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In order to work effectively, a robot should be able to
adapt to different environments by deciding its correct
course of action according to the situation, using de-
terminants other than pre-registered commands. For
this purpose, the ability to predict the future state of
a robot would be effective. On the other hand, the fu-
ture state of a robot varies infinitely if it depends on
its current action. Therefore, it is difficult to predict
only the future state. Thus, it is important to simulta-
neously predict the state and the action that the robot
will adopt. The purpose of this study was to investi-
gate the prediction of the advanced future state and
action of a robot. In this paper, the results of the study
are reported and methods that allow a robot to decide
its appropriate behavior quickly, according to the pre-
dicted future state are discussed. As an application
example for evaluating the proposed method, the in-
verted pendulum model is used and the prediction re-
sults are compared with the robot’s actual responses.
Then, two methods will be discussed for predicting the
robot’s state and action. To perform state and action
prediction, two methods are used, firstly the Online
SVR (Support Vector Regression) and secondly Online
SVR and the LQR (Linear Quadratic Regulator).

Keywords: online state prediction, internal state space,
learning using combination of state space and action, pre-
diction using combination of state space and action, mo-
bile robot

1. Introduction

Over the years, many studies have been conducted with
the objective of facilitating the working of robots in dy-
namic environments [1–9]. Various robots have been de-
veloped to assist humans in workspaces, such as a house
or factory [10]. In general, robots are required to work ef-
fectively and safely in a dynamic environment to achieve
their tasks. However, it is not easy to make a robot behave
like a human in dynamic environments [11, 12]. When
they are working in a certain environment, humans select
an appropriate course of action through subconsciously
predicting all the changes in the environment and their

next state.
Humans subconsciously use their past experience and

memory to predict the posture and force required in cer-
tain environments [13]. That is, they would find it difficult
to consciously perform these actions. Because it is not
easy to deal, consciously with a current situation, some-
times we cannot accomplish our objective, and hence,
there are cases where we sustain a loss. For example,
human walking is rhythmic and stable, because appropri-
ately according to the sensory input related to their en-
vironment body is adjusted. The brain should recognize
the act of walking and the environment and accordingly
adjust each joint of the body so that their movement to
the environment is adopted, without them realizing it. In
this process, in their ordinary daily life humans use their
predictive abilities to control their body balance appropri-
ately in order to reduce their risk of falling or to avoid
colliding with an obstacle [13].

Similarly, in the case of robots, if prediction is not ap-
plied, the load of control processing for behavior selection
is considered to be large. For example, the manipulated
variable will increase the sampling time of the controller.
In these problems, most of many studies use the machine
learning, such as Reinforcement Learning (RL) that ac-
quire the optimal action to learn the environment by trial
and error [14, 15]. Or possibly they use the Model Pre-
dictive Control (MPC) that is most suitable input sequen-
tially gained by each time, that is much better for well-
generalized to use as control rule [16, 17]. However, these
techniques have a problem to be debatable, that is compu-
tation delay and the hardware overhead, or whether can
respond flexibly to changes in the dynamic environment
in the working [18–22]. On the other hand, there are some
techniques to be presented that generate the robot mo-
tion. In this case, combine with ordinary control rule and
EKF (Extended Kalman Filter) [1] or UKF (Unscented
Kalman Filter) [1], for avoid to linearize the model of
the robot [23–25]. However, in these techniques, some
problems are still remaining; the case that applied filter
will become often unstable, the case that using non-linear
model is not easy, the case that the parameter that should
be defined are increasing. Moreover, it is difficult to de-
cide the effective action by using the robot’s current sen-
sory input, and therefore, this input may adversely affect
robot’s task performance. In recent years, a robot was de-
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Fig. 1. Overall view of proposed method.

veloped with advanced behavior characteristics; humans
control the robot through some control rules. However,
it is expected that in the future these control rules will
be incorporated in the robot, through machine learning
in dynamic environments, and robots that are required to
support human labor will not be controlled by a fixed pre-
control rule. A robot should decide each action to be taken
in a dynamic environment adaptive, in addition to the pre-
registered commands, like a human. Moreover, hardware
and the limited computational resources of a robot pose a
physical limitation, and therefore, it needs some time to
decide its course of action; for example, whether it should
take one or more steps. Thus, state prediction is impor-
tant, when robots have to achieve a task or support people
in a dynamic environment and work more flexibly. In a
previous study related to this issue, machine learning was
applied, through which a robot autonomously learned the
appropriate actions for certain environments.

In this paper, the results of these studies will be pre-
sented and methods that allow a robot to decide its ap-
propriate behavior quickly, using the predicted state, are
discussed. To realize this, the purpose of this research is
to propose an advance prediction method using the On-
line SVR (Support Vector Regression) as a predictor. To
achieve this, an Online SVR will be used and it will be
improved that can predict state and action sequentially.
Accordingly, the state and the action of the distant future
by repeatedly using the predictor of the proposed method
can be predicted. An overview of the proposed method
is shown in Fig. 1. This Online SVR predicts the robot’s
future state, i.e., the robot’s next state, and appropriate
future course of action. Furthermore, this predictor fa-
cilitates the prediction of the robot’s distant future state,
using the states and actions that the robot adopts repeat-
edly. Using this method, the system that allows a robot to
decide its course of action, can be realized.

In this section, that was started, to allow robots to
achieve their task in a dynamic environment, prediction of
their future state and action is required. In Section 2, for-
mer future prediction techniques for robots and the prob-
lems that they entail will be described. In Section 3, the
details of the proposed method will be provided. In Sec-
tion 4, the experimental setup will be described. Finally,
in Section 5, the conclusions of this study will be pre-
sented.

2. Problems Related to Former Future Predic-
tion Techniques for Robots

In previous studies, prediction for robots was achieved
by indirect means. The research studies that have ad-
dressed prediction for the control of a robot can be di-
vided into three types: first, studies on applying predic-
tive control to a flying robot or manipulator using a plant
model [16, 17, 26], second, studies on modular reinforce-
ment learning using a multiple state prediction model in
combination with a reward predictor model [14] and third,
studies on SVR (Support Vector Regression) based obsta-
cle avoidance and the control of a two-wheeled mobile
robot [27, 28].

