

繰返し荷重を受ける鉄筋コンクリート柱の変形性能 の評価(柱)

メタデータ	言語: jpn
	出版者: 日本コンクリート工学協会
	公開日: 2022-03-29
	キーワード (Ja):
	キーワード (En):
	作成者: 荒川, 卓, 荒井, 康幸, 藤田, 豊, 溝口, 光男
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00010494

第3回コンクリート工学年次講演会講演論文集 1981

[113] 繰返し荷重を受ける鉄筋コンクリート柱の変形性能の評価

- 正会員 ○荒 川 卓 (室蘭工業大学)
- 正会員 荒井康幸(同上)
 - 藤田 豊 (同 上)

溝口光男 (同 上)

1. はじめに

鉄筋コンクリート(以下RC)柱の主筋降伏以後における変形性能は、設計条件が同一の場合でも、繰返し加 力時の回数や変位振幅漸増ピッチ等の違いによって異なって評価される¹⁾。従って、既往の資料を含めてRC柱の 変形性能を総合的に評価するためには、繰返し経歴の違いによる影響を考慮した評価法を設定する必要がある。

之に関する基礎資料を得ることを目標に、文献2)では、シアスパン比や帯筋量以外の実験諸元を同一とした柱 を用いて、繰返し荷重経歴が3種に変化する場合の比較実験を行い、荷重経歴の違いによって異なって評価され る柱の変形性能を、同一荷重経歴下における変形性能に換算評価する方法を試みた。

本報では、シアスパン比は一定であるが作用軸圧や鉄筋比及びコンクリート強度が変化する柱を用い、荷重経 歴が2種に変化する場合の変形性能の差異を補足実験で比較し、先に試みた性能評価法の妥当性を再検討する。 2. 変形性能の評価方法²⁰

a) 荷重・変位曲線のうち、 $P_i / P_y \ge 1$ ($i = 1 \sim n$ は主筋降伏時~降伏以後の繰返し回数)の値を対象に、 次式によってループ面積比率の総和平均 nIw を略算し、エネルギー吸収能の目安とする。

こゝに、Py, δy は主筋降伏時の荷重(せん断力)と変位、△p は降伏以後の変位振幅漸増ピッチ。

b) 限界塑性率 μou(最大荷重以後における荷重変位包絡線が、最初の降伏荷重レベルと交差する時の限界変 位 δouを降伏変位 δy で除した値)とnIwとの間には、次式の関係が成立する。

 $\mu_{\rm ou} = 1.85 \, {}_{\rm n} {\rm Iw} - 0.85 \qquad (2)$

c) 繰返し荷重経歴の違いによる補正係数 γ_{ou} を次式で算出し、上式(2)の両辺を修正する。この場合、 $\Delta p/\delta y$ 値の大きい資料を之の小さい値に換算するには、式(2)の両辺に γ_{ou} を乗ずる(逆の場合には γ_{ou} で除す) $^{2)}_{o}$

 $\gamma_{ou} = 1.1 - 0.9 \cdot \Delta p / \delta y$ ($t \le 0.65$)(3)

d) 曲げ降伏先行のRC柱では、実験諸元を代入して求まる曲げとせん断の耐力比 cQ_{BU}/cQ_{SU} (= 文献 4)/5)) の平均値Km は、次式(4)で表わされる。従って、耐力比がKm 式と等 しいと置くことによって、所要の限界塑性率 μ_{0} (所要の限界変位を降 伏変位計算値。 δ_{y} で除した値)を確保するのに必要な帯筋量 Pw が推 算できる³⁾。 Km = 1.08 - 0.216 μ_{0} (η_{0} + 0.1) …………(4)

こゝに η_o (= σ_o / F_c) は軸圧係数、 $c \delta_y$ は鉄筋考慮の曲げ変位と せん断変位及び剛性低下率 α_y とによって求まる降伏変位計算値。

3.実験の概要

(1) 試験体。 図-1に示すように柱断面が25 m 角、ho=125 m, 柱上下の左右には全長185 m、断面 20×35 m のはりを有するキの字 形模型とし、表-1に示すように、引張鉄筋比 Pt 3種、軸圧縮応力 度σo3種、コンクリート強度 Fc 2種、合計8種 16 体よりなる。

