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In recent years, the use of robots has been spread-
ing to various fields. Further, requirements for the
use of robots are increasing. A method is therefore
necessary for allowing persons who are not experts
in using robots to actually operate a robot. We in-
tend to develop a method for robot operation whereby
a user need not have technical knowledge. In this
paper, we focus on methods whereby a user of a
robot assigns movement to the robot and the robot
reproduces movement. One of the most widely used
techniques that is used nowadays involves teaching
playback. Teaching playback is a method in which
a teacher moves a robot using controllers and lets
the robot record movement and then play it back.
Robots functioning via teaching playback cannot how-
ever adapt to a changing environment. The environ-
ment in which human beings live generally change.
Teaching playback is therefore not usable in variable
environments. Methods for generating movement ro-
bustly in environments have been studied. Design-
ing the movement of a robot by using these methods
cannot be done, however without understanding com-
plicated formulas. Only movement designers having
technical knowledge can use these techniques. We pro-
pose new knowledge of movement to solve the prob-
lems present in these methods. Knowledge of move-
ment is information involving the generation of move-
ment in a robot. In conventional methods, knowledge
of movement was a complicated formula. By using our
method, a robot incorporates knowledge based on in-
formation obtained by moving a robot just like in the
teaching playback method. We expect that by using
our methods a user can move a robot in the desired
manner.

Keywords: motion space, knowledge of movement,
method to express movement of robot, teaching playback

1. Introduction

In recent years, the development of robots that work in
an environment where human beings live, such as a home
or offices has increased. These environments include situ-
ations that are difficult to predict beforehand. It is thought
that a person using a robot at home may not have techni-
cal knowledge. We therefore intend to develop methods
for operating robots, wherein no expertise or a particular
skill set is required. In this paper, we focus on methods
that assign movement to a robot and allow the robot to
perform that movement.

One of the most widely used techniques currently be-
ing used is teaching playback [1]. Teaching playback is a
method in which the movement of an actuator is recorded
when a robot moves and this movement is played back
repeatedly later. A control panel called a teach pendant
is generally used for recording movement. We make a
robot repeat simple movements using this method. Nowa-
days, teaching playback is the method that is used in most
factories. A robot functioning using teaching playback,
however can perform only movement taught by a user.
Hence, a robot functioning using teaching playback has
difficulty in adapting to environmental change. A person
teaching movement to a robot therefore has to anticipate
every change in the environment, so using teaching play-
back in a changing environment is difficult.

We intend to develop a method for operating a robot ro-
bustly in a changing environment. There are some studies
on the intelligence of robots regarding this. In the field
of cognitive robotics [2, 3], various studies are conducted
on the intelligence of robots. Here, some methods have
been considered for designing knowledge to bring about
movement in a robot. There is a method, for example,
that uses a neural oscillator [4, 5]. Using this method, a
robot is synchronized with input for a neural oscillator.
The neural oscillator provides movement to the robot and
is not stopped by agitation. There is also a method that
uses attraction caused by an attractor [6, 7] for express-
ing the movement of a robot. Through these methods, a
robot is able to adapt to environmental change and is able
to execute a task flexibly. It is necessary, however, for a
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designer to design knowledge of movement before using
these methods. In these methods, a designer of movement
designs knowledge of movement using dynamic formu-
las, so only designers with technical knowledge can use
these methods. It is difficult for users who do not have
technical knowledge to design knowledge of movement
using these methods. There is, however, a method called
the Active Learning Method (ALM) for learning objec-
tive movement using trial and error, such as in reinforce-
ment learning [8]. Using this method, the controller of
the robot obtains the most suitable movement using past
information on movement that the controller acquired for
a database by using trial and error. As a result, the robot
obtains movement for achieving a certain purpose auto-
matically. When users operate robots by using the ALM,
however they must prepare an evaluation function. An
evaluation function is used for choosing movements that
are obtained by trial and error. Technical knowledge is
necessary, however, to design the evaluation function. It
is difficult for users who do not have technical knowledge
to do so. We thus consider a method that can generate
knowledge of movement by using a method such as teach-
ing playback. If such a method exists, a user without any
technical knowledge will be able to operate a robot with
an intelligent system. We therefore consider a method
in which a user can teach movement immediately like
in teaching playback. Further, this method should allow
robot to combine various information on movement into
one database on knowledge of movement.