As mentioned above, these studies did not address the
future state and action of the robot. In other words, it
is difficult to predict the future state by considering the
current action. The reason for this is that robots detect
the current environment, and accordingly, take one course
of action. The current state and action change the envi-
ronment to a new state, and the robots receive a reward.
Through these mutual interactions, robots learn the appro-
priate action required to perform a given task [15]. For
this reason, the robot’s action, which is acquired using
experiences gained by machine learning, is influenced by
determinism and the law of causality of the relationship
between the environment and the robot’s action.

This means the action taken by a robot when it receives
a certain input depends also on the input of the current
situation. Here, the selected action pertains are shown to
a certain situation obtained through machine learning, in-
cluding the state of the robot. Let us consider driving a car
to a destination. The movement of a car conforms to phys-
ical laws. However, the driver must decide whether to go
straight or turn at an intersection, and this decision de-
pends on his/her past driving experiences. This means, an
action selected by the driver influences his/her next state
and environment. The same applies in the case of control-
ling robots. In other words, an action selected by the robot
influences its next state and environment. Hence, the state
of the robot varies infinitely depending on the action that
the robot selects from multiple choices, subject to given
conditions.

Figure 2 shows the relationship between the future
state and the action. The future state depends on the cur-
rent action of the robot. However, in previous studies this
relationship was not considered. That is, using the meth-
ods proposed in previous studies it is difficult to predict
the future state including the action. Because of these
characteristics, the selection of the state of the robot de-
pends on the course of action that it takes to achieves its
tasks. Thus, a particular problem arises in that the action
selected by a robot influences the future. For this reason,
an approach will be needed that includes state prediction
in which the action that the robot has taken is considered
as mentioned earlier.
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Fig. 2. Prediction of future state and action from current state.

3. Proposed Future Prediction Technique for
Robots

A scheme for predicting the future state of a robot, to
meet the requirements of action in the unknown environ-
ment will be proposed. In this proposed method, in the
future the robot uses the state and action that it adopts as
it acquires an action in the unknown environment. Here,
the appropriate control rule using prediction results is at-
tempted to determine. If a general learning method is em-
ployed, robots need to undergo many trial and error itera-
tions to determine the control rule themselves. However,
learning using real robots will be assumed, although they
have a few degrees of freedom (DOFs). The endurance
of the robot is considered, and then, the purpose of this
study is to learn the task in fewer trials. This would allow
robots to work more effectively.

In this section, two kinds of approach for predicting
the future state of a robot will be proposed. In this case,
firstly a method that adds sequential prediction to Online
SVR [29] will be considered, and predict the state and ac-
tion using the current action and state of all the past states
until the present time. And second, a combination of On-
line SVR and LQR (Linear Quadratic Regulator) will be
considered. In this study, this knowledge is used and vir-
tual learning using a mathematical model is implemented.
Then, a method based on an experimental procedure for
acquiring the procedure for executing the required task
using the prediction results will be proposed.

In this study, the posture of a self-propelled inverted
pendulum will be stabilized. The control of the motion,
such as stabilizing the inverted posture, is described by a
second-order nonlinear differential equation. However, in
general, it is difficult to derive or determine the control
rule in theory. Therefore, the control rule is needed to
acquire using machine learning. Therefore, to predict an
orbit of the states and the action of the inverted pendulum
using machine learning to acquire the control rule will be
needed.

3.1. Online SVR Extension
In this study, the Online SVR is used for constructing

the proposed system. However, this technique cannot be
applied directly to the method for predicting the state and
action. Hence, the Online SVR was extended what is ap-
plied to this study. In particular, the input of Online SVR,
and additional learning were focused to extend.

3.1.1. Online SVR Input Extension
The Online SVR technique does not recognize the con-

cept of state and action. In other words, this technique
does not accommodate a multiple input set. Therefore,
in this study, the input of the Online SVR was trying to
re-interpret the concept of former research to suit the pro-
posed method, and was re-defined as following:

zt =[
xt,1 xt,2 · · · xt,n at−1,1 at−1,2 · · · at−1,n

]
(at−1 = 0 when t = 0) . . . . . . . . . (1)

In this paper, the notation is defined as

zt =
[
xt | at−1

]
. . . . . . . . . . . (2)

Here, xt represents the state of a robot at time t and at
represents the action that the robot performs at time t. In
this study, it is assumed that the action that the robot per-
forms consists of moving forward or backward in a one-
dimensional coordinate system.

3.1.2. Sequential Prediction: Prediction of the Next
State and Action Using New Samples

The Online SVR method predicts events in that is given
in the training sets, and hence, does not predict events for
areas that are out of the range of the training sets. In this
section, the dual representations of SVR [30] is focused
on, and how to implement the future prediction is stated.

In this case, a next state x̂t+1,i, i ∈ dim x̂t+1 (i de-
notes an element of all the robot’s state) is estimated
by using the state and action that are defined by zt =[
xt,1 · · · xt,n | at

]
. Therefore, this vector zt is an

(n+1)×1 vector. Next, let’s consider the sum-of-squares
error function J from training set

{
x j,y j

}
described by

the SVR model y(x) = w�φ(x)+b [30].

J(w) =
1
2

t

∑
j=1

{
w�φ (x j)+b− y j

}2
+

λ
2

w�w

(λ ≥ 0) . . . . . . . . . . . . . . (3)

where w� indicates the transpose of w. Here, λ represents
the regularization parameter, and w represents the weight
matrix of the SVR model. The weight matrix w is found
by setting the gradient for minimizing the sum-of-squares
error function J to zero (thus, ∂ J(w)/∂ w = 0). Hence,

∂
∂ w

J(w) = 2× 1
2

t

∑
j=1

[{
w�φ (x j)+b− y j

}
φ (x j)

]

+
λ
2

w+
λ
2

w = 0

Journal of Robotics and Mechatronics Vol.27 No.5, 2015 471



Sugimoto, M. and Kurashige, K.