帯筋量については、前述の耐力比を 0.8 と置 いて求まる Pw を基準に、之を柱上下端 1.5 D ^{Colur} の範囲内に配置し、柱中間部の帯筋量は文献 6) の方法により、材端部の約1/2に低減した。

(2) 使用材料の性質と試験体の製作。

表 - 2 に使用材料の性質を示した。試験体の-164. 製作にはメタルフォームを用いて平打ちとし、 打設2日目に脱型して所要強度の約70%を発 揮するまでビニールシートで密封養生を行い、 以後試験時まで実験室内に放置して材令15~ 36日でテストを行った。

表-1 試験体の種類

		and the second se							-
nn	Fc	σo	Tensio	n Reinf.		Shear Re	inforcement		
	(kg/cm^2)	(kg/cm^2)		Pt (%)	End 1.5D	Pw(%)	Midheight	Pw (%)	-
151		25	3-D13	0.610	Ш 6ф-061	(0.466)	□6 φ-083.3	(0.228)	ĩ
153		50	3-D13	0.610	106φ-@55	(0.689)	□6¢-@55.6	(0.341)	l
155	210	70	3-D13	0.610	III 6¢-@48	(0.790)	□ 6¢-050	(0.379)	ł
157		25	3-D10	0.342	□ 4¢-@53	(0.183)	□4 0 -@100	(0.095)	l
159		25	4-D13	0.813	Π6φ-@50	(0.758)	□6¢-@50	(0.379)	ļ
161		25	3-D13	0.610	Ш4ф-@57	(0.340)	□ 4 φ- @55.6	(0.174)	ī
163	300	50	3-D13	0.610	II 6¢-@51	(0.558)	□6¢-@71.4	(0.266)	l
165		70	3-D13	0.610	Ⅲ 6φ-@52	(0.729)	□6é~@50	(0.379)	ł

表-2 使用材料の性質

	Size	Diameter (mm)	Sectional Area(cm²)	Yielding Point oy (kg/cm²)	Elastic Modulus (x106 kg/cm ²)			
Longitudinal Steel	D19 D13 D10	(19) (13) (10)	(2.870) (1.267) (0.713)	3714 4021 4180	1.929			
Stirrup Steel	6ф 4ф	5.48 3.94	0.237 0.121	3120 2330	1.958 1.972			
	Sand $(5 2, 0)$ Specific applies 2.54							

Sand Stand, 1.1. - 2.5, specific gravity = 2.68 Fc = 222 (209 \sim 243) kg/cm², W/C = 0.67, Mix prop. = 1:3.55:3.90/wt Fc = 305 (293 \sim 321) kg/cm², W/C = 0.53, Mix prop. = 1:2.38:3.08/wt (3) 加力方法と繰返し方法。 これまでの実 Concrete 験¹⁻³⁾と同様に図-1の④, ⑧点をピン支持し、 Note:()=Nominal, Concrete Cylinder=10 \$\phi x 20 cm

④©及びBD間をスチールヨークで連結して、©とDのはり端より油 圧式サーボアクチエータにより正負の水平力を加える。柱には容量が 50 トンの電動式オイルジャッキで所定の軸力を導入した(最大荷重 時と限界変形時には-5.0~15.3%平均では4%の変動となった)。

152

156. 158.

162

繰返し方法は、主筋降伏時までは全試験体とも発信周波数 fr =0.05 Hz,制御変位 0.6 mm / cycle の正負漸増による繰返しを基準とした。し かし、降伏後は式(3)のたゞし書きの適用限界を再確認するため、frは 同じであるが Δp を約 0.1 δ_y で繰返すもの(図-2(a)の偶数 Naの柱) と、fr をマニュアルに切り替え (0.005~0.006 Hz に相当) $\Delta \mathbf{p} \Rightarrow \delta_{\mathbf{v}}$ で繰返すもの(図-2(b)の奇数Naの柱)の2種類とした。

