to 5 affected airports from 7383 observed aircraft on Sunday during 

10:00 am–9:00  pm (the busiest day and time). 
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3.3. The sheltering airports 

This study has focused on shelter airport selection using the assumptions mention in Section 2.3.1 to ensure aircraft handling 
capabilities of the selected shelter airports during the evacuation and recovering in particularly suitability for the sizes of affected 
aircrafts. From the observation on 107 airborne aircrafts with an inbound itinerary to the affected airports, we had discovered that 
54.7% of aircraft were in group C with the wingspan of 24  m up to (but less than) 36  m, which needed more than 1200  m up to (but 
less than) 1800  m of field length—followed by group E (29.2%), and D (14.2%), which need longer runway up to 3200  m. The ratio by 
wingspan of 107 airborne aircraft also identical to the 7383 observed aircrafts in the Japan airspace in the same time frame as shown in 
Table 2. 

Overall, 98.13% of 107 inbound airborne aircrafts needed a field length of 1200  m and up to more than 3000  m to perform landing 
and taking off. We could assume that 154 on-ground aircrafts at the affected airports were at the same ratio as shown in Table 3. 
According to Japan’s airports information provided by AIS, 82 from 94 airports or 88.3% of all Japan’s airports could accommodate 
aircraft with code letter from C - F (medium - the larger-size of aircraft). The study is also considered airport connectivity, the 
capability of transferring affected crews and passengers to nearby accommodation facilities or nearby airports. Airport connectivity 
aims to allow affected crews and passengers be able to reach their final destinations. This study has chosen 42 airports on the mainland 
of Japan out of 94 airports outside the ash cloud affected area as the shelter airport candidates to maintain changing mode of 
transportation and connectivity capability (Smith and Arnedos, 2007), with an available capacity of up to 925 aircraft stands (all sizes), 
see Table A4. The available capacity used assumption of the average of maximum cumulative occupancy aircraft stands (OCj) between 
the arrival and departure aircraft at 5 affected to determine number of the available aircraft stands at the 42 airports. The result shows 
that 21% of aircraft stands were occupied on average per hour during the busiest period, which could be assumed that 79% of airport 
capacity is non-occupancy or available aircraft stands rate (NCj). See details in Table A2. 

4. Models validation 

The sensitivity analysis is the process to validate the behavior and outcome of the proposed models on GA and GRASP in this study 
using various values of specific parameter configurations used in the models. The validation and sensitivity analysis used the same 
dataset of the selected case study of Mt.Hakoke Japan in Section 3, with 261 affected aircrafts, 42 shelter airport candidates (5 affected 
airports excluded). The goal was to ensure that the proposed models could perform and give valid results according to the study’s 
objective, subjective, and constraints on the various inputs. 

The results have shown that both algorithms could perform and gave valid results as they had been designed in the proposed model. 
The details on the sensitivity analysis have been given in the followings: 

4.1. Genetic algorithm: model validation and sensitivity analysis 

In the genetic algorithm sensitivity analysis, the various values of specific parameter configurations: 1) crossover probability 
(CRXPB) and mutation probability (MUTPB), and 2) the ratio of affected aircraft, is investigated on the aircraft assigning pattern and 
outcomes. The suitable parameters which give the best result are used as the base-parameters configuration in this study to ensure it 
could perform and give a valid result. 

Table 3 
Maximum number of observed affected aircraft using in the study provided by AIS and CARATS.  

Observed Location Airport ICAO 
Code 

Maximum 
aircraft stands3 

Max_Occupancy per 
hour4 

Affected aircraft 
(Occupied stands) 

Affected aircraft by 
Aircraft’s size5 

Total 

Large Medium Small 

29% 69% 2% 

On-ground: at 
affected 
airports (AIS) 

Oshima RJTO 9 11% 1 0 1 0 154 
Chofu RJTF 24 17% 4 1 3 0 
Tokyo RJTT 228 20% 46 13 32 1 
Narita RJAA 266 38% 101 29 70 2 
Ibaraki RJAH 8 20% 2 1 1 0 