0 =
t

∑
j=1

[{
w�φ (x j)+b− y j

}
φ (x j)

]
+λ w

w = − 1
λ

t

∑
j=1

{
w�φ (x j)+b− y j

}
φ (x j)

=
t

∑
j=1

a jφ (x j) = Φ�a . . . . . . . . . (4)

where a =
[
a1 · · · at

]�
,

a j = − 1
λ

{
w�φ (x j)+b− y j

}
.

Now, Φ is called the design matrix [31], and the j-th
row is described by φ (x j)

�. Here, the parameter vector
Φa replaces w,

J(a) =
1
2

a�ΦΦ�ΦΦ�a−a�ΦΦ�y

+
1
2

y�y+
λ
2

a�ΦΦ�a. . . . . . (5)

Now, the Gramian matrix K = ΦΦ� will be de-
fined [32]. Here, the matrix coefficient of K is given by

Kjm = φ (x j)
� φ (xm) = k (x j,xm) . . . . . (6)

This matrix coefficient is the symmetric matrix as a ker-
nel matrix. Now, let’s rearrange the sum-of-squares error
function J by using the Gramian matrix:

J(a) =
1
2

a�KKa−a�Ky

+
1
2

y�y+
λ
2

a�Ka. . . . . . . . . (7)

The equation is rearranged by isolating a:

a = (K+λ It)
−1 y. . . . . . . . . . . (8)

Here, It represents the t× t identity matrix. Therefore, the
equation for the prediction result ŷ(x) for the SVR model
to input x can be derived anew as

ŷ(x) = wφ(x)+b = a�Φφ(x)+b

= k(x)� (K+λ It)−1 y+b . . . . . . (9)

where k(x) =
[
k (x1,x) · · · k (x j,x)

]�
.

Here, bi is a bias term, and k represents the mapping
function for calculating the inner product into the feature
space. Then, this relationship is [30, 33]

b = ε + xt −
t

∑
j=1

θ jk
(

x�j x j

)
. . . . . . . (10)

Here, ε represents the dead zone of the ε-insensitive loss
function [33, 34] as

ξ (r) =
{

0 if |r| < ε
|r|− ε otherwise . . . . . . (11)

Here, r represents the residue. From the above, the
equations for the state prediction is derived.

size N< size N≥

?size

Acquiring
new training sets

Sequential learning Additional learning

Predict the future state and action

Fig. 3. Overview of the sequential prediction using incre-
mental learning.

x̂t+1,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t = 0

Δθ if t = 1

ksv(xzt)� (Ksv +λ Il)
−1 xzsv +b′i

otherwise

(12)

when i ∈ dimxt

ât+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t = 0

Δθ if t = 1

ksv(azt)� (Ksv +λ Il)
−1 azsv +b′

otherwise

(13)

From the above, the equations of sequential prediction
will be defined. Here, b′i is a bias term for xi (the i-th el-
ement of x), b′ is a bias term in the predictor of at , Δθ
represents the Lagrange multiplier, l represents the num-
ber of the former support vector zsk(k ∈ l), λ represents
the regularization parameter, Il represents the l × l iden-
tity matrix, Ksv represents the Gramian matrix, and ksv is
the mapping matrix.

Here, xzt is defined by state xt and the pair zt : xzt =[
zt | xt

]
and azt is defined by action at−1 and the pair

zt : azt =
[
zt | at−1

]
. Hence, this extended method pre-

dicts the state and action at each time.

3.1.3. Additional Learning: Learning New Samples
Using Incremental Learning

In the previous subsection, the Online SVR is shown
what predicts events only the area that is given in the train-
ing sets, and this method cannot predict events in an area
out of the range of the training sets. In this case, Online
SVR does not complete the learning and the prediction
until the training sets reach the fixed data length. Hence,
it is assumed that the Online SVR cannot predict the fu-
ture state. In this section, how to extend the fixed data
length using incremental learning is focused on.

In this case, the incremental learning will be consid-
ered that combine with increasing the training set. For
example, the data length N is defined. The learning and
prediction are performed using the (N − 1)-th and N-th
training sets (Fig. 3).

In Online SVR, the learning parameters are updated
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Fig. 4. Outline of the state and the action prediction system
using only Online SVR.

when the learning is performed in the (N − 1)-th training
data. That is, the Online SVR model abstracts the pattern
of the training set. In this case, the weight vector wN−1
and the bias term b were used in Online SVR.

In this study, this point will be focused on. The sequen-
tial prediction for the future using the (N−1)-th and N-th
training sets will be considered. Hence, the incremental
learning of batch SVR will be introduced.

Consequently, it is assumed that the learning parame-
ters were updated, and the support vector set SN−1, weight
vector wN−1 and bias term b are defined in the Online
SVR model. Now, the following equation will be mini-
mized in the case where the N-th data will be given.

min
wN ,b

N

∑
j=N−1

ξ (y j,i − f (x j))+
λ
2
||wN ||2 . . . (14)

i ∈ dimx j

As a result, the parameters wN ,b are obtained as the
optimal solution. Hence, these parameters are the pattern
of the N-th training set. Thus, additional learning is real-
ized using the learning parameters of the (N − 1)-th and
N-th data in combination. Thus, following equations are
obtained

w =
[
wN−1 wN

]
. . . . . . . . . . (15)

b′ = b . . . . . . . . . . . . . . . (16)
S = {s1, . . . ,sN−1,sN} . . . . . . . . (17)

Thus, it is possible to produce predictions by adding
new training sets using Eqs. (12) and (13).

3.2. Application of the Predictor Using Online SVR
In [35], a method for predicting the next state and ac-

tion using the current state and action with Online SVR
was proposed, is shown in Fig. 4.

To address future state prediction, a scheme will be pro-
posed for predicting the future internal state of a robot us-
ing the internal state and action that it adopts as it acquires
an action in the unknown environment, to meet the action
requirement in the unknown environment. Here, the ap-
propriate control rule was attempted to be determined us-
ing the prediction results. If a general learning method
will be employed, robots need to undergo many trial and

Fig. 5. Outline of state and action prediction system of using
Online SVR and LQR.

error iterations to determine the control rule themselves.
However, learning using real robots will be assumed, al-
though they have few DOFs. Considering the durability
of the target robots, less trial and error is the preferred
ways as previously mentioned.