The purpose of this study is to develop a new method
for expressing the movement of a robot. In this study,
we consider a method for expressing knowledge of move-
ment so that we can use a method such as teaching play-
back. Flexible movement can be achieved from this
knowledge of movement. In addition, we presume that
a user can handle knowledge of movement in a form in
which correction is easy.

We consider a method for acquiring knowledge through
teaching. We focus on the frequency of movement for ac-
quiring knowledge. When a user instructs a robot several
times, a slight difference appears in each movement. In
the case of a user who is not an expert in operating robots,
the difference is considered to be greater. During multiple
instructions, however, it is considered that the frequency
at which a robot assumes a state necessary for movement
becomes higher if the user targets one movement. If a
robot makes movement to take a frequent state using these
plural movements, a robot can generate a movement re-
quired by the user. It is considered that even a person
who is not very good at instructing can teach movement
through repeated instruction. We propose knowledge of
movement of the robot Motion Space.

In Section 2, we explain knowledge of movement and
propose Motion Space as a method descriptive of knowl-
edge of movement. In Section 3, we explain the method
for moving a robot using the knowledge of movement ex-
plained in Section 2. We propose a system that gener-
ates knowledge on the movement of a robot using Motion
Space and also generates robot movement. In Section 4,

Fig. 1. Frequency of movement. Movement has a path of
movement on the space of time and robot’s state. Frequency
of movement appears around this path in space. If one point
in space is near the path, the point has high frequency. High
frequency implies a high probability of movement.

we describe an experiment performed to determine the ef-
fectiveness of the system suggested in Section 3. We use
an actual robot and perform an experiment to teach and
reproduce movement. In Section 5, we summarize this
paper and discuss future work.

2. Motion Space

2.1. Knowledge of Movement
We focus on a method for expressing the movement of

a robot. We treat information on expressing how the robot
moves actuators to perform a movement as knowledge of
movement in a robot. If the environment does not change,
we can operate a robot by deciding the actuator’s output
beforehand. In an environment where human beings live,
however, changes inevitably occur. After an environment
has changed, the robot may not reproduce movement as
before. This is because the current environment differs
from the environment that the movement of the robot was
initially based on. Human beings can, however, perform
the same movement in a changing environment, so we
thought about the process involved in human beings for
generating movement. Human beings have information
on movement into their brain, and it is thought that they
generate movement using this information when they per-
form movement. We call this information knowledge of
movement. We suggest Motion Space as knowledge of
movement for a robot.

2.2. Concept of Motion Space
In this section, we consider a method for expressing

knowledge of movement. We describe the movement of
a robot using the probability of the state of the robot. We
presume that a user teaches the same movement to a robot
repeatedly. Because movement is taught manually, input
movement differs slightly each time. When the user col-
lects information on many movements performed by the
robot, a difference in frequency in movement is observed.
Fig. 1 shows frequency of movement. We consider fre-
quency to be related to the probability of the movement
of the robot. If the robot traces points of high frequency,
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Fig. 2. An example of Motion Space when the robot state
is at the first origin. The space is constructed using time and
the robot’s state as parameters. The robot’s state is the value
of the sensor or actuator. Motion Space is divided by time
and the robot’s state. Each part of divided Motion Space is
called a cell. A cell has the value of the selection frequency.

it generates the movement desired by the user. Load is ex-
erted on the robot when it changes its own state, however,
so the robot may turn over. It is therefore necessary to be
able to gradually update the state of the robot. The robot
can continue movement even if its posture is changed by
agitation.