Airborne (CARATS), Inbound to 
Affected 
airports  

–   31 74 2 107 

Grand Total 261  

3 Civil Aircraft: private and commercial aircraft. 
4 Refer to Appendix A Table A2. 
5 According to aircraft size ratio from observed historical flight data CARATS 7383 aircrafts. 
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Crossover and mutation probability parameters sensibility analysis: the various crossover and mutation probability parameters were 
used as shown in Table 4. The study had revealed that increasing crossover probability number from 0.0 to 1.0 had decreased the 
fitness value (minimum total flight time) and the number of the exceeded-capacity airport. Thus, increasing mutation probability from 
0.0 to 1.0 had risen the fitness value of each generation caused by increased genes variation of the best-selected populations’ offspring 
until all the genes within its chromosome were utterly different from its parents at the probability of 1.0. As a result, the algorithm 
assigned aircraft to fewer shelter airports until it had violated the airport capacity’s constraint, which triggered penalty function to give 
the additional flight time to those solutions to get rid of them on the evaluation process. Consequently, higher mutation probability had 
given high fitness value: high total flight time and a higher number of exceeded-capacity airports that could not be used for aircraft 
evacuation, as shown in Fig. 6(b). 

From the observation on crossover and mutation probabilities effect on GA outcome’s behaviors, the acceptable range of the 
crossover and mutation probability numbers give low in total flight time, and a number of the capacity-exceeded airport could be 
varied between 0.50–1.00 and 0.10–0.60 respectively. According to the study’s objective and subjective, the best crossover and 
mutation probability configuration was at 1.0 and 0.45, respectively, which gave the best fitness value of the lowest total flight time 
and not exceeding airport capacity. These probabilities were later used as the base configuration for GA. See Fig. 6(a) and Fig. 7(a) and 
(b). 

Airport’s occupancy rate sensitivity analysis: The varied airport occupancy rate was set to simulate the air traffic congestion level, 
reflecting on the airport’s aircraft occupancy and availability rate. The airport’s occupancy rate (OCj) was set within the range of − 20% 
to +20% of the baseline rate with an incremental and decremental rate of ±5%. See details in Table A3 and A4. Consequentially, 
increasing the shelter airport occupancy rate had increased the number of affected aircraft, which decreased the available aircraft 
stands for evacuation. It also indicated increasing air traffic congestion level and vice versa. 

The sensitivity study has shown increasing occupancy rate (OCj) by +20% of the baseline from 21% to 25.2%, decreasing the total 
number of non-occupancy rate (NCj) of 42 shelter airports 925 to 856 stands or from 79% to 75%. The increasing OCj rate also 
increased the congestion level in airspace and airport, which raised the total number of affected aircraft from 261 to 312 aircrafts, as 
shown in Table A3. Decreasing the non-occupancy stands at each shelter airport candidates forced the system to select further and 
more airports from 27 airports at baseline to 40 airports to accommodate the increased number of affected aircraft, as shown in Fig. 8 
(b). As reflected on the objective function’s value, the total flight time has increased from baseline at 104.75–168.16 h, see Fig. 8(a). 

In contrast, decreasing the occupancy rate by − 20% had increased the total number of the non-occupancy stand from 925 to 972 
stands or 79–83%, respectively, which decreased the number of affected aircraft to 208 from baseline. The objective function value 
also dropped from baseline to 73.07 h. An increasing number of available stands at each shelter airport candidate close to the affected 
aircraft positions reduced the number of selected shelter airports from 27 to 21 airports. From the study, the proposed model applied to 
GA was able to perform and gave valid results in assigning aircraft to the nearest airports without exceeding their capacities by aircraft 
size through both baseline dataset and the various rate of occupied stand settings, as shown in Fig. 8. 

Table 4 
Parameters setting for the proposed model on genetic algorithm validation.  

Parameter Minimum value Maximum value (+) Incremental or (− ) Decremental 

Initial population – 500 – 
Crossover probability 0.00 1.00 +0.05 
Mutation probability 0.00 1.00 +0.05 
Number of iterations – 500 –  

Fig. 6. GA performance at CRXPB 1.0 and MUTPB 0.45, 500 iterations: best result (a), and the highest result of the MUTPB at 1.0 (b).  
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4.2. GRASP: Model validation and sensitivity analysis 

The first goal was the outcome validation, whether it could give the results according to the proposed model. According to the study 
dataset, the study’s objective and subjective through baseline setting; the number of affected aircrafts, and available aircraft stands. 
The second goal was to investigate the model’s behavior and outcome through the various value of inputs and the various ratio of the 
occupied stand settings used in GA; see detail in Table A3. 