(4) 計測方法。 水平力、軸力、はりのせん断力の検出は、夫々の 装置に組み込んだロードセルによった。又、柱上下の接合部間におけ る水平変位と軸方向変位とを差動トランスにより、主筋や帯筋には、図-1 の●印(中間部の主筋は偶数№の柱のみ計測)で示した位置に検長2 mmのワ イヤストレインゲージを貼付し、ひずみ度を計測した。之等計測値のうち、 水平変位と柱付け根部2個所の主筋ひずみをX-Yレコーダに自記させ、モ

ニター用に供すると共に、全ての計測値をサンプリング周波数を10Hzに設 定した磁気テープ式データレコーダに収録し、電算機により処理した。 4.実験結果とその考察

図-3には破壊状況の代表例を、表-3には試験結果の一覧を示した。 (1) 破壊状況。 全試験体とも曲げ降伏後にコンクリートの圧壊で最大荷

重に達し、その後の繰返しによりNa 152と155以外の柱には主筋の座屈を伴

なった。ひび割れの発生範囲は、全試験体とも柱内端15D部分から接合パネル内に及んでいるが、Pt や Pwの 少ないNa 156, 157, 160, 161 の4体は他の柱に比較してその範囲は幾分狭く、ひび割れの発生数も少なく、特に Na 161は主筋の座屈と同時にせん断破壊を生じた。圧縮域については、パネル内に約0.2D 食い込んだ位置から 柱内に向け0.8D前後の範囲に及んでいるが、Fc, Pt, Go及び繰返し経歴等の違いによる明確な差異は認め難い。

(2) 降伏荷重と最大荷重。 降伏荷重実験値の計算値に対する比率は、同一条件で設計された2体の柱毎に近 似した値を示し、1.00~1.16平均1.08となっているが、図-4(a)に示すように、 ηoが大きく Fc の小さい柱

図 - 3 破壊の状況

表 -	- 3	試験結果の一覧
2	•	四次加小 2 見

		At Yielding Load					At Maximum Load					At L	imit		
Column	Fc	 Fc	tQy	t ð y	<u>tQy</u> cQy	<u>tKy</u> cKy	 Fc	tQu	tδu	tμu	<u>tQu</u> cQBII	<u>tQu</u> cQsu	tðou	tµou	Failure Mode
NO.	(kg/cm ²)		(t)	(cm)				(t)	(cm)				(cm)		
150	209	0.114	7.80	0.95	1.07	0.84	0.121	8.57	2.40	2.52	1.12	0.87	4.52	4.74	F·C·Bu
151	209	0.123	7.75	0,90	1.04	0.87	0.138	9.36	4.56	5.07	1.17	0.93	7.58	8.43	F•C•Bu(S)
152	229	0.220	9.89	1.07	1.04	0.81	0.222	10.61	1.82	1.69	1.08	0.86	3.25	3.03	F·C·
153	222	0.217	10.01	1.02	1.05	0.87	0.222	10.82	2.04	1.99	1.12	0.89	6.03	5.90	F·C·Bu
154	243	0.284	10.83	0.95	1.00	0.92	0.284	11.55	1.41	1.49	1.04	0.83	2.19	2.30	F∙C∙Bu
_155	217	0.321	10.91	0.99	1.03	0.89	0.323	11.73	2.01	2.02	1.08	0.87	3.89	3.92	F·C·
156	213	0.118	6.37	Q.77	1.16	1.04	0.126	6.94	1.94	2.53	1.20	0.98	3.36	4.38	F·C·Bu
157	221	0.116	6.07	0.71	1.09	1.06	0.128	7.25	3.25	4.59	1.22	1.00	5.26	7.42	F∙C′Bu
158	225	0.107	9.90	1.06	1.11	0.82	0.114	10.62	2.43	2.30	1.13	0.90	5.06	4.79	F∙C∙Bu
159	230	0.096	9.53	1.01	1.10	0.83	0.112	11.28	5.03	4.98	1.20	0.95	>8.5 3	>8.45	F·C·Bu
160	321	0.081	8.27	0.77	1.08	0.99	0.086	9.52	2.16	2.81	1.18	0.94	3.64	4.74	F·C·Bu(S)
161	321	0.079	8,58	0.80	1.13	1.00	0.089	10.15	3.44	4.31	1.24	1.00	>4.27	>5.36	F·S·C·Bu
162	300	0.169	10.55	1.06	1.06	0.85	0.171	10.99	2.07	1.96	1.08	0.86	3.23	3.05	F·C·Bu
163	298	0.168	10.94	1.01	1.11	0.92	0.172	11.47	2.02	2.00	1.13	0.90	5.51	5.45	F∙C∙Bu
164	296	0.229	12,12	1.05	1.08	0.92	0.230	12.47	1.55	1.48	1.09	0.87	1.88	1.79	F-C-Bu
165	293	0.238	12,03	1.09	1.07	0.87	0.242	12.50	1.99	1.83	1.08	0.87	3.51	3.23	F·C·Bu