2.3. Definition of Motion Space
In this section, we explain how knowledge of move-

ment is realized. We prepare a space comprising axis M
(M1,M2, . . . ,Ml) expressing the state of the robot, with
axis T expressing time and axis P expressing the value
of the selection frequency. The state of the robot is de-
termined by the values of the sensors or actuators. M is a
matrix expressing the state of the robot. When the number
of sensors and actuators is l, M comprises M1,M2, . . . ,Ml .

The selection frequency is the frequency at which
movement input into a robot passes in a space. The size
of Motion Space is determined by the time taken to teach
a movement, the number of actuators in the robot, and the
number of states of actuators. When there is one actuator
in a robot, for example, Motion Space consists of two di-
mensions. One dimension is for the actuator and the other
dimension is for time. We show an example of Motion
Space when the robot has one actuator in Fig. 2. When
there are two actuators in a robot, Motion Space consists
of three dimensions. Two dimensions are for actuators,
and one dimension is for time. Regardless of the number
of dimensions of Motion Space, we can express only one
movement as one orbit in Motion Space.

We divided Motion Space into parts and assigned se-
lection frequency to each part. We call each of these parts
a cell. We express the cell address of the Ml axis in il and
the T axis in t, so the selection frequency is represented by
p(t, i1, i2, . . . , il). Each cell has one selection frequency.

Fig. 3. Outline of the system using Motion Space.

3. Method for Operating Robots Using Motion
Space

3.1. Outline of a System Using Motion Space
In this section, we propose a system for moving a robot

using Motion Space. First, we explain the cycle of oper-
ation using our system. A user teaches movement in our
system through a robot. The system collects information
on input knowledge on movement and records it. Next,
the user sends a command for movement generation to
the system. The system generates robust movement using
recorded knowledge.

We proposed Motion Space as knowledge of movement
in the previous section. We divide our system into two
parts. One part involves creating knowledge from input.
We call this part knowledge creation. The other part in-
volves generating movement from the knowledge created.
We call this part movement generation. Fig. 3 shows
an outline of our system. The knowledge creation part
creates knowledge of movement using input from a user.
Created knowledge is used for movement generation. The
movement generation part helps operate the robot through
knowledge of movement. Knowledge of movement is
transfered from the knowledge creation part to the move-
ment generation part. This knowledge of movement is
Motion Space.

3.2. Knowledge Creation Part
The knowledge creation part converts information on

movement to knowledge of movement. A change in ac-
tuator level indicates information on movement. A user
moves the robot and instructs a movement. The system
then converts the movement into a form of Motion Space.
The system adds the knowledge of movement to Motion
Space where conventional knowledge of movements was
recorded. By repeating this process, knowledge of move-
ment tends toward movement desired by a user. We treat
changes in the actuator level of a robot in a period of time
as one movement of a robot.

Next, we explain the process for the knowledge cre-
ation part. Fig. 4 shows the structure of the knowl-
edge creation part. When the system obtains data on the
robot’s movement, the system obtains the robot’s state at
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Fig. 4. Details of the system around the knowledge creation
part.

all times. The system obtains the robot’s state from the
robot’s sensors. At this time, the system converts the
robot’s state to selection frequency. The system calcu-
lates the values of selection frequency for all cells and
these selection frequencies are placed in temporary Mo-
tion Space. A cell nearer to input movement is assigned
a higher selection frequency. The selection frequency in
temporary Motion Space takes the shape of a mountain
with its center as input movement. The selection fre-
quency of the movement is calculated using Eq. (1).

ut,i =
C

r +1
. . . . . . . . . . . . . . (1)

ut,i is the selection frequency of a cell with step t and
robot state i in temporary Motion Space. C is the max-
imum value of the selection frequency in each cell, which
is obtained by creating knowledge once. r is the number
of cells from the center cell nearest to input movement.
r is an integer from 0 to �q/2�. q is the number of cells
that add selection frequency once, and q must be an odd
number. The calculated selection frequency in temporary
Motion Space is integrated with master Motion Space.
Eq. (2) is the selection frequency in temporary Motion
Space integrated with cells of master Motion Space.

pt,i← pt,i +ut,i . . . . . . . . . . . . (2)

pt,i is the selection frequency of a cell with step t and
robot state i in master Motion Space. When the system
starts, the selection frequency in all cells pt,i is 0. The user
adds the knowledge of movement to this Motion Space re-
peatedly. Selection frequencies are piled up in sequence
in Motion Space. This Motion Space is used in the move-
ment generation part.