In this case, a method that adds sequential prediction to
Online SVR is considered, and predicts the internal state
and action using the current action and internal state of
all the past states until the present time. In this study,
this knowledge and implemented virtual learning using
the mathematical model were used. Then, a method for
acquiring the task using the result of the future prediction
based on these experiments will be proposed.

In this study, the posture of a self-propelled inverted
pendulum will be stabilized. Control of the motion,
such as stabilizing the desired posture, is described by
a second-order nonlinear differential equation. It is not
easy to derive the control rule in theory or accurately de-
termine the control rule. Therefore, the control rule is
needed to be acquired using machine learning. To address
future state prediction, Eqs. (12) and (13) are obtained,
provided above. Here, the state predictor shown in Fig. 4
is described by Eq. (12), and the action predictor in the
outline is described by Eq. (13). Here, the state and the
action can be predicted at each time. By using one of the
proposed systems, not only the next state and action but
also the advanced future state and action, can be predicted
repeatedly.

3.3. Application of the Predictor Using Online SVR
and LQR (Linear Quadratic Regulator)

In [36], a scheme for the prediction of the future state
and action of a robot using the current state and action
with Online SVR and LQR was proposed, as shown in
Fig. 5. In this case, the control theory is focused on, not
only on Online SVR. Using Online SVR for state pre-
diction, and LQR for action prediction is specifically ad-
dressed.

Figure 5 shows the prediction of the next state x̂t+1 and
action ât+1 using the current state xt and action at . For
future state prediction, the equation was derived as shown
in Eq. (12).

Next, an action predictor is dealt here with using LQR.
The future action ât+1 can be predicted using state feed-
back gain k f if it is possible describe the model of a pre-
diction target as a nonlinear discrete state space model
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(a) NXTway-GS (b) Model of NXTway-GS

Fig. 6. Two-wheeled inverted pendulum “NXTway-GS.”

correctly:

ât+1 = k f x̂t+1. . . . . . . . . . . . . (18)

Here, LQR calculates the feedback gain k f in order to
minimize the cost function J [x(t),a(t)]≡ J given as

J =
∫ ∞

0

(
x�(t)Qx(t)+a�(t)Ra(t)

)
dt. . . (19)

The tuning parameter is the weight matrix for state Q and
for input R. Thus, k f represents a state feedback gain that
is given by

k f = −R−1B�P. . . . . . . . . . . . (20)

In this equation, R, B and P are the parameters of the
Riccati differential equation.

PA+A�P−PBR−1B�P+Q = 0 . . . . . (21)

Thus, the state and the action can be predicted at each
time. By using the proposed system, not only the next
state and action but also the future state and action repeat-
edly, can be predicted.

4. Experiment: Simulation Using Proposed
Method for Prediction of the State and Ac-
tion of the Two-Wheeled Inverted Pendu-
lum

4.1. Outline of Experiment
In this paper, future prediction is focus on and the pro-

posed methods is discussed. As an application example,
this simulation used an inverted pendulum “NXTway-GS”
(Fig. 6(a)) as mathematical model, and parallelly, com-
pared the predicted results with actual response results of
simulated results.

4.2. Simulation Setup: Two-Wheeled Inverted Pen-
dulum Model

NXTway-GS can be considered a two-wheeled inverted
pendulum model, as shown in Fig. 6(b). Fig. 7 shows the
side view and plane view of the model. The coordinate
system referred to in Section 4.3 is described in Fig. 7.

In Fig. 7, ψ denotes the body pitch angle and θml,mr de-
notes the DC motor angle (l and r indicate left and right).

(a) Side view (b) Plane view

Fig. 7. Side view and plane view of NXTway-GS.

Table 1. Physical parameters of NXTway-GS.

Symbol Value Unit Property

g 9.81 [m/s2] Gravity acceleration

m 0.03 [kg] Wheel weight

R 0.04 [m] Wheel radius

Jw
mR2

2
[kgm2] Wheel inertia moment

M 0.635 [kg] Body weight

W 0.14 [m] Body width

D 0.04 [m] Body depth

H 0.144 [m] Body height

L
H
2

[m] Distance of center of mass from wheel axle

Jψ
ML2

3
[kgm2] Body pitch inertia moment

Jφ
M

(
W 2 +D2

)
12

[kgm2] Body yaw inertia moment

Jm 1×10−5 [kgm2] DC motor inertia moment [37]

Rm 6.69 [Ω] DC motor resistance [a]

Kb 0.468 [V·s/rad] DC motor back EMF constant [a]

Kt 0.317 [N·m/A] DC motor torque constant [a]

n 1 [1] Gear ratio [37]

fm 0.0022 [1] Friction coefficient between
body and DC motor [37]

fW 0 [1] Friction coefficient between
wheel and floor [37]

The physical parameters of NXTway-GS are listed in
Table 1.

4.3. Simulation Setup: Modeling NXTway-GS
The Lagrange equation based on the coordinate system

in Fig. 7 is able to derive the equations of motion of the
two-wheeled inverted pendulum “NXTway-GS.” If the di-
rection of NXTway-GS is in the x-axis positive direction
at t = 0, the equations of motion for each coordinate are[

(2m+M)R2 +2Jw +2n2Jm
]

θ̈ +
(
MLR−2n2Jm

)
ψ̈

−Rg (M +2m)sinγ = Fθ . . . . . . . . (22)(
MLR−2n2Jm

)
θ̈ +

(
ML2 + Jψ +2n2Jm

)
ψ̈

−MgLψ = Fψ . . . . . . . . . . . . . (23)[
1
2

mW 2 + Jφ +
W 2

2R2

(
Jw +n2Jm

)]
φ̈ = Fφ . . (24)
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Table 2. Learning parameters of predictors using Online SVR.