From the study, the proposed model was able to perform and gave valid results according to objective and subjective of the research 
in assigning aircraft to the nearest airports without exceeding their capacities by aircraft size on both baseline dataset and the various 
rate of the occupied aircraft stand. The result had shown the best solutions were selected through the process of randomly creating an 
initial solution, evaluating the solution against the subjective and constraints, comparing with the previous iteration’s best solution 
before selection, and recording the better solution over 500 running iterations as it had been designed with decreased in the minimum 
number of total flight time and no exceeded-capacity airport as shows in Fig. 9(a) and (b) 

Fig. 7. Results of sensitivity analysis on various crossover and mutation probabilities: total flight time (a) and the number of the exceeded-capacity 
airport (b). The best result at minimum total flight time was 104.75hr, and the number of the exceeded-capacity airport was 0 at crossover and 
mutation probability 1.0 and 0.45, respectively. 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0

100

200

300

400

500

600

700

800

900

1000

To
ta

l �
ig

ht
 ti

m
e 

(h
r)

N
um

be
r o

f a
�e

ct
ed

 a
irc

ra
ft

/ A
va

ila
bl

e 
st

an
d 

at
 

42
 sh

el
te

r a
irp

or
ts

Adjust % of Occupancy rate (OCj) from Baseline

Available aircraft parking stand

Number of a�ected aircrafts

Total �ight time of selected airports (hr)

20

25

30

35

40

45

0

100

200

300

400

500

600

700

800

900

1000

To
ta

l n
um

be
r o

f s
el

ec
te

d 
sh

el
te

r a
irp

or
t

N
um

be
r o

f a
�e

ct
ed

 a
irc

ra
ft

/ A
va

ila
bl

e 
st

an
d 

at
 

42
 sh

el
te

r a
irp

or
ts

Adjust % of Occupancy rate (OCj) from Baseline

Available aircraft parking stand

Number of a�ected aircrafts

(a) (b)

Total number of selected shelter airport

Fig. 8. The GA’s results on a various simulated number of affected aircraft between − 20% to +20% of baseline with decrement/increment rate at 
±5%: (a) total flight time and (b) number of selected shelter airports. 
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5. Computational results 

In this section, the proposed models applied on Genetic Algorithm (GA) and Greedy Randomized Adaptive Search Procedure 
(GRASP) were analyzed and compared their performances according to the study’s objective and subjective mentioned in Section 
2.3.1, included minimum in total flight time and shelter airport’s capacity constraint by aircraft stands and affected aircrafts’ sizes. The 
details of each algorithms’ results and comparison have been presented as followed: 

5.1. The genetic algorithms 

In GAs, the affected aircrafts had been assigned to the nearest available shelter airport, similar to GRASP. Unlike the GRASP random 
mechanism, GA had a different mechanism through crossover and mutation called “the evolution mechanism”. From the beginning of 
the process, 500 solutions of chromosomes were randomly generated, then evaluated their fitness against objective (1) and subjective 
(2)(3) along with penalty function in equation (4) to keep the model’s solution from violating those subjective. Before selecting parents 
for the next generation, the reproduction through gene crossover and mutation to produce new alternative offspring could preserve 
and the alternate possibility of a solution before going through the fitness test’s evaluation as the best solution for the objective’s 
problem. 

As a result, 27 out of 42 shelter airports have been selected for accommodating the aircrafts with a total flight time for evacuation of 
104.75  h from 500 running iterations (duration 4.16 min), as shown in Table 5. Therefore, the time for each aircraft’s evacuation was 
between 0.18 and 0.84  h, with an average of 0.44  h. The aircraft distribution was between 0.4% and 22.6%, with 3.7% on average of 
the total number of affected aircrafts. The maximum capacity usage at the selected shelter airports had been utilized between 5.9 and 
92.2%, with the average at 42.3% of their available stands (non-occupancy stands). According to the airport’s capacity based on the 
aircraft sizes constraint within penalty function, there was no exceeded the number of affected aircraft assigned to any selected shelter 
airport. The model also addressed the first 5 critical airports on the scenario, which accommodates 61.7% of the affected aircraft 
population. They were Chūbu centrair international airport (RJGG) 22.6%, Kansai international airport (RJBB) 14.9%, Osaka inter-
national airport (RJOO) 14.6%, Niigata airport (RJSN) 4.98%, and Sendai airport (RJSS) 4.60%, as shown in Fig. 10(a) and Table A1. 
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Fig. 9. GRASP’s result for baseline affected aircraft (a), and the results of a various simulated number of affected aircraft between − 20% to +20% of 
baseline with decrement/increment rate at ±5% (b). 
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Fig. 10. Mapping of assigned aircrafts to shelter airport by using Genetic algorithms (a), Mapping of aircrafts distribution to shelter airport by using GRASP (b).  
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Table A1 
Aircraft Stands Utilization result from GA and GRASP: by Affected Aircraft and Aircraft Stand Sizes.  
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5.2. The Greedy Randomized Adaptive Search Procedure (GRASP) 