は幾分小となる傾向があるが、その差は僅少であ <u>tQy</u>^{1.2} る。一方、最大荷重実験値の計算値に対する比率 については、 △p の大きい奇数 №の柱では 1.08~ 1.24, △p の小さい偶数 Naの柱では 1.04~ 1.20の 範囲にあって、前者の方が幾分高い比率を示して いる。この比率の Pt の違いによる影響は少ない が、 η_0 の小さい柱ほど図-4(b)に示すように、両 者の柱とも比率が大となる傾向を示している。

(3) 降伏時剛性。 実験値の計算値に対する比 率は、 0.81~ 1.06で平均 0.91となり、実験値の方 が計算値を下回っているが、 η_o が小さい場合や pt が減少する場合

には、図-5に示すように両者の値が近似する傾向を示している。

(4) 荷重・変位包絡線と塑性率。 降伏以後における荷重・変位 包絡線を σ_0 , F_c, P_t 及び Δp 別に図 – 6 に示した。図示のように、 全試験体とも変形角 R が 5.7~8.7×10⁻³rad.で降伏し、以後 △p の 小さい偶数№の柱では3~15%平均8%、 △p の大きい奇数№の柱 では4~21%平均13%の荷重上昇を示して最大荷重に達している が、何れの場合にも7%の小さい柱ほど降伏後の荷重上昇率が大きい。

この時の塑性率 t μ uは、図-7(a)に示すように、 η_o が小さくなる のに伴なって大となり、 △p の大きい柱の方が之の小さい柱よりも 塑性率が大きくなる傾向を示している。

一方、限界塑性率 t Hou についても、図-7(b)に示すように上記 と類似の傾向にあるが、この場合には、Fcや△pの違いによる影響

注)tQy,tδy:主筋降伏時におけるせん断力と 変位実験値(何れも正負の平均値)。

cQy:曲げ降伏時のせん断力計算値(文献 4)の8-6式による値)。

tQu, tou :最大荷重時のせん断力と変位 実験値(何れも正負の平均値)。

- ۲
- cQBU:曲げ耐力時のせん断力(16-18式)⁴ cQSU:柱の終局せん断計⁵⁾ ● cQSU:柱の終局せん断耐力
 - = $(0.9 + \sigma \text{ o}/250)$ {0.23 · <u>Ku · Kp (Fc</u> + 180) \div (ho/d+0.23) +2.7 $\sqrt{Pw \cdot \sigma wy}$ bj
- ۲ tμu = tδu/tδy:塑性率。
- tµou = tδou/tδy :限界塑性率
- tKy=tQy/tδy:降伏時剛性実験値。
- ◎ cKy = cQy/cδy:降伏時剛性計算值。
 - $= K_e \cdot \alpha_{y_o}$
- ۲ F:曲げ降伏, C:曲げ圧壊, Bu:主筋 座屈, S: せん断及びせん断ひびわれ開口。

降伏時剛性に及ぼす軸圧係数と鉄筋比 図-5

である。

(5) 限界塑性率と nIw 。 図-8 は、式(1)の nIw 計算値と tµou とを 比較したものである。図示のように、両者の間には従来の実験^{1,2)}と同様 に式(2)の関係が成立し、tHouは(2)式計算値の±15%の範囲内にある。

(6) △p の違いによる補正係数。 図-9は、文献 1), 2) 及び本実験 の資料 31 個を用い、 $\Delta p/\delta_v = 0.1$ の変位漸増繰返しで得られた限界塑 性率を基準に、 $\Delta p / \delta_y$ の増大による μ_{ou} の変化率を補正係数 γ_{ou} で表わ したものである。図示のように、前述の(3)式のたゞし書きに記した γou の適用限界は、次式のように改めるのが妥当のようである。