Symbol Value Property

C1 300 Regularization parameter for predictor of x1

ε1 0.03 Error tolerance for predictor of x1

β1 30 Kernel parameter for predictor of x1

C2 300 Regularization parameter for predictor of x2

ε2 0.03 Error tolerance for predictor of x2

β2 30 Kernel parameter for predictor of x2

C3 300 Regularization parameter for predictor of x3

ε3 0.03 Error tolerance for predictor of x3

β3 30 Kernel parameter for predictor of x3

C4 300 Regularization parameter for predictor of x4

ε4 0.03 Error tolerance for predictor of x4

β4 30 Kernel parameter for predictor of x4

Ca 300 Regularization parameter for predictor of a

εa 0.03 Error tolerance for predictor of a

βa 30 Kernel parameter for predictor of a

Here, the variables x1 x2 as the state variables and u as the
input variable are obtained as following equations:

x1 =
[
θ ψ θ̇ ψ̇

]� . . . . . . . . (25)

x2 =
[
φ φ̇

]� . . . . . . . . . . . . (26)

u =
[
vl vr

]� . . . . . . . . . . . . (27)

where vl and vr indicate the DC motor voltage (l and r
indicate left and right).

Consequently, the state equations of NXTway-GS can
be derived from Eqs. (22), (23), and (24).

ẋ1 = A1x1 +B1u+S . . . . . . . . . (28)
ẋ2 = A2x2 +B2u . . . . . . . . . . . (29)

Here, S denotes the slope vector. In this study, only the
state variables x1 is focused. Because x1 includes the
body pitch angle as important variables ψ and ψ̇ for the
control of self-balancing, the plane motion will not be
considered in this experiment.

4.4. Simulation Setup: Using Online SVR
First in this method, this proposed system applied the

Online SVR as a learner (see also Fig. 4). Moreover, the
learner applied the RBF kernel [38] as the kernel function
to the Online SVR. The RBF kernel on two samples x and
x′, represented as feature vectors in some input space, is
defined as

k(x,x′) = exp
(
−β

∣∣∣∣x−x′
∣∣∣∣2

)
. . . . . . (30)

In addition, the learning parameters of Online SVR are
listed in Table 2 (see also Eqs. (4) and (10)).

Here, λi denotes following equation using Regulariza-
tion parameter Ci:

λi =
2
Ci

. . . . . . . . . . . . . . . (31)

Table 3. Parameters for Online SVR and LQR.

Symbol Value Property

C1 300 Regularization parameter for predictor of x1

ε1 0.03 Error tolerance for predictor of x1

β1 30 Kernel parameter for predictor of x1

C2 300 Regularization parameter for predictor of x2

ε2 0.03 Error tolerance for predictor of x2

β2 30 Kernel parameter for predictor of x2

C3 300 Regularization parameter for predictor of x3

ε3 0.03 Error tolerance for predictor of x3

β3 30 Kernel parameter for predictor of x3

C4 300 Regularization parameter for predictor of x4

ε4 0.03 Error tolerance for predictor of x4

β4 30 Kernel parameter for predictor of x4

k f

⎡
⎢⎣
−0.870
−32.2
−1.16
−2.81

⎤
⎥⎦
�

Feedback gain for predictor of a

4.5. Simulation Setup: Using Online SVR and LQR
Second, Online SVR was applied as a state predictor,

and LQR as an action predictor, as shown in Fig. 5. There-
fore, the controller for the modern control theory was de-
signed as an action predictor. The tuning parameter is the
weight matrix for state for matrix Q and for input for ma-
trix R. In this study, the weight matrices Q and R [37]
were defined in this experiment as following.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 6×105 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 4×102

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . (32)

R =

⎡
⎣1×103 0

0 1×103

⎤
⎦ . . . . . . . (33)

Then, the feedback gain k f is obtained from J, that was
minimized. Therefore, k f was applied as an action pre-
dictor in this experiment. All the parameters for Online
SVR and LQR are listed in Table 3.

4.6. Simulation Conditions
In this experiment, the unknown periodic disturbance

signal as a predictable signal (Figs. 8 and 9) was mixed
to the action signal. And then, NXTway-GS received this
signal.

The properties of disturbance signal provided as the in-
put signal, and the other conditions of the simulations are
listed in Table 4.

4.7. Simulation Results
4.7.1. Using Online SVR

Figures 10–13 show the prediction of the state of x1 =
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Fig. 8. Control input obtained by mixing the action and
disturbance inputs.
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Fig. 9. Disturbance signal in control inputs d(t).

Table 4. Parameters for simulation conditions.

Symbol Value Unit Physical property

ψ0 0.0262 [rad] Initial value of body pitch angle

γ0 0.0 [rad] Slope angle of movement direction

ts 0.05 [s] Sampling rate

td,start 0.0 [s] Start time of application

of predictable disturbance

td,finish 18.0 [s] Finish time of application

of predictable disturbance

Ad1 1.0 [V] Amplitude of predictable disturbance

fd1 6.0 [Hz] Frequency of predictable disturbance

N 60 — Initial dataset length

[
x1 x2 x3 x4

]�, and Fig. 14 shows the prediction of
the control input of a. In this section, the part that is given
in real training sets will be ignored, because the initial
learning part is not arranged to predict next state. Thus,
only the part of the graph pertaining to the state predicted
part shown in T (at t = 2.95 s) of Figs. 10–14, will be
focused and discussed.

4.7.2. Using LQR
Figures 15–18 show the prediction of the state of x1 =[

x1 x2 x3 x4
]�, and Fig. 19 shows the prediction of

the control input of a. In this section, the part that is given
in real training sets will not be considered, because the
initial learning part, in this area will not predict next state.
Thus, only the part of the graph pertaining to the state
predicted part shown in T (at t = 2.95 s) of Figs. 15–19,
will be focused and discussed.

