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A B S T R A C T   

Temperature-at-depth estimation is important for assessing supercritical geothermal resources. Bayesian rock- 
physics modelling of electrical resistivity is effective for estimating temperatures at depth. In this study, we 
improved a previously proposed Bayesian framework and demonstrated its effectiveness by estimating subsur-
face temperatures in the Kakkonda geothermal field, Japan. The proposed framework allows the estimation of 
either effective porosities or salinities in addition to temperatures; further, we were able to constrain the possible 
states of the crustal fluid at depth based on the estimates. The estimated 3D temperature structure was consistent 
with available deep temperature logs. Furthermore, the estimated results suggest the existence of a magmatic- 
hydrothermal system at depth in the field.   

1. Introduction 

Geothermal resources situated at a considerable depth and high 
temperature are often called supercritical or superhot geothermal re-
sources, as they may contain crustal fluid in supercritical condition 
(Dobson et al., 2017; Reinsch et al., 2017). These resources are attractive 
because of the high enthalpy of fluids present in them, which can 
generate a high amount of electricity (Dobson et al., 2017; Reinsch et al., 
2017). Supercritical geothermal resources have been confirmed in Ice-
land (Elders et al., 2014; Friðleifsson et al., 2017) and may exist in 
several other locations worldwide (Okamoto et al., 2019). Evaluating 
the high temperature distribution and its characteristics is important to 
assess the potential of supercritical geothermal resources. However, as 
the number of wells that can be obtained at depth in a possible 
geothermal system is limited, a suitable method to evaluate temperature 
at depth based on observations is required. 

Temperatures at depth can be estimated based on micro seismic 
events (Tosha et al., 1998; Tanaka and Ishikawa, 2002; Zuza and Cao, 
2020) as well as geochemical analysis of hydrothermal minerals 

(Browne et al., 1978; Tole et al., 1993) and their fluid inclusions (Baker 
and Goldstein, 1990; Beauchampset al., 2021). In addition, the cali-
bration of hydrothermal simulations provides the spatial distribution of 
temperatures that match observations (e.g., temperature and geophys-
ical logs, and geophysical data) (O’Sullivan et al., 2001; Jalilinarabady 
et al., 2011; Gunnarsson et al., 2011). However, the temperatures 
inferred from micro seismic events and geochemical analysis are limited 
to the depth interval (e.g., the lower limit of micro seismic events) and 
surface or borehole samples, respectively. Hydrothermal simulation 
requires detailed geological and geophysical data, such as the spatial 
distribution of physical parameters in the constitutive equations and 
boundary conditions. Moreover, the calibration of hydrothermal simu-
lations based on observations is a very time-consuming task. Spatial 
interpolation of temperatures, such as that performed in the kriging 
approach (Sepúlveda et al., 2012), has been a versatile method for un-
derstanding the spatial distribution of temperatures. However, its 
effectiveness is limited to depth values where temperature logs are 
available. 

Subsurface resistivity distribution is estimated in geothermal fields 
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using magnetotelluric (MT) surveys (Mogi and Nakama, 1993; Heise 
et al., 2008; Tseng et al., 2020; Ardid et al., 2021a). Because temperature 
influences the bulk resistivity of rocks (Olhoeft, 1981; Kummerow and 
Raab, 2015; Nono et al., 2020), resistivity distribution from MT surveys 
could elucidate the temperature distribution at different depths in 
geothermal fields. Machine-learning frameworks have been proposed to 
estimate temperatures from the resistivities acquired through the MT 
method for geothermal applications. For example, a neural network has 
been used to estimate temperatures at depth by training the relationship 
between temperatures, resistivities, and locations in available wells 
(Spichak et al., 2013; 2015; Ishitsuka et al., 2018; 2021). 