3.3. Movement Generation Part
The movement generation part operates a robot using

knowledge created by the knowledge creation part. The
system generates movement depending on the state of the
robot. While the system generates movement, it simulta-
neously checks the state of the robot. In this study, the
system monitors the state of each actuator of the robot,
which is regarded as the state of the robot. The system
compares actual movement with ideal movement of the
robot and generates the next movement to obtain ideal
movement. Actual movement is movement that the sys-

Fig. 5. Details of the system around the movement genera-
tion part.

tem obtains from the sensors of an actual robot. Ideal
movement is movement that is desired by the user of the
robot. When the system generates movement, the system
gradually brings the state of the robot close to an ideal
state. A user decides the degree of approach so that load
does not affect the robot too much. Fig. 5 shows the struc-
ture of the movement generation part.

Here, we explain the process of how the system gen-
erates the robot’s movement. Before the user of a robot
begins operation, parameters that influence a robot are
determined. To gradually change a robot’s state, virtual
acceleration movement in Motion Space is used. In this
part, the State Point has a weight m and every cell has an
attraction. The State Point moves because of acceleration.
The user of the robot decides the range of candidate cells
r depending on the robot. This is decided so that minimal
load is exerted on the robot. When the robot moves, the
system checks the present state of the robot and calculates
the next state every ΔT seconds.

We explain the calculation cycle for every step. First,
the system calculates the attraction power for the State
Point. The State Point shows the current state of the robot.
The system checks the selection frequency of cells within
the range of r in the row of the next step and decides the
direction in which power is added next. The center of
range r is a position of the State Point in the row of the
next step of calculation. The system chooses a target cell
having the highest selection frequency from this range r.
Fig. 6 shows the process involved in choosing a target cell.
The system calculates attraction power aaat based on the
chosen cell. We consider attraction power to be higher
when the distance between the State Point and target cell
is longer and the selection frequency of the target cell is
higher than those of surrounding cells. Eq. (3) calculates
the power of the attractor.

Ft = kt × (NNNt+1−MMMt) . . . . . . . . . . (3)

Ft is the power of the attractor in step t. kt is a compari-
son of the values of the selection frequency target cell and
surrounding cells. This comparison is achieved by using
Eq. (4). NNNt+1 is the robot’s state at step t + 1. MMMt is the
current state of the robot, witch is obtained from sensors.

kt =
pt,max
n

∑
i=1

pt,i

×α . . . . . . . . . . . . (4)

pt,i is the selection frequency of cell time t and robot state
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Fig. 6. Process for choosing a target cell. A target cell is
chosen from the range of candidacy of target cell r. A target
cell has the highest selection frequency in range r.

Fig. 7. Method for calculating virtual speed of the State
Point. The State Point is attracted by the cell that has the
highest selection frequency. The State Point is accelerated
and attains a new speed.

i. pt,max is the selection frequency of the target cell. α is
the value that decides the balance between the power of
distance and the power of difference in height.

Next, the system calculates acceleration for the State
Point based on a calculated attractor. The system accel-
erates the State Point and changes the robot’s state for a
moving robot. The State Point has a virtual speed and
moves in Motion Space. The system changes this virtual
movement by providing acceleration to the State Point.
Fig. 7 shows the process involved in changing virtual
movement by adding acceleration. Eq. (5) calculates vir-
tual acceleration.

aaat =
kt × (NNNt+1−MMMt)

m
. . . . . . . . . . (5)

aaat is acceleration for the State Point in step t. m is the
virtual weight of the State Point.

