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    In this paper, the spring-mass system model developed for simple numerical simulations of thin membranes is 
enhanced by taking into account the properties of buckling and creases. The model is applied to the numerical simulations 
of centrifugal deployments of folded square membranes that are small-scale models for solar sail spacecraft “IKAROS”. 
First the folding and deployment methods are reviewed. Then the formulation of the enhanced spring-mass system model is 
explained. Numerical simulations of the centrifugal deployments of two kinds of folded square membranes with different 
crease intervals are performed and the numerical results are compared with the corresponding experimental results. The 
deployment behaviors are discussed and the validity of the spring-mass system model is examined.  
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Nomenclature

E :  Young’s modulus of membrane 
 :  Poisson’s ratio of membrane 
  :  density of membrane 
h :  thickness of membrane 
S :  area of a triangular element 

iL :  side length of a triangular element 
im :  mass of a particle of a triangular element 

ik :  spring constant of a triangular element 
ij :  Kronecker delta 

crl :  buckling length of a spring 
 :  tuning parameter for buckling 
 :  tuning parameter for crease stiffness 
 :  contact penalty factor 
 :  angle of crease 

0 :  natural angle of crease 
J :  geometrical moment of area per unit width 
 :  damping ratio 
D :  air drag force acts on an element 

air :  density of air 

1.  Introduction 

  Deployable structures using membranes have been 
studied for the development of light-weight and large space 
structures. Especially, solar sails are attracting much 
attention in the US, Europe and Japan. In Japan, a solar 
power sail demonstration spacecraft “IKAROS” was 
developed by JAXA and was launched on May 21th, 2010 
by H-IIA launch vehicle.1,2) Fig. 1 shows an overview of 
“IKAROS” in space. The square solar sail with 20 meters 
in diagonal and 7.5 micrometers in thickness was 

successfully deployed by 
centrifugal force using no 
extendable booms. The 
deployment of the sail 
consists of two stages. In the 
first stage, four folded 
membrane strips are 
quasistatically reeled out. In 
the second stage, the strips 
are dynamically unfurled to 
be the square sail. Since 
ground experiments of the dynamic deployment are not 
possible, small-scale experiments and numerical analysis 
are necessary. The authors have conducted dynamic 
deployment experiments of the 2nd stage with small scale 
membranes similar to the IKAROS membrane in a vacuum 
chamber3). In this paper, a spring-mass system model, 
which is referred to as multi-particle model, is enhanced by 
taking account of the buckling, crease stiffness and the 
contact around creases to perform simulations of the 
deployment experiments. The numerical results are 
compared with the results of experiments to examine the 
validity of the simulations. 

2.  Folding and Deployment Method 

  The folding method of the solar sail of “IKAROS” is 
illustrated in Fig. 2. The square membrane is composed of 
four trapezoidal petals. The petals are accordion-folded to 
become long strips. Then four strips are connected to be a 
cross-like shape. The center of the membrane is attached to 
the spacecraft with tethers and the strips are reeled up around 
the spacecraft. The deployment proceeds in two stages. In the 
first stage, the strips are quasistatically reeled out to return to 
the cross-like shape by relatively rotating four guide bars 

Fig. 1.  Overview of “IKAROS”.
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around the spacecraft as shown in Fig. 3. In the second stage, 
the guide bars are instantaneously turned down and the petals 
are deployed dynamically as shown in Fig. 4.  

3.  Spring-mass System Model 

  The spring-mass system model simulates in-plain elasticity 
of thin membranes by a network of springs and masses and 
has been developed for simple and fast numerical simulations 
of dynamic behaviors of the membranes. A rectangular 
element was first developed4) to model square membranes and 
a triangular element shown in Fig. 5 was developed5) to 
discretize the membranes with arbitrary shapes. The 
spring-mass system model using triangular elements was 
extended by taking account of buckling, crease stiffness to be 
applied to the centrifugal deployment of a hexagonal 
membrane with spiral folding and the validity was 
confirmed6,7). In this paper, the model is enhanced further to 

simulate the deployment behaviors of the folded square 
membranes. 
3.1.  Triangular element5)