4.8. Discussion of Simulated Results of Proposed
Method

4.8.1. Using Online SVR as a State Predictor and
Action Predictor

Figures 10–14 show that the prediction results almost
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Fig. 10. Prediction result of state x1 (wheel rotation angle
θ ) using only Online SVR.
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Fig. 11. Prediction result of state x2 (body pitch angle ψ)
using only Online SVR.
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Fig. 12. Prediction result of state x3 (wheel rotation angle
velocity θ̇ ) using only Online SVR.
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Fig. 13. Prediction result of state x4 (body pitch angle ve-
locity ψ̇) using only Online SVR.
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Fig. 14. Prediction result of control input a using only On-
line SVR.
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track the real states and control input. Clearly, Figs. 10
and 12 show the best prediction results. Because the fluc-
tuations in Figs. 10 and 12 are smooth, the predicted val-
ues are almost the same as the real values. In addition,
each predicted value curve tracked the variation of real
values correctly. Because sinusoidal voltage is applied to
the motor as a disturbance signal through the body of the
inverted pendulum, the predictors learn the sinusoid force
and predict this tendency as a “predictable disturbance.”
Therefore, this indicates that this method can be applied
in systems for tracking the states and action.

Now let’s discuss these results. The increase in the
prediction errors can be attributed to the following two
reasons. First, trying to consider the parameter settings.
The prediction results are determined by an insensitive
value of maximal tolerance and a regularization param-
eter. Thus, the situation was considered wherein a wide
insensitive value of tolerance and narrow values of the
regularization parameter were used. In this case, there
is a possibility that the learner will regard real data as an
error value. Second, trying to consider the influence of
the disturbance signal input. In this case, there is a pos-
sibility that the learner also will regard the real data as
an error value. However, if the regularization value and
allowable error are set accurately, the prediction will be-
come accurate, at the expense of the generalization. If the
disturbance signal with a small amplitude was given to the
control target, there is a possibility that the learner will ig-
nore that disturbance signal for learning. This means that
the learner regards real data including disturbance as an
allowable error.

As a result, except for the nonlinear part, the proposed
method was able to conclude that the result can predict,
the tendency of inputs except certain errors.

4.8.2. Using Online SVR as a State Prediction and
LQR an Action Prediction

Figures 15–19 show that the prediction results almost
track the real states and control input. Clearly, Figs. 15
and 18 show the best prediction results. Because the fluc-
tuations in Figs. 15 and 18 are smooth, the predicted val-
ues are almost the same as the real values. In addition,
each predicted value curve tracked the variation of real
values correctly. Because a sinusoidal voltage is applied
to the motor as a disturbance signal through the body of
the inverted pendulum, the predictors learn the sinusoid
force and predict this tendency as a “predictable distur-
bance.” Therefore, this indicates that this method can be
applied in systems for tracking the states and action.

Now let’s discuss these results. These results show the
similar tendency of the prediction results using only On-
line SVR. On the other hand, the prediction results show
that fitting the actual control results than using only On-
line SVR. In this method, the LQR was applied to derive
an action that multiplied states to the optimal feedback
gain. Therefore, the prediction results show ahead of the
tendency at all times, predicting results will be attempting
to become a stable state, moreover.
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Fig. 15. Prediction result of state x1 (wheel rotation angle
θ ) using Online SVR and LQR.
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Fig. 16. Prediction result of state x2 (body pitch angle ψ)
using Online SVR and LQR.
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Fig. 17. Prediction result of state x3 (wheel rotation angle
velocity θ̇ ) using Online SVR and LQR.
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Fig. 18. Prediction result of state x4 (body pitch angle ve-
locity ψ̇) using Online SVR and LQR.
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Fig. 19. Prediction result of control input a using only On-
line SVR and LQR.
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Accordingly, the experimental results were able to con-
clude that the proposed method can achieve predictions,
as when only Online SVR is used for predictions, as men-
tioned above.

4.8.3. Summary
In this experiment, the experimental results showed

prediction results using two approaches, i.e., using only
Online SVR, or using Online SVR and LQR. As a result,
if the fluctuations of the results are smooth, the predicted
values tend to be almost the same as the real values. On
the other hand, the prediction results changed direction in
contradiction to the tendency, since the tendency changes
over time. This is attributed to using the prediction val-
ues. In the proposed methods, the prediction values are
used repeatedly for predicting the future state and action.
Hence, the prediction errors will accumulate with elapsed
time.

From these reasons, it is concluded that the experimen-
tal results are reasonable.

5. Conclusion

In this study, predicting the future state and action of a
robot through the current state and action, were focused
on. Moreover, the methods that allow a robot to decide
its appropriate behavior quickly, using the predicted state
were realized. To realize this, the proposed method was
considered to predict the advanced future using Online
SVR as a learner. Moreover, the only Online SVR, or
using Online SVR and LQR were used in proposed two
approaches for prediction. The simulation results verify
that the proposed method can predict the tendency of in-
puts. Hence, this paper confirmed the following points.

• The proposed methods can predict adaptively using
Online SVR as an online prediction method.

• The proposed methods consider not only the state but
also the action, and therefore, these methods can pre-
dict future state-action pairs according to the past or
current course of action.

As a result, the effectiveness of the proposed method
was confirmed, which forms a framework for the state and
action. However, in the proposed methods, the prediction
values are used repeatedly for predicting the future state
and action. Hence, the prediction errors accumulate with
elapsed time. And more, the experimental parameters,
and the data length that can be used must be considered.

In the future work, applying the knowledge that was
learned from this study, to design a system that allows a
robot to decide its course of action, will be considered.
Specifically, a method that allows a robot to decide an
appropriate action at the present time using the prediction
results will be considered.

References:
[1] S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics (Intel-

ligent Robotics and Autonomous Agents series),” The MIT Press,
2005.

[2] S. Asaka and S. Ishikawa, “Behavior Control of an Autonomous
Mobile Robot in Dynamically Changing Environment,” J. of the
Robotics Society of Japan, Vol.12, No.4, pp. 583-589, 1994.

[3] T. Kanda, H. Ishiguro, T. Ono, M. Imai, T. Maeda, and R. Nakatsu,
“Development of “Robovie” as Platform of Everyday-Robot Re-
search,” IEICE Trans. on Information and Systems, Pt.1 (Japanese
Edition), Vol.J85-D-1, No.4, pp. 380-389, 2002.