 $1 \leq \gamma_{ou} \leq 0.56$ ($\Delta p_{ou} / \delta_y \geq 0.6 \sigma \phi \gamma_{ou} = 0.56$ とする)……(5) (7) 補正係数による実験修正値の比較。 図-10(a)は、上記の γ_{ou} を用いて限界塑性率実験値を修正し、図-7(b)と同様に刀の別に示したも のであり、図 – 10 (b)は式(2)の関係を γ_{ou} で修正したものである。図示の ように、同一条件で設計した柱各2体のうち、△p/δv=1.0の奇教Naの 資料は $\Delta p / \delta_v = 0.1$ の偶数 Na.の資料とほど同等の値に換算され、 γ_{ou} に よる補正が妥当であることが判る。又、同図(a)に示した資料の分布は、 文献7)で指摘した図中の破線と類似の傾向にある。

(8) 式(4)の修正値と耐力比の比較。 図-11は、既往の実験資料のう ち、文献 2)で採用した繰返し経歴を異にする資料1-36-97 個に本実験資料

を加え、合計 63個の曲げとせん断の耐力比と、式(4) 右辺の第2項を前述の γ_{ou} で修正した値との比較を示 すものである。式(4)の修正値 K'm は、±15%の範囲に 殆んど全ての資料が納まり、 △p の違いによる Ŷouの 補正が有効であることを示唆している。

5.おわりに

以上の検討結果は、次のように要約できる。

(1) 破壊状況には、繰返し荷重経歴や引張鉄筋比及び軸圧係数など の違いによる明確な差異は認められない。

(2) 繰返し加力時の変位振幅漸増ピッチが大きく、逆に軸圧係数が 小さい場合には、曲げ耐力実験値の計算値に対する比率が幾分高くな る傾向があり、この時の限界塑性率も高く評価される。

(3) 降伏時剛性実験値は計算値よりも幾分低いが、軸圧係数や引張 鉄筋比が小さい場合には、両者の値が近似する傾向がある。

(4) 繰返し加力時の変位振幅漸増ピッチや回数を異にする実験資料 の変形性能を評価するには、式(3)のただし書きの適用限界を式(5)のよ うに改め、式(1)~(4)の方法を採用するのが有効である。

- 1) 荒川・角田:動的水平荷重を受ける鉄筋コンクリート柱の履歴挙動,日本 建築学会大会講演梗概集, 1979,9及び学会支部研報№50, 1979.3。
- 2) 薏川他:鉄筋コンクリート柱の変形性能に及ぼす荷重経歴の影響,日本建 築学会大会講演梗概集, 1980.9 及び学会支部研報№52, 1980.3。
- 3) 荒川・藤田:繰返し荷重を受ける鉄筋コンクリート柱の変形性能に及ぼす せん断補強筋の影響,第2回コンクリート工学年次講演論文集,1980.5。
- 4) 日本建築学会:鉄筋コンクリート構造計算規準・同解説。
- 5) 柴田:鉄筋コンクリート部材の脆性破壊時耐力推算式の検討,日本コンク

0.6

\γou = 0.56 •

1.0

1.2

0.2

۵4₀

- リート工学協会,コンクリート工学 Vol.18, Nº 1, Jan. 1980。 6) 荒川・米沢:鉄筋コンクリート短柱の崩壊防止に関する総台研究(その55
- 中央部帯筋の低減について),学会大会講演梗概集,1977.10。 7) 荒川・角田:鉄筋コンクリート柱の溶接帯板による耐震補強の効果,第1
- 回日本コンクリート工学年次講演論文集,1979.5 及び Trans. JCI 1979。
- 8) 東・大久保他:鉄筋コンクリート短柱の崩壊防止に関する総合研究(その 23,24,38,39:LEシリーズ),学会大会梗概集,1975,1976.10。

9) 武田・吉岡・菊地:鉄筋コンクリート短柱の崩壊防止に関する総合研究 (その42: CHTシリーズ),学会大会梗概集,1977.10。