Finally, the system calculates the state the robot aims
at based on the accelerator. The system calculates speed
vvvt+1 of the ball at time t +1 using Eq. (6).

vvvt+1 = vvvt +ΔT aaat . . . . . . . . . . . . (6)

vvvt is the virtual speed of the State Point in step t. ΔT is
the time taken to move the robot from the previous step to
the current step. The system calculates the targeted state

Fig. 8. Structure of the robot in this experiment (left) and
appearance of this robot (right). The gray motor on the left
in this figure is the motor used in this experiment.

of the robot at step t +1 using Eq. (7).

MMMt+1 = MMMt +ΔTvvvt+1 . . . . . . . . . . (7)

MMMt+1 is the matrix that expresses the desired state of the
robot. The system repeats calculation at each step.

4. Experiment for Teaching Movement to
Actual Robots

4.1. Summary of this Experiment
In this section, we summarize an experiment to move a

robot using the system proposed in this paper. Through
this experiment, we show that a system using Motion
Space is suitable for generating robot movement. We
discuss two experiments performed. First, we validate
whether the robot can form Motion Space using the pro-
posed system. Next, we check whether the robot can gen-
erate movement robustly using Motion Space formed in
the previous step. In this experiment, we use an actual
robot. The actual environment is suitable for confirming
the usefulness of the proposed system. We describe the
robot used in this experiment in Section 4.2 and describe
the method for investigating robustness in Section 4.3.

4.2. Experiment Settings
First, we describe the robot used in this experiment.

We use a humanoid robot called Speecys. The physical
structure and appearance of Speecys is shown in Fig. 8.
In this experiment, we use the robot on a stand. We use
only one servomotor as the robot state. Expansion to a
multi-input and multi-output system is easy to do for this
system. If we can apply the system to a robot having a
single input and single output, we can apply this system
to a robot having multi-input and multi-output. We there-
fore experiment on a robot having single input and single
output. We place the servomotor on the right shoulder of
the robot. The placement of the servomotor is shown in
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Fig. 9. Movable range of the servomotor used in this ex-
periment. This graph is a summary of the sagittal plane of
the robot in Fig. 8. The servomotor on the right shoulder
moves between −120◦ and 120◦. The angle decreases when
the robot moves the arm forward, and vice versa.

Table 1. Parameters used in this experiment. All symbols
described correspond to parameters.

Parameter Symbol Value
Moving time [s] – 10.0
Step size of time [s] ΔT 0.5
Step size of angle [deg] ΔM 12.0
Number of cells that add selection
frequency

q 11

Number of candidate cells r 9
Virtual weight of State Point m 0.07
Inclination factor α 1.0
Maximum value of selection frequency C 1.0

Fig. 8. In this experiment, we treat the servomotor angle
as the robot state. The servomotor moves between−120◦
and 120◦ (Fig. 9). The smallest unit of angle is 0.1◦. We
adjust the robot so that only the right arm moves.

Next, we explain parameters of Motion Space and the
system used in this experiment. Table 1 lists parame-
ters. Moving time is the time between the start and end
of movement. Step size of time is a time interval divided
into cells. Step size of angle is an angle interval divided
cells. Number of cells that add selection frequency is the
number of cells that the system adds selection frequency
to. Number of candidate cells is the number of cells in
the target cell range. Virtual weight of the State Point is
a virtual value that decides the ease of State Point move-
ment. Inclination factor is a value that decides the bal-
ance between power of distance and power of difference
in height. Maximum value of selection frequency is the
maximum selection frequency given to a cell once. Ta-
ble 1 also lists symbols corresponding to parameters. Val-
ues in this table were used in this experiment. Using this
setting, time is divided by 21 and the motor angle is di-
vided by 20. Motion Space is composed of 420 cells.

