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Elastomer end-milling has attracted attention for use

in the small-lot production of elastomeric fragments

because the technique is an applicable method for a

large variety of materials and does not require the

preparation of expensive and time-consuming moulds.

In order to effectively utilize elastomer end-milling, it

is necessary to ensure the machining accuracy of elas-

tomeric parts machined through this technique. How-

ever, the control method of machining error in the

elastomer end-milling has not been presented since

most machining services of the elastomeric part are

based on enterprise-dependent dexterities or know-

how. The objective of this paper is to construct and

utilize a machining error model for elastomer end-

milling. A statistical model based upon physical states

and machining conditions is introduced and investi-

gated. In this paper, a framework for modelling the

machining error in elastomer end-milling is also pro-

posed. In the framework, the candidates of model

variables are evaluated based on the preliminary ex-

periments. Moreover, a statistical model is constructed

by using the selected variables. Candidate variables

are cutting conditions and predictable physical state

variables such as workpiece deformation and cutting

force. The framework is investigated by evaluating er-

ror prediction with the experimental results. An iden-

tified error model from limited machining cases can

estimate the machining error of different machining

cases. The results indicate that the proposed modelling

method is capable of supporting to achieve model-

based precision elastomer end-milling.

Keywords: elastomer end-milling, machining error, sta-

tistical modelling, machining conditions

1. Introduction

Under the ongoing evolution of the digital age com-

petition, appropriate manufacturing is increasingly re-

quired. In order to support the advanced production cir-

cumstances, there are many types of adaptations such

as the functional material, continuously improved cut-

ting tools, and newly developed mechanisms [1] which

are applied technically. However, there will be a sig-

nificant effect on the cost of the production. Repetitive

manufacturing of the parts and components with com-

plex shapes require time and cost consuming moulds. On

the other hand, product prototyping or non-mass product,

such as make-to-order production, needs to utilize ma-

chining methods [2, 3]. Particularly in a small-lot produc-

tion of elastomeric parts, a reliable and accurate produc-

tion method is eagerly desired [4, 5]. In order to guarantee

essential quality indexes such as surface roughness and

machining error, a prediction model is highly required to

reduce the cost and time of machining [6, 7]. The mod-

elling of machining operations has been evolving as an

essential engineering tool to simulate operational physics

ahead of costly production trials of parts used in indus-

try [8].

In order to achieve the appropriate machining, a model-

based approach is widely desired to become an alterna-

tive to a conventional trial and error approach concept.

For these reasons, the prediction models are continuously

developed and evaluated by comparing the predicted ma-

chining error with experimental results. Previously, a

compositional machining simulation framework was pro-

posed for model-based precision machining [9–12]. Be-

cause the standard metal machining processes are planned

by assuming rigid workpiece and ideal chip removal, it is

difficult to apply for elastomer end-milling owing to its

low rigidity and different fracture mechanism. Many stud-

ies have been conducted to predict the machining process,

such as the analysis of workpiece deformation, chip sepa-

ration, and cutting force, including soft materials [13–22].

A mechanistic approach model was recently proposed for

predicting machining error in elastomer end-milling [23].

However, the proposed mechanistic approach requires the

heuristic introduction of an empirical model. By utiliz-

ing the statistics, the sensational data were considered to

construct the machining error model.

In this paper, a modelling method for the empirical

model of complex machining phenomena is introduced

as a continuing developed model using a statistical ap-

proach. In order to find the state value-mediated relations

for both machining conditions and machining error, a hy-

brid modelling method that utilizes numerical simulations

and statistical modelling is proposed and expected to find

direct information for controlling such phenomena. The
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proposed modelling is evaluated by comparing the cal-

culated machining error and actual measurement in elas-

tomer end-milling.

2. Machining Error in Elastomer End-Milling

The machining error in the end-milling process has in-

volved machining conditions, workpiece shape, and mate-

rial removal characteristics. During the actual machining

situation, workpiece shape and machining conditions such

as depth of cut and width of cut vary according to the ma-

chining process [21–23]. Furthermore, tool rotation speed

and feed rate are sometimes adjusted to find the appro-

priate conditions when the new cutting tool, workpiece

material, and/or different workpiece shape has to be ap-

plied. Regarding the workpiece deformation, the elastic

analyses and measurement in the elastomer end-milling

have been investigated by a similar method for metal end-

milling [16, 17]. However, there have been a limited num-

ber of studies on the elastomer shape transferring error be-

cause the elastomer chip separation mechanism is entirely

different from the metal mechanism [20, 24].