In GRASP, the affected aircrafts had been assigned to the nearest shelter airport available by using the distance from the current 
position of each affected aircrafts. Moreover, the airport’s capacity by aircraft size was considered to prevent the algorithm from 
assigning aircraft to the selected airport, as shown in Table A1. GRASP has the mechanism of searching, evaluating, selecting the best 
solution, and generating a new solution through the random number process. It can search and replace the better solution from the 
given conditions and constraints. From 500 running iterations, 2.21  min were used to search for the best solution against total flight 
time and shelter airport capacities by aircraft size constraints with the best solution of 166.32  h in Table 5. 

The results on shelter airport selection and aircraft distribution had shown that 41 shelter airports had been selected for accom-
modating affected aircrafts with a small distribution rate between 1.0% and 7.3% of the total number of affected aircrafts with no 
exceeded capacity at selected shelter airports. The algorithm had also addressed the first 5 critical airports, which accommodate 26.8% 
of the affected aircraft population. There were New Chitose airport (RJCC) 7.28%, Nagasaki airport (RJFU) 5.36%, Kansai interna-
tional airport (RJBB) 4.98%, Chubu centrair international airport (RJGG), and Osaka international airport (RJOO) at 4.6%, as shown 
in see Fig. 10(b), and more details in Table A1. 

5.3. Algorithm’s performances comparison 

From the performance results of the proposed models applied on Genetic Algorithm (GA) and Greedy Randomized Adaptive Search 
Procedure (GRASP), the study has shown the same algorithm iterations of 500 with the same set of total affected aircraft number, 
shelter airports, and capacity constraint by aircraft’s sizes according to the study and algorithms’ objective and subjective. The 
proposed model using GA could generate the better solution for aircrafts assignment to shelter airports with 104.75  h of total flight 
time (TFT) or − 63.0% compared to 166.32 h from GRASP. Both algorithms can search for the solution with no over-capacity at the 
selected shelter airport even though GRASP searching duration was twice faster than in GA at 2.21 min to 4.16 min. Moreover, the 
study had tried to the extended iteration of GRASP to a critical of 200,000 iterations. At this critical iteration, the best result that 
GRASP could give was 161.34 h or 2.99% better than the result at 500 iterations. Thus, GRASP could not find a better solution than the 
proposed model on GA at the same running iterations or on the extended one in this study. The GRASP and GA performance com-
parison is shown below. 

Table 5 
Performance comparison between GA and GRASP.  

Performance Criteria GA GRASP Differentiation Rate (GA/GRASP) 

Running Iterations 500 – 
number of Aircraft 261 – 
Number of Candidate shelter airports 42 – 
Available aircraft aircrafts 925 – 
Actual Total Flight Time by Distance 104.75 166.32 − 63.0% 
Number of Selected Airport 27 41 − 66.0% 
Number of Exceed-capacity Airport 0 0 – 
Searching Duration (min) 4.16 2.21 +188.2% 
μ: mean of flight Time(h) 0.44 0.64 − 68.80% 
Minimum flight Time(h) 0.18 0.06 +300.00% 
Maximum flight Time(h) 0.84 1.29 − 65.10% 
Median 0.41 0.62 − 66.10% 
σ: STD 0.12 0.31 − 38.70% 
50th Percentile 0.41 0.62 − 66.10% 
80th Percentile 0.56 0.97 − 57.70% 
90th Percentile 0.56 1.14 − 49.10%  
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6. Conclusion 
This study has proposed the conceptual models for shelter airport selection for aircraft evacuation in a volcanic eruption by considering 