[4] D. F. Wolf and G. S. Sukhatme, “Mobile Robot Simultaneous Lo-
calization and Mapping in Dynamic Environments,” Autonomous
Robots, Vol.19, pp. 53-65, Springer, Netherlands, 2005.

[5] D. Fox, W. Burgard, and S. Thrun, “Markov Localization for Mo-
bile Robots in Dynamic Environments,” J. of Artificial Intelligence
Research, Vol.11, pp. 391-427, 1999.

[6] M. A. K. Jaradata, M. Al-Rousanb, and L. Quadanb, “Reinforce-
ment based Mobile Robot Navigation in Dynamic Environment,”
Robotics and Computer-Integrated Manufacturing, Vol.27, pp. 135-
149, 2011.

[7] E. Masehian and Y. Katebi, “Sensor-Based Motion Planning of
Wheeled Mobile Robots in Unknown Dynamic Environments,” J.
of Intelligent & Robotic Systems, DOI: 10.1007/s10846-013-9837-
3, 2013.

[8] M. Faisal, R. Hedjar, M. Al Sulaiman, and K. Al-Mutib, “Fuzzy
Logic Navigation and Obstacle Avoidance by a Mobile Robot in
an Unknown Dynamic Environment,” Int. J. of Advanced Robotic
Systems, DOI: 10.5772/54427, 2012.

[9] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi, “Multi-
robot Map Updating in Dynamic Environments,” Distributed Au-
tonomous Robotic Systems, Springer Tracts in Advanced Robotics,
Vol.83, pp. 147-160, 2013.

[10] International Federation of Robotics, “All-time-high for industrial
robots,” Substantial increase of industrial robot installations is con-
tinuing, 2011.

[11] T. Sogo, K. Kimoto, H. Ishiguro, and T. Ishida, “Mobile Robot Nav-
igation by a Distributed Vision System,” J. of the Robotics Society
of Japan, Vol.17, No.7, pp. 1-7, 1999.

[12] J. J. Park, C. Johnson, and B. Kuipers, “Robot Navigation with
MPEPC in Dynamic and Uncertain Environments: From Theory
to Practice,” IROS 2012 Workshop on Progress, Challenges and
Future Perspectives in Navigation and Manipulation Assistance for
Robotic Wheelchairs, 2012.

[13] M. Nishioka, A. Okada, M. Miyano, K. Mori, K. Yamashita, and K.
Nakayama, “A Basic Study on the Relationship between Operating
Strategy and Body Movements under a Repetitive Operation – Eval-
uation of Methods of the Learning Process from the Viewpoint of
Performance and Physiological Data during Pulling Cart Operation
–,” J. of Human Life Science, Vol.7, pp. 45-55, 2008.

[14] N. Sugimoto, K. Samejima, K. Doya, and M. Kawato, “Reinforce-
ment Learning and Goal Estimation by Multiple Forward and Re-
ward Models,” IEICE Trans. on Information and Systems, Pt.2
(Japanese Edition), Vol.J87-D-2, No.2, pp. 683-694, 2004.

[15] Y. Takahashi and M. Asada, “Incremental State Space Segmentation
for Behavior Learning by Real Robot,” J. of the Robotics Society of
Japan, Vol.17, No.1, pp. 118-124, 1999.

[16] Y. Choi, S.-Y. Cheong, and N. Schweighofer, “Local Online Sup-
port Vector Regression for Learning Control,” Proc. of the 2007
IEEE Int. Symposium on Computational Intelligence in Robotics
and Automation Jacksonville, FL, USA, 2007.

[17] J. Shin, H. J. Kim, S. Park, and Y. Kim, “Model predictive flight
control using adaptive support vector regression,” Neurocomputing,
Vol.73, No.4-6, pp. 1031-1037, 2010.

[18] E. Schuitema, L. Busoniu, R. Babuska, and P. Jonker, “Control De-
lay in Reinforcement Learning for Real-Time Dynamic systems: A
Memoryless Approach,” Proc. of Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ Int. Conf., pp. 3226-3231, 2010.

[19] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Planning
and Learning in Environments with Delayed Feedback,” Machine
Learning: ECML 2007, pp. 442-453, 2007.

[20] Y. Su, K. K. Tan, and T. H. Lee, “Computation Delay Compen-
sation for Real Time Implementation of Robust Model Predictive
Control,” Proc. of Industrial Informatics (INDIN), 2012 10th IEEE
Int. Conf., pp. 242-247, 2012.

[21] C. Liu, W.-H. Chen, and J. Andrews, “Model Predictive Control
for Autonomous Helicopters with Computational Delay,” Proc. of
Control 2010, UKACC Int. Conf., pp. 1-6, 2010.

[22] G. Marafioti, S. Olaru, and M. Hovd, “State Estimation in Nonlinear
Model Predictive Control, Unscented Kalman Filter Advantages,”
Nonlinear Model Predictive Control, Lecture Notes in Control and
Information Sciences Vol.384, pp. 305-313, 2009.

478 Journal of Robotics and Mechatronics Vol.27 No.5, 2015



A Study of Effective Prediction Methods of the State-Action Pair

[23] N. Sünderhauf, S. Lange, and P. Protzel, “Using the Unscented
Kalman Filter in Mono-SLAM with Inverse Depth Parametrization
for Autonomous Airship Control,” Proc. of IEEE Int. Workshop on
SSRR 2007, pp. 1-6, 2007.

[24] M. A. Badamchizadeh, I. Hassanzadeh, and M. A. Fallah, “Ex-
tended and Unscented Kalman Filtering Applied to a Flexible-Joint
Robot with Jerk Estimation,” Discrete Dynamics in Nature and So-
ciety, Vol.2010, Article ID 482972, 2010.

[25] J. G. Iossaqui, J. F. Camino, and D. E. Zampieri, “Slip Estimation
Using The Unscented Kalman Filter for The Tracking Control of
Mobile Robots,” Proceeding of the Int. Congress of Mechanical En-
gineering (COBEM), pp. 1-10, 2011.