4.3. Experiment Procedure
In this paper, we perform two experiments. First, we

perform an experiment to generate Motion Space. Using
the human hand, we input three movements to the pro-

posed system through a robot. Using the human hand,
information is provided on three different movements. In-
formation is also provided on each movement in the sys-
tem. By comparison with input data, we confirm that Mo-
tion Space is formed by the proposed system.

Next, we perform an experiment to generate movement
using Motion Space. We investigate two points here. One
is whether the proposed system generates movement ro-
bustly. The other is whether the proposed system gener-
ates the movement desired by the user of the robot. The
robot is considered to return to the movement desired by
the user when the state of the robot is changed by ag-
itation if the system can generate movement firmly. In
this experiment, we therefore decide that the state of the
robot changes at 0 s. We operate the robot five times and
change the initial state each time. Five initial angles are
used for the servomotor of the robot and the type of move-
ment generated by the proposed system from those states
is checked; 0◦ is the original state and −120◦, −60◦, 60◦,
and 120◦ are changed states. The first state is assumed
to be the original movement and the other four states are
assumed to be changed by agitation. In addition, we com-
pare output to the average of input and check whether the
movement desired by the user is achieved.

4.4. Experiment for Making Motion Space
In this section, we perform an experiment to generate

Motion Space. First, we obtain input data from the actua-
tor of the robot. Information is provided on three different
movements using input through the human hand. Next,
we make an index of the robot movement desired by the
user using these inputs. Finally, we validate the Motion
Space generated by the proposed system.

Figures 10, 11, and 12 show the results of this experi-
ment. Input data provided through the robot are shown in
Fig. 10. The horizontal axis represents time and the ver-
tical axis represents the motor angle of the robot. Three
input data points have a region where they are near and
far from each other. The region where each movement
value is near to each other is movement that is strongly
required by the user. These inputs for the proposed sys-
tem are shown in Fig. 10.

Figure 11 shows the average and standard deviation of
input. The region where standard deviation is small is
where there are few differences in input. Such a trend
appears near 0 s, which is the beginning of movement,
from 3 s to 5 s, and near 10 s. We use the average and
standard deviation shown in Fig. 11 as an indicator of the
movement desired by the user.

Figure 12 shows Motion Space generated by using in-
formation on the three movements shown in Fig. 10. The
value of selection frequency is expressed by the density of
the color. The lighter cell color, the higher the selection
frequency. Fig. 12, shows that cells having a high selec-
tion frequency appear in the region of 0 s, which is the
beginning of movement, the region from 3 s to 5 s, and
in the region of 10 s. This trend is in accordance with the
trend in the amount of standard deviation of input. Motion
Space was therefore formed as expected.
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Fig. 10. Input angles for the robot, i.e., Input01, input02,
and input03. Input includes some unevenness because these
are input manually.
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Fig. 11. Average and standard deviation of input in Fig. 10.
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Fig. 12. Map of selection frequency in Motion Space in
this experiment. This is a map that expresses the height of
the selection frequency of all cells in Motion Space after the
input shown in Fig. 10. The height of the selection frequency
is expressed by the density of color. The darker the color, the
lower the selection frequency.

4.5. Experiment for Generating Movement Using
Motion Space

In this section, we perform an experiment for gener-
ating movement using Motion Space as described in Sec-
tion 4.4. We investigate whether the proposed system gen-
erates movement robustly and whether it is movement de-
sired by the user of the robot. First, we operate the robot
using Motion Space. Its movement starts using five ini-
tial angles: −120◦,−60◦, 0◦, 60◦, and 120◦. We compare
these outputs and the average and standard deviation of
the input in Fig. 10.
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Fig. 13. Output angles of the robot. The IA (initial angle)
in captions are initial angles of the robot that generate move-
ment from Motion Space. IA −120, for example, is a trace
of the change of angles of the motor when the motor’s initial
angle is −120◦ .
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Fig. 14. Output angles and average input in this experiment.
The output angle is the case when the starting angle is 0◦
(IA 0 in Fig. 13). Average is the average shown in Fig. 11.