  In Fig. 5, E, , h and S represent Young’s modulus, density, 
thickness and area of the membrane element, respectively and 
Li (i=1,2,3) denote lengths of the sides of the triangle. The 
mass of the element hS is equally distributed to the lumped 
masses m1, m2 and m3. The spring constants ki are determined 
so that strain energy of the membrane and the potential energy 
of the springs coincide when the element is in one-axis stress 
states parallel to three sides and they are obtained by Eq. (1). 
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where  and ij denote Poisson’s ratio and Kronecker delta, 
respectively. Using this element, the models for buckling 
strength, crease stiffness, contact, damping and air drag are 
introduced as follows.

3.2.  Buckling model 
The restoring forces 

of the spring is assumed 
to become constant when 
the length of the spring is 
less than a critical value 
lcr as shown in Fig. 6. 
The critical value lcr is 
expressed using Euler 
buckling strength of a 
slender column as: 

              
i

icr L
hLl

12

22 ,                (2) 

where  is a parameter to adjust the buckling strength to 
actual membranes. 
3.3.  Crease stiffness and contact 

Two triangular elements ABC and ABD that contain a 
crease are considered as shown in Fig. 7. It is assumed that the 
crease generates restoring forces FC and FD on masses C and 
D according to the difference between angle  and natural 
crease angle 0. FC and FD are assumed to be orthogonal to 
the triangles and described as: 
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Fig. 6.  Spring force. 

Fig. 5.  Triangular element. 

 

Fig. 2.  Folding method. 

Make 4 trapezoids separately 

Accordion-fold into a strip 

Join four strips 

Wind up around a cylinder 

Turn guide bars down to release petals dynamically 
Fig. 4.  Second stage of deployment (dynamic). 

Restrict centrifugal 
deployment of petals by 

guide bars 

Slowly rotate guide bars around central 
body to reel out petals quasistatically. 

Fig. 3.  First stage of deployment (quasistatic). 

Guide bars
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where J=h3/12 denotes geometrical moment of area per unit 
width.  represents a penalty factor to take account of self 
contacts around the crease lines. FA and FB are concentrated 
forces acting on the masses A and B to cancel rigid-body 
motion of the triangular elements and described as: 
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3.4.  Damping and air drag 
  Velocity-proportional dampers are added parallel to the 
springs to take account of structural damping. The damping 
coefficient is described as mki2 , where  denotes 
damping ratio and 2/)( kj mmm  . The air drag force due 
to the residual air in the vacuum chamber which acts on an 
element is distributed to three masses. The force applied to a 
mass is approximated as  

2
air6

1 VSD n ,                 (5) 

where , V and Sn denote air density, the velocity of the 
mass and the area of element projected to the direction of the 
velocity, respectively. 
3.5  Equation of motion 
  The equations of motion of the system are described using 
rotating cylindrical coordinate system as 

 Tzr
T FrFrFzr

dt
dm ,2,),,( 2

2

2
 
  ,     (5) 

where Fr, F and Fz denote forces applied to the mass by the 
springs and creases, damping and air drag. These equations 
are numerically integrated by the Runge-Kutta method. 

4.  Numerical Results 

4.1.  Numerical model 
  Numerical simulations of the centrifugal deployment 
experiments are performed employing the spring-mass system 
model. Two models with different crease intervals are 
considered. The dimensions and material property of them are 
given in Table 1. Tip masses ace connected to four corners. 
Overviews of the numerical models 1 and 2 are shown in Figs. 
8 and 9, respectively. Simulation parameters used here are 
listed in Table 2. Both models have the same segmentation. 
Triangular elements are arranged along folding lines. The 
tethers are modeled by springs and masses. The contact 
between tethers and central spool is taken into account. The 
natural crease angle is set to zero for simplicity. The 
experimental models were creased hard and the angles are 
small but vary. The buckling parameter of springs which are 

not on creases is assumed to be 100 in accordance with the 
previous analysis for different folding method6,7) and other 
tuning parameters  on creases,  and  were searched by trial 
and error. In this paper, examples of numerical results with 
one combination of the tuning parameters are illustrated. 
4.2.  Numerical results 