evacuation flight time and maximum shelter airport capacity. The models have been tested with a case study of a volcanic eruption at Mt. 
Hakone in Japan’s central and the latest air traffic data in March 2016 (CARATS open dataset) provided by MLIT. The airport facilities data by 
AIS, and airlines flight schedules at each airport are also used to determine the number of the affected area, airports, the number of affected 
aircrafts and the available aircraft stands for evacuation during the event. The 261 affected aircrafts of both airborne and on-ground have 
been simulated their current positions and select the appropriate shelter airports for evacuation. For this study, 42 out of 94 airports had been 
chosen as shelter airports by criteria of location on the mainland of Japan for maintaining connectivity with other modes of transportations, 
outside ash cloud affected area, and sufficient runway’s length for accommodating affected aircraft with 925 available aircraft stands (non- 
occupancy stands). 

The proposed models had been applied to the Genetic Algorithm (GA) and Greedy Randomized Adaptive Search Procedure (GRASP) to 
find the approximate solution of shelter airport selection. Both algorithms proved their capabilities of searching for the approximate solution 
according to the study objective and subjective of the assigned aircraft to shelter airport with minimum total flight time, and not exceeding 
selected airports’ capacities. With the same logical model of aircrafts assignment and running iteration, GA had outperformed GRASP to find 
less in total flight time solution for the overall population with fewer selected shelter airports on the case study. Since they were different in 
the best solution selection mechanism as mentioned in the computational results section, this gave GA’s mechanism the advantage in 
preserving and passing on the previous best solution to its offspring through crossover operation. 

Nevertheless, the study had also revealed the critical shelter airports for aircrafts evacuation. The larger-size airport with a large number 
of available aircraft stands is likely to act as the critical shelter airport during the disaster event, as shown in Appendix A-Table A1. The 
alternative adjustment of the proportion of available aircraft stands at shelter airports, along with the proportion of affected aircrafts, will 
give flexibility to the algorithms’ output, which gives the better suggestion on which shelter airports could accommodate a reasonable 
number of aircraft according to their capacities. 

The study could act as a suggestion for the authorities for the airport and aircraft emergency evacuation planning. However, this study 
could give a conceptual model of shelter airport selection solution for aircrafts evacuation in the volcanic eruption event using the nearest 
distances and airport capacity by aircraft size constraints. It still has limitations depending on the regulation’s complexity at the airport, 
airline, and air traffic management, as mentioned earlier. The further applications on airport selection may need to set up more objectives and 
constraints for the shelter airport selection algorithm to effectively provide a more realistic selection from the beginning of evacuation until 
recovering for all sections of aircraft, passengers, and cargo and flight crew scheduling. 

7. Limitations 

This study’s main limitations were subject to the unavailable data as follows: the accurate number of affected aircraft and their itineraries 
data for both airborne and on-ground, historical data of volcanic ash cloud coverage area, and its range from Mt.Hakone. 

Although the number of affected aircraft were observed from the historical data before the pandemic, the aircraft stand occupancy rate 
and available of aircraft stands at candidate shelter airports in this study may not represent the normal air traffic situation of this region 
during the COVID-19 pandemic, which caused declined in most airline and airport operations by 90% (ICAO, 2020). Hence, the historical 
flight schedule data of shelter airports before the pandemic are required for the occupancy rate calculation accuracy to reflect the air traffic 
level’s normal situation. However, this study’s proposed model has allowed the occupancy rate adjustment to reflecting air traffic congestion 
level close to the level before the pandemic. 

Furthermore, the unavailable ash cloud historical data of Mt.Hakone, the Sakurajima’s volcanic ashfall, and ash cloud were studied to 
understand the ash cloud’s behavior, which was used to predict and determine the possible ash cloud coverage area in the case study. 
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Table A2 
Arrival and departure flight per hour at 5 affected airports, aircraft stand occupancy rate, and an assumption of shelter airport available capacities.  

*Cumulative number between arrival and departure flight per hour can be assumed as aircraft stand occupancy per hour. 
**used as number of on-ground affected aircraft at 5 affected airports. 
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Table A3 
Detail of affected aircraft, occupancy, and availability rate at the study airports with various simulated rate for the proposed models’ configurations.  
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