[26] A. F. Foka and P. E. Trahanias, “Predictive Control of Robot Ve-
locity to Avoid Obstacles in Dynamic Environments,” Proc. of the
2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.1,
pp. 370-375, 2003.

[27] L. Jiang, M. Deng, and A. Inoue, “SVR based Obstacle Avoid-
ance and Control of a Two Wheeled Mobile Robot,” Proceeding
of Innovative Computing, Information and Control 2007 (ICICIC
’07), Second Int. Conf., Okayama, DOI: 10.1109/ICICIC.2007.553,
2007.

[28] Z. Li, K. Yang, and Y. Yang, “Support Vector Machine based Op-
timal Control for Mobile Wheeled Inverted Pendulums with Dy-
namics Uncertainties,” Proc. of the 48th IEEE Conf. on Decision
and Control 2009 held jointly with the 2009 28th Chinese Control
Conf., 2009.

[29] F. Parrella, “Online Support Vector Regression,” Ph.D. thesis, De-
partment of Information Science, University of Genoa, Italy, 2007.

[30] C. M. Bishop, “Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics),” Springer, 2006.

[31] B. S. Everitt, “Cambridge Dictionary of Statistics (2nd edition),”
Cambridge, UK: Cambridge University Press, ISBN 0-521-81099-
X, 2002.

[32] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.
I. Jordan, “Learning the Kernel Matrix with Semidefinite Program-
ming,” J. of Machine Learning Research, Vol.5, pp. 27-72, 2004.

[33] V. N. Vapnik, “The Nature of Statistical Learning Theory,” Springer,
New York, 1995.

[34] F. Girosi, “An Equivalence between Sparse Approximation and
Support Vector Machines,” Neural Computation, Vol.10, No.6,
pp. 1455-1480, 1998.

[35] M. Sugimoto and K. Kurashige, “The Proposal for Prediction of
Internal Robot State Based on Internal State and Action,” Proc.
of IWACIII2013 CD-ROM, SS1-2, Oct. 18-21, Shanghai, China,
2013.

[36] M. Sugimoto and K. Kurashige, “The Proposal for Deciding Ef-
fective Action using Prediction of Internal Robot State Based on
Internal State and Action,” Proc. of 2013 Int. Symposium on Micro-
NanoMechatronics and Human Science, pp. 221-226, Nov. 10-13,
Nagoya, Japan, 2013.

[37] Y. Yamamoto, “NXTway-GS Model-Based Design – Control of
Self-balancing Two-wheeled Robot Built with LEGO Mindstorms
NXT –,” Cybernet Systems Co., Ltd., 2009.

[38] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J.
Lin, “Training and Testing Low-degree Polynomial Data Mappings
via Linear SVM,” J. Machine Learning Research, Vol.11, pp. 1471-
1490, 2010.

Supporting Online Materials:
[a] R. Watanabe, “Ryo’s Holiday LEGO Mindstorms NXT,” 2008.

http://web.archive.org/web/20120617051545/http://web.mac.com/
ryo watanabe/iWeb/Ryo’s%20Holiday/NXTway-G.html
[Accessed September 28, 2015]

Name:
Masashi Sugimoto

Affiliation:
Muroran Institute of Technology

Address:
27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan
Brief Biographical History:
2013 Received Master degree from Muroran Institute of Technology
2013- Doctoral Course Student, Muroran Institute of Technology
Main Works:
• M. Sugimoto and K. Kurashige, “The Proposal for Prediction of Internal
Robot State Based on Internal State and Action,” Proc. of IWACIII2013
CD-ROM, SS1-2, 2013.
• M. Sugimoto and K. Kurashige, “The Proposal for Deciding Effective
Action using Prediction of Internal Robot State Based on Internal State
and Action,” Proc. of 2013 IEEE Int. Symposium on
Micro-NanoMechatronics and Human Science, pp. 221-226, 2013.
• M. Sugimoto and K. Kurashige, “Real-time Sequentially Decision for
Optimal Action using Prediction of the State-Action Pair,” Proc. of 2014
IEEE Int. Symposium on Micro-Nano Mechatronics and Human Science,
pp. 199-204, 2014.
Membership in Academic Societies:
• The Japan Society for Precision Engineering (JSPE)
• The Robotics Society of Japan (RSJ)
• The Institute of Electrical and Electronics Engineers (IEEE)

Name:
Kentarou Kurashige

Affiliation:
Muroran Institute of Technology

Address:
27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan
Brief Biographical History:
2002 Received the Ph.D. degree from Nagoya University
2002-2005 Research Associate, Fukuoka University
2005-2015 Research Associate, Muroran Institute of Technology
2015- Associate Professor, Muroran Institute of Technology
Main Works:
• Y. Kishima, K. Kurashige, and T. Kimura, “Decision Making in
Reinforcement Learning Using a Modified Learning Space Based on the
Importance of Sensors,” J. of Sensors, Vol.2013, Article ID 141353, 2013.
DOI: 10.1155/2013/141353.
• K. Kurashige and Y. Miyazaki, “Use of the Knowledge of Perceptual
State Transition in Reinforcement Learning,” JSCSE, Vol.3, No.2,
pp. 1-12, 2013.
• K. Kurashige, N. Kitayama, and M. Kiyohashi, “Proposal of Method
“Motion Space” to Express Movement of Robot,” J. of Advanced
Computational Intelligence and Intelligent Informatics, Vol.16, No.6,
pp. 704-712, 2012.
• K. Kurashige, Y. Onoue, and T. Fukuda, “From Automation To
Autonomy,” A. Mellouk and A. Chebira (Eds.), Machine Learning,
In-Tech, pp. 39-52, Feb. 2009.
Membership in Academic Societies:
• IEEE Robotics and Automation Society
• IEEE Systems, Man, and Cybernetics Society
• The Robotics Society of Japan (RSJ)
• Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT)
• The Japanese Society for Artificial Intelligence (JSAI)

Journal of Robotics and Mechatronics Vol.27 No.5, 2015 479

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