In the conventional metal end-milling, cutting force

during the end-milling is one of the dominant factors to

machining error. The cutting force causes the workpiece

deformation, thermal formation, machine tool deflection,

and tool wear. On the other hand, most elastomers have

low rigidity then the relationship between cutting force

and machining error is considered a fundamental charac-

teristic. The chip formation mechanisms of elastomers

are moderately different from those of metal milling. Fur-

thermore, the deformation of the workpiece dominantly

affects the machining accuracy. These facts indicate that

the problem to be tackled for the end-milling of soft ob-

jects or elastomers is to control the appropriate surface

generation of the machined workpiece that can overcome

by designing an optimized cutting tool shape and/or de-

termining proper machining conditions. Because of the

large variety of elastomer objects, it is necessary to de-

velop a systematic method to aggregate empirical cases

to generate a mechanistic model of the surface generation

process. There is little knowledge of those factors that are

dominant to the error and further knowledge is required.

Therefore, a preliminary evaluation of the important fac-

tors is necessary [11].

Shih et al. [25] have reported that the extraordinary

mechanical properties of elastomer, considerably endur-

ing elongation and low thermal conductivity, are capable

of affecting the chip formation during machining signif-

icantly. In other words, tool wear is not a dominant fac-

tor for elastomer end-milling. Meanwhile, it is reported

that the accumulations of cutting heat and the influence of

thermal effects are not a dominant factor of the error ten-

dency [21]. Therefore, it is promising to improve the ma-

chining accuracy by considering the mechanistic surface

generation model with the dominant factors such as cut-

ting force, workpiece deformation, and machining condi-

tions for elastomer end-milling.

Recently, the mechanistic model was applied for ma-

chining error in elastomer end-milling [23]. The men-

tioned model applied machining knowledge to the em-

pirical model formulation. By proposing the mathemat-

ical model which reflects process knowledge, the offered

model is applicable for skipping evaluating the compli-

cated phenomena of elastomer [26–28]. Based on the

empirically extracted factors to explain machining error

for elastomer end-milling phenomena, a simplified error

model that is able to apply to statistical analysis was intro-

duced [12]. Regarding the empirical assumptions, the ma-

chining error can be formulated as a mechanistic model as

follows:

δ = α1x+α2y+α3 fx +α4 fy +α5
fx

x
+α6

fy

y
+α7 (1)

where x and y represent the displacements of the neigh-

borhood point, fx and fy represent cutting forces at a sur-

face generation moment, and α1, . . . ,α7 are model coeffi-

cients, and δ is machining error.

The cutting forces have been normalized by an ax-

ial depth of cut. An approximate local stiffness of the

workpiece is the fifth and sixth terms on the right side

of Eq. (1). Because the displacements and the cutting

force can be predicted before machining when the appro-

priate model parameters have been identified, machining

error can be predictable. This mechanistic model is called

Alpha-model in this study.

With this model, the essential variables are obtained

from insight using human observations. This method can

be achieved by human heuristics that cannot be confirmed

in advance. For this main reason, it is necessary to estab-

lish a more systematic methodology to evaluate the candi-

dates of the model variables. As the application of the sta-

tistical technique to the variables’ evaluation, the princi-

pal component analysis (PCA) statistical method, used in

exploratory data analysis and for making predictive mod-

els [29], is employed for analyzing the error model that

related machining error and variables such as machining

conditions (depth of cutting, width of cutting, feed rate

of cutting, and rotational speed of spindle) and physi-

cal state values (cutting force and/or workpiece deforma-

tion). The correlation of machining conditions and phys-

ical state values with the machining error is considered

from a statistical perspective that can be used to select the

priority-related variables for a model formation. Based

on this idea, a systematic model construction procedure is

defined as follows:

1. Collecting candidates of model variables including

machining condition and physical state values when

considering an available process simulation.

2. Designing a preliminary experiment based on known

characteristics of material and cutting tool within the

capability of experiment load.

3. Evaluating candidates of model variables based on

the preliminary experiment.
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4. Formulating a process model using selected model

variables.