Figures 13 and 14 show the results of this experiment.
Fig. 13 shows the movement starting from the five initial
angles. Each movement gradually approaches movement
starting from 0◦. The five movements converge in one
movement at 3 s. In movement with an initial angle of
120◦ (IA 120), the angle of the motor overshoots. This
overshoot is controlled by value of the virtual weight of
State Point m. The appropriate value of m depends on the
robot to which it is being applied in this system. In this
experiment, we allow the robot to move violently, but we
can also operate the robot slowly by adjusting certain pa-
rameters. When the initial angle is −120◦ (IA −120), the
robot stops during the first 0.5 s because of the absence
of cells with a higher selection frequency in the range of
r. r is the number of cells in the range of candidate cells.
In a case where the initial angle is −60◦ (IA −60), a dif-
ference in movement is observed from 6.5 s to 8 s, as
seen in Fig. 13. In this case, the servomotor is stopped
by reception error in current angle data at 6.5 s. In this
experiment, hardware problems sometime occur because
we use an actual robot. If the system receives an abnor-
mal value, the servomotor that sends the abnormal value
is stopped for safety reasons by the system. The servomo-
tor then restarts movement at 7 s. At 8 s, this movement
is an stable as the other movement.

Finally, we compare input and output in Fig. 14, where
“IA 0” is output with an initial angle of 0◦ in Fig. 13 and
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“average” is the average and standard deviation of input.
The standard deviation range is an indicator of the accu-
racy of output. The system generates movement where
standard deviation is large. The system generates move-
ment more closely where standard deviation is small. This
means that the system begins robot operation closely in
the region where the demand of the user is clear. There are
some places, however, where output is outside of the stan-
dard deviation range. This is because the system gener-
ates movement considering the previous state of the robot.
Robot movement that the user requests is performed gen-
tly so that the robot does not receive an excessive load.
In this experiment, we set the parameters of the system.
The farther the State Point is away from the target cell,
the higher the attraction power. Hence, like the area from
3 s to 5 s in Fig. 14, the robot state may be more attracted
even if standard deviation is large. We regulate the power
balance using the distance and size of the selection fre-
quency changing α value.

5. Conclusions

In this paper, we have proposed “Motion Space,” a
method for expressing robot movement. This method of
expression enables robot movement to be generated based
on the idea of attracting motion. We have explained how
to use Motion Space in a robot. We have explained the
system that uses Motion Space. We divided our system
into two parts. The first part is the knowledge creation
part, which creates Motion Space based on robot move-
ment. The other part is the movement generation part,
which generates robot movement based on Motion Space
and sensor input. We then applied this system to the robot
to show how the robot is operated by using our method.
The system has been able to reproduce movement that the
user has desired. Further, the robot has moved regardless
of its state when it starts moving.

We have compared this method with other methods.
Using this method, we have operated the robot in the man-
ner that likes teaching playback. Using this method, the
robot has generated movement robustly because the robot
acquires knowledge based on movement taught by Mo-
tion Space. We do not need to use complicated dynamic
formulas for designing movement such as those needed in
methods to design knowledge and learning methods such
as ALM. Motion Space incorporates information on past
movement and saves it. We have thus realized the knowl-
edge of movement that we wanted.

Based on the above results, we have considered the
type of robot that is suitable for this method. We can
use Motion Space method as a technique such as teach-
ing playback in factories. Specifically, we think that this
method will be effective in a factory where a product often
changes. In addition, Motion Space is available for au-
tomating the operation of a radio control robot, for exam-
ple: when the signal from an operator is cut off, the robot
returns to the operator using past operation data saved in
Motion Space.

In future work, we will treat various sensors as the state
of the robot. Using sensor information on the knowl-
edge of movement, it will become easy for a robot to
learn movement adapting change of environment. It is
necessary to consider a method for effectively expressing
Motion Space with little information because big Motion
Space is necessary for learning the exact movement in our
method.
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