Fig. 10 shows an example of membrane shapes obtained by 
the numerical simulations of model 1. Membrane shapes 
during the deployment are computed using the rotating 
coordinate system. Snapshots of the experimental model 1 
during the deployment taken by a spatially fixed camera are 
shown in Fig. 11. The numerical simulation captures the 
characteristics of the deployment behavior. The in-plane 

Table 2.  Simulation parameters. 
Number of masses 1980 
Number of springs 5432 
Number of elements 3456 
Natural crease angle 0 rad 
Buckling parameter  100 
Buckling parameter  on creases 1000 
Crease stiffness parameter  10 
Contact penalty factor  100 
Damping ratio 0.02 
Rotation speed 3 Hz 
Air pressure in chamber 4.5 Pa 

     (a) Deployed             (b) Before deployment 

Fig. 9.  Numerical model 2. 

Fig. 7.  Forces around crease. 

Table 1.  Properties of the models. 
Model No. 1 2 
Number of folding lines 7 3 
Outer width 455 mm 
Inner width 103 mm 
Thickness 7.5 m
Inner radius of stowed shape 25 mm 
Crease interval 22 mm 44 mm 
Young’s modulus of membrane 3.2 GPa 
Poisson’s ratio of membrane 0.34 
Density of membrane 1420 kg/m3

Tether length 47.8 mm 
Weight of tip masses 0.36 g 

   (a) Deployed           (b) Before deployment 

Fig. 8.  Numerical model 1. 
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(a) 0.0 sec (b) 0.05 sec (c) 0.1 sec (d) 0.2 sec (e) 0.3 sec 

(a) 0.0 sec (b) 0.05 sec (c) 0.1 sec (d) 0.2 sec (e) 0.3 sec 

(f) 0.4 sec (g) 0.5 sec (h) 0.6 sec (i) 0.7 (j) 0.8 sec 

Fig. 12.  Membrane shapes of numerical model 2 during deployment =1000 on creases, =10, =100). 

(a) 0.0 sec (b) 0.05 sec (c) 0.1 sec (d) 0.2 sec (e) 0.3 sec 

(f) 0.4 sec (g) 0.5 sec (h) 0.6 sec (i) 0.7 sec (j) 0.8 sec 

Fig. 13.  Membrane shapes of experimental model 2 during deployment. 

(a) 0.0 sec (b) 0.05 sec (c) 0.1 sec (d) 0.2 sec (e) 0.3 sec 

(f) 0.4 sec (g) 0.5 sec (h) 0.6 sec (i) 0.7 (j) 0.8 sec 

Fig. 10.  Membrane shapes of numerical model 1 during deployment =1000 on creases, =10, =100). 

Fig. 11.  Membrane shapes of experimental model 1 during deployment. 

(f) 0.4 sec (g) 0.5 sec (h) 0.6 sec (i) 0.7 sec (j) 0.8 sec 
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vibration, asymmetric deformations and folding lines observed 
in the experiment appear in the simulation although the 
asymmetric flexures are not so sharp as the experimental 
model. Figs. 12 and 13 shows the same comparison in the case 
of model 2. The numerical result is also qualitatively similar 
to experimental result. The membrane shapes during 
deployment are also asymmetric but the behavior is smoother 
than model 1 because the effect of creases are reduced.  
  Figs. 14-17 show the quantitative comparison of the 
numerical and experimental results. It is noted that the 
quantitative repeatability of the experiments is not high so that 
the accurate comparison between the experiments and the 
simulations is not adequate. Figs. 14 and 15 show the time 
histories of deployment rates in model 1 and 2, respectively. 
The deployment rate is the ratio of the averaged radius of four 
corners during deployment normalized by the radius of 
pristine membrane. In model 1, the radius of the numerical 
result during deployment is larger than the experimental result. 
This is probably because the buckling strength of the 
experimental model is slightly higher than the numerical 
model. On the other hand, in model 2, the deployment rates of 
both results are quite similar except that the increase of the 
deployment rate in the experiments starts late. 
  Figs. 16 and 17 display the phase differences between the 
membrane and the central spool for model 1 and 2, 
respectively. The phase difference is the average of rotation 
angles  of four corners relative to the spool as shown in Fig. 
18. Figs. 16 and 17 clearly demonstrate the in-plain vibrations 
of the membranes. In model 1, the initial amplitudes of the 
experiment and simulation almost coincide with the each other 
although the damping of the experimental model is larger. In 