5. Identifying the process model based on the prelimi-

nary experiment.

6. Utilizing the identified model to predict the machin-

ing under different situations from preliminary ex-

periments.

3. Framework for Empirical Modelling of

Machining Error

Based on the defined procedures, we propose a mod-

elling framework to predict the machining error of elas-

tomer end-milling. The frameworks involving the error

prediction of complex physical phenomena for the man-

ufacturing process are based on the previously proposed

modelling concept [11]. The framework consists of two

phases: the identification phase and the estimation phase.

In the identification phase, limited preliminary experi-

ments were utilized to identify the process model. The

identifying model is used to predict actual machining sit-

uations that differ from preliminary machining experi-

ments. In order to design preliminary experiments, certain

knowledge of the characteristics of the workpiece mate-

rial and the cutting tool is assumed, including the cutting

force tendency, workpiece material characteristics, physi-

cal state values, and error generation mechanism. When a

new material and/or cutting tool is employed, basic trials

are necessary to grasp the characteristics. A schematic of

the framework for identifying and utilizing the machin-

ing error model is illustrated in Fig. 1. The variations

in workpiece materials and cutting tools are smaller than

variations in machining conditions and workpiece shapes.

Therefore, the framework was organized to achieve the

versatility of various machining conditions and workpiece

shapes.

In order to compensate for influences of machining

case variations, state values, including cutting force,

workpiece deformation, and machining conditions, are

used for constructing the error model. Because the in-

fluence of workpiece materials and cutting tools are not

considered in this framework, the parameter identification

process is required when a new cutting tool and/or work-

piece material is employed for the machining process. In

the identification phase, as demonstrated in Fig. 1(a), the

simplified preliminary experiments with the specialized

machining equipment [21] were executed. The instanta-

neous cutting force and workpiece displacement can be

measured simultaneously under different machining con-

ditions. Furthermore, a simplified workpiece enables the

evaluation of the machining error easily. The fundamen-

tal studies on machining have applied both a computa-

tional FEM and the experimental approach. For an ini-

tial effort of cutting force simulation, a standard discrete

cutting force model has been used. The conventional

cutting force model assumes that total cutting force can

be approximated as the sum of local cutting forces [22].

f , f

x, y

Fig. 1. Framework of machining error modelling.

The coefficients for the end mill are determined based on

the average force-based determination method for cutting

coefficients [30]. In order to investigate the error gen-

eration mechanism, measurements of the instantaneous

workpiece deformation have been conducted. A quasi-

two-dimensional cutting situation with a uniform fixture

effect is constructed for machining. Image processing is

employed to observe the actual displacements using a pre-

calculated calibration scale and origin [21]. From the ob-

servation, the displacements obtained can be used to es-

timate the mechanical properties for a FEM analysis to

simulate the workpiece deformation [28]. Based on pre-

vious research, the physical state values, such as the cut-

ting force and workpiece deformation, can be calculated

in principle. The model parameters for a deformation

analysis and cutting force prediction were determined us-

ing the data obtained from preliminary experiments. The

physical state values for every machining situation can be

calculated using the identified process models. Machin-

ing conditions, physical state values, and their combined

variables are the model variables of the machining error.

By utilizing preliminary experiments, candidate variables

were evaluated and selected. An empirical model of the

machining error is constructed based on the selected vari-
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ables. During the estimation phase, as shown in Fig. 1(b),

the machining error of the actual machining situations is

reasonably calculated based on the selected model vari-

ables and the identified machining error model.

4. Evaluation of Framework of Empirical

Model for Machining Error

4.1. Systematic Procedure of Evaluation

Framework

In order to appraise the proposed framework, the cut-

ting force model and workpiece deformation model must

also be estimated in principle. However, the evaluation of

a combined model becomes complex, and it is difficult to

find the problem when estimation is not moderately ap-

propriate. Hence, an independent evaluation of the ma-

chining error model is investigated as a fundamental eval-

uation of the machining error model. In case if the ma-

chining error calculated by the error model offers a good

agreement with the measured machining error, the evalu-

ation of the framework is equivalent to the evaluation of

the cutting force model and workpiece deformation model

that has been partially reported [21, 22]. Based on the in-

dependent evaluation of the machining error model, pre-

liminary experimental data for the workpiece deformation

and cutting force corresponding to the machining cases

that are different from the parameter identification case

are employed to calculate the machining error. Fig. 2

illustrates an outline of the evaluation procedure for the

error model. The candidates of the model variables are

selected through a PCA analysis, and a machining error

model is constructed as a linear model of the selected vari-

ables. The constructed error model coefficients are iden-

tified initially by the measured parameters, including the

cutting force, the workpiece deformation, the machining

conditions, and machining error. The responses of cut-

ting force and workpiece deformation in the constructed

model corresponding to the evaluation cases are substi-

tuted by the measured cutting force and the measured

workpiece deformation. By comparing the estimated ma-

chining error and the measurement machining error, this

error modelling is reasonably evaluated.

4.2. Experimental Setup and Configuration

In this stage, a high-speed steel endmill with a 6-mm di-

ameter and a two-flute straight blade edged with a 20-µm

roundness were applied on the machining center. Ure-

thane rubber shore A90 hardness is employed as elas-

tomer material because of its unique characteristics and

mechanical properties. In addition, there are significantly

difficult controlling chip separation and cutting phenom-

ena [4, 5]. The experiments have been conducted accord-

ing to our previous study [12, 23]. Fig. 3 represents a

schematic diagram of the configured experiment. The

workpiece shape and the machining conditions are rea-

sonably diversified and specified in Table 1.

f , f
x, y

Fig. 2. Evaluation of machining error model.

Fig. 3. Experimental configuration.

Concerning the experimental configuration, the work-

piece stuck on a metallic base which is seized together

with the dynamometer. The workpiece has been oper-

ated by the down-cutting method while a mirror is ap-

plied to observe the cutting behavior as a side view reflec-

tion during the machining process. Meanwhile, the work-

piece deformation is monitored by the recorded moving

images under the image processing method using a syn-

chronized transmitting trigger signal from a function gen-
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Table 1. Machining conditions.

W

D

R

F

A

H

L

W D R F A H L

Fig. 4. Machining behavior observation.

erator and a high-speed camera. Fig. 4 expresses the ob-

servation of the cutting behavior. A high-speed camera is

employed to record workpiece deformations at the quasi-

two-dimensional machining. From the recorded images,

workpiece deformations at representative points are mea-

sured by using visual tracking of the marker.

A schematic of the machining error measurement is

shown in Fig. 5. A non-contact laser displacement sen-

Fig. 5. Machining error measurement.

sor was utilized for measuring the machined workpiece

surface. The average difference between the idealized sur-

face and measured surface has been calculated. The syn-

chronized measurement points are extracted correspond-

ing to the machining error. The thickness of blank work-

piece that is attached to the metallic base has been mea-

sured before machining. In preliminary experiments, the

effects of the thickness of double-stick tape were evalu-

ated and confirmed based on their stability and unifor-

mity. The machined workpiece was removed from the

dynamometer after machining and placed on the measur-

ing equipment. Subsequently, a laser displacement sen-

sor with a spot size of 70 micrometers was used to scan

the machined elastomers. The surface of the metallic

base was used as the reference (datum) surface for ma-

chining and measuring, as shown in Figs. 3 and 5. By

comparing the before and after scanning thickness data of

blank workpiece and machined surface, machining error

has been estimated.

4.3. Evaluation of Machining Error Model

In order to evaluate the error model, machining experi-

ments of an elastomer end-milling with diverse machining

conditions were conducted to obtain the cutting forces,

workpiece deformation, and machining error. In the over-

all machining cases, the machining direction is down-

cutting. Preliminary experiments were initially conducted

to obtain data for model identification. The primary ma-

chining conditions are specified in Table 1(a). According

to acquired cutting force, workpiece deformation, and ma-

chining error, the PCA is instructed to recognize the pri-

ority relations of the machining conditions and physics-

based parameters that are important for constructing an

error model. A PCA has become a dimensional reduction

method for reducing the dimensionality of large datasets

by condensing a set of variables into a smaller variable

that preserves the amount of data. Although reducing the

number of variables in a dataset decreases the accuracy,

the method for achieving a dimensional reduction is to

trade a slight amount of accuracy for simplicity. In this

study, the following 18 components that can be utilized in
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Fig. 6. Principal component response.

an actual experiment were evaluated. There are multiple

numerical values to determine which parameters have a

significant influence.