model 2, the initial amplitude of 
the simulation is smaller and the 
damping of the experimental 
model is also larger. The period of 
the vibration is larger than model 
1 because model 2 with less 
folding lines is flexible than model 
1. It is noted that the membrane 
reaches full deployment when the 
phase difference becomes zero in 
both the experiment and the simulations.  
  Since the values of the tuning parameters are the same in 
model 1 and 2, the above results can be improved by tuning 
the parameter values in accordance with the crease intervals. 

5.  Conclusions 

  The validity of the spring-mass system model is 
demonstrated by conducting the simulations of centrifugal 
deployments of small accordion-folded square membranes. In 
the case of large membrane space structures like “IKAROS”, 
the ratio of thickness to the width is extremely small. The 
investigations of physical bases of the models for buckling 
and creases will be necessary to improve the accuracy and to 
find the method to determine the tuning parameter values for 
membranes with various dimensions. Detailed analysis of the 
on-orbit deployment behavior of “IKAROS” and the 
improvement of the accuracy of the small-scale deployment 
experiments are currently in progress8). Through these studies, 
the spring-mass system model will be a practical tool for the 
developments of membrane structures.  
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Fig. 14.  Comparison of deployment rate (Model 1). Fig. 15.  Comparison of deployment rate (Model 2). 

Fig. 16.  Comparison of phase difference (Model 1). Fig. 17.  Comparison of phase difference (Model 2). 

Fig. 18.  Phase difference.



Trans. JSASS Aerospace Tech. Japan Vol. 10, No. ists28 (2012)

Pc_72

References 

1) Mori, O., et.al: World's First Demonstration of Solar Power Sailing 
by IKAROS, The Second International Symposium on Solar Sailing, 
New York, NY, 2010. 

2) Sawada, T., et.al: Mission Report on The Solar Power Sail 
Deployment Demonstration of IKAROS, The 12th AIAA Gossamer 
systems forum, Denver, CO, USA, AIAA-2011-1887, 2011. 

3) Muta, A, Matsunaga, S. and Okuizumi, N.: High Vacuum 
Experiment of Spinning Deployment Using Scaled-down Model For 
Solar Sail, International Astronautical Congress, IAC-10-C2.5.4, 
Prague, Czech, 2010. 

4) Natori, M.C., Nakamura, F. and Okuizumi, N.: “Particle System 
Approximation for Dynamic Behavior of Membranes”, International 
Symposium on Space Technology and Science, 2006-c-11, 
Kanazawa, Japan, 2006. 

5) Miyazaki, Y. and Iwai, Y.: Dynamics of Membrane Deployed by 
Centrifugal Force, Space Engineering Conference, Tokyo, 
Japan,2005, pp.59-64 (in Japanese). 

6) Okuizumi, N., and Yamamoto, T.: Centrifugal Deployment of 
Membrane with Spiral Folding: Experiment and Simulation, Journal 
of Space Engineering, 2 (2009), pp.41-50. 

7) Okuizumi, N: “Deployment Dynamics of Membranes with Spiral 
Folding by Centrifugal Force”, 11th AIAA Gossamer systems forum, 
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics, and Materials Conference, Orlando, FL, 
AIAA-2010-2583, 2010. 

8) Shirasawa, Y., et.al:  “Analysis of Membrane Dynamics using 
Multi-Particle Model for Solar Sail Demonstrator "IKAROS", 12th

AIAA Gossamer systems forum, 52nd AIAA/ASME/ASCE/AHS/ 
ASC Structures, Structural Dynamics, and Materials Conference, 
Denver, CO, AIAA-2011-1890, 2011. 