1. Machining error (M.E.).

2. Workpiece conditions: width (A), height (H), and

length (L).

3. Machining conditions: rotational speed (R), feed rate

(F), width of cutting (W ), and depth of cutting (D).

4. Physical state values: displacement terms of neigh-

borhood point; (x), (1/x), (y), (1/y) and cutting force

terms at a surface generation moment; ( f x), (1/ f x),

( f x/x), ( f y), (1/ f y), ( f y/y).

Since some of the 18 variables have different units, a

standardization of the experimental data is conducted to

establish a certain standard that allows the numerical val-

ues between each condition to be used in common. Ini-

tially, standardization is employed as the first step of the

PCA procedures. Then covariance matrix, eigenvectors,

and eigenvalues are computed. The aim is to utilize the

feature vector formed using the eigenvectors of the co-

variance matrix to reorient the data from the original axes

to those represented by the principal components (PCs).

The total contribution rate of each PC is equal to 1, and the

data percentage can be rearranged. By ranking eigenvec-

tors in order of eigenvalues, in descending order highest to

lowest, the principal components in order of significance

are obtained. Fig. 6 shows a plot of the principal compo-

nent scores by comparing the first and second PCs (PC1

versus PC2). From the PCA plotting, there are variations

from every component in which the scores are not concen-

trated in one area, locally. The machining error is the tar-

get objective in which the principal component scores and

eigenvector can determine that the influence-related vari-

ables are displacement y, x; width of cutting W ; and feed

Table 2. Comparison of machining error results.

rate F . Width, height, and length (A×H ×L) are work-

piece conditions that should be avoided when applying

the error model to various workpiece shapes. Based on

the PCA approach, the influential variables are selected,

and the machining error model, called the Beta-model,

can be formulated for the hybrid machining conditions

and physics-based model as follows:

δ = β1x+β2y+β3W +β4F +β5 . . . . . (2)

where x and y represent displacements of the neighbor-

hood point, W represents the width of cutting, F repre-

sents the feed rate of the cutting, β1, . . . ,β5 are model co-

efficients, and δ is the machining error. Furthermore, the

correlation coefficients and multiple regression analysis

were applied to determine the coefficients of Eqs. (1) and

(2), respectively.

Subsequently, the machining conditions that vary from

the preliminary experiments were designed, as listed in

Table 1(b). Twenty-one machining condition cases were

prepared to evaluate the machining operations. The mea-

sured cutting force and workpiece deformation acquired

from the evaluation experiments were used to calculate

the machining error as the estimated error. The estimated

error can be compared with the measured machining er-

rors. A comparison of the calculated (estimated) error re-

sults and measured error results of the mentioned eval-

uation experiments (21 conditions with 3 cases of each

operation) is shown in Table 2.

Table 2 presents a comparison of the machining er-

ror results between the mechanistic model (α) and the

statistical model (β ). The average differences between

the measurement machining error and the estimation ma-

chining error of the proposed error models were approx-

imately 24.18% and 14.79%, respectively. These results

indicate that the proposed machining error models can be

reasonably predicted when physical state values are ap-

propriately predicted. Fig. 7(a) shows a comparison of

the machining error results obtained from the mechanis-

tic model. The error rates of both the maximum differ-

ence and distribution become large. Fig. 7(b) shows bet-

ter agreement with the different machining error rate pre-

dictions than Fig. 7(a), because the PCA-based variables

selection has been considered by the significant variable

component relationship.

5. Conclusions

In this paper, the statistical modelling of machining

error was investigated for predicting the elastomer end-

milling machining error by comparing the estimated ma-

chining error and the measured machining error. In or-
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(a) Compared error of the mechanistic model

(b) Compared error of the statistics model

Fig. 7. Comparison of machining error of proposed models.

der to show the model results more clearly, the proposed

mechanistic model and the proposed statistical model

were reasonably compared. Systematic procedures were

introduced as the modeling framework to construct and

identify this error model. From the experimental evalua-

tion, the feasibility of the proposed framework was con-

firmed. Using an appropriate statistical approach, it ap-

propriately became possible to construct an effective er-

ror model without human insights. From the case studies

of the machining error prediction, the proposed procedure

can guide the construction of a suitable error model in the

end-milling of the elastomer part.
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