The Bayesian framework have been applied as another machine- 
learning strategy to utilise resistivity for estimating the deep tempera-
ture around the IDDP-2 well in Reykjanes, Iceland (Hokstad and 
Tänavsuu-Milkeviciene, 2017). Bayesian frameworks have helped 
quantify and reduce uncertainty when modelling multi-datasets for 
estimating shallow features in geothermal fields (Ardid et al., 2021a; 
2021b). Ishitsuka et al. (2021) proposed a Bayesian rock-physics 
modelling to estimate deep temperatures using resistivity obtained 
from the MT method, available temperature logs, and the geological 
boundary that controls the temperature pattern. The method was 
applied to a natural-state simulation model of the Kakkonda geothermal 
field in Japan (Ishitsuka et al., 2021). Bayesian frameworks has also 
been applied for deep temperature estimation in the upper mantle 
(Afonso et al., 2016; Qashqai et al., 2018). Most of these Bayesian 
frameworks consider a rock-physics model to link temperatures and 
geophysical observations, enable the incorporation of geological char-
acteristics, and determine the range and probabilities of parameters. 
Therefore, compared to a neural network framework, which struggles to 
elucidate the underlying basis on which the estimates are derived, 
Bayesian framework is advantageous for the estimation of temperatures 
at depth because the underlying assumptions and geological scenario 
considered for the analysis are apparent. Despite the advantages of the 
Bayesian framework, analyses of the characteristics of the method 
through applications in geothermal fields are limited. Furthermore, it is 
not necessarily clear how we can incorporate prior assumptions and/or 
possible geological scenarios into the Bayesian framework, especially for 
deep geothermal systems. 

In this study, we improved the Bayesian rock-physics modelling 
proposed by Ishitsuka et al. (2021) and applied it to the Kakkonda 
geothermal field in northern Japan (Fig. 1a) to constrain temperature, 
effective porosity and salinity at depth. In particular, we considered a 
spatial continuity of temperature and examined the case where 
pore-fluid salinity is treated as a variable, which had not been addressed 
by Ishitsuka et al. (2021). The Kakkonda geothermal field is one of the 

largest and most active liquid-dominated geothermal system in Japan 
(Kato et al., 1993; Doi et al., 1998; 2000). In the field, a Quaternary 
tonalite pluton named the Kakkonda granite is present below the Ter-
tiary formations that comprise a productive reservoir (Fig. 1b). The 
WD-1a well penetrated the Kakkonda granite and showed a high tem-
perature gradient of about 0.32 ℃/m and a maximum temperature of >
500 ◦C measured at a depth of 3729 m (Ikeuchi et al., 1998) (Fig. 1c), 
indicating that the Kakkonda field potentially comprises supercritical 
geothermal resources. 

2. Methodology 

2.1. Inverse modelling to estimate physical parameters based on resistivity 

The rock-physics model expresses the relationship between the 
observed resistivity, γ, and the physical parameters θ (e.g., effective 
porosity and temperature of a discretised block). 

γ = fRPM(θ) + ε (1)  

where fRPM represents the rock-physics model and ε is the random error 
that describes the accuracy of the observation and the rock-physics 
model. We used the modified Archie’s equation by Glover et al. 
(2000) as the rock-physics model in equation 2: 

γ = γr(1 − ϕ)− (log(1− ϕm)/log(1− ϕ))
+ γf ϕ

− m (2)  

where γr and γf are the resistivity of dry rock and pore fluid, respectively. 
m represents an exponent indicating the rock pore connectivity. Glover’s 
equation considers both rock matrix and pore-fluid resistivity and is 
widely applied to interpret measured resistivities in hydrothermal sys-
tems in volcanic areas (Aizawa et al., 2009). Water-saturated rock re-
sistivity is controlled by pore-fluid resistivity (Archie, 1942), whereas 
rock matrix resistivity slightly influences the observed resistivity when 
the effective porosity is very low. 

For the dry rock resistivity (γr), we used the experimental resistivity 
values of granite up to a temperature of 800 ◦C (Olhoeft, 1981) (Fig. 2a). 
The experimental model shows that the resistivity decreases exponen-
tially with increasing temperature. The pore fluid was assumed to be 
NaCl–H2O, which can mimic magmatic fluid (Weis et al., 2012; Scott 
et al., 2015; Afanasyev et al., 2018). The NaCl–H2O resistivity (γf ) used 
in this study is based on experimental data of Sinmyo and Keppler 
(2017), which depends on salinity (c), pressure (p) and temperature (T). 
The γf resistivity model is based on experiments at temperatures be-
tween 100 to 800 ◦C, pressures between 0 to 1 GPa, and salinities be-
tween 0.01–1 M (0.056–5.6 wt%) (Sinmyo and Keppler, 2017). Using 

Fig. 1. (a) Location of the Kakkonda geothermal field. (b) Geological map of the Kakkonda geothermal field along a NW-SE cross section (based on Kato et al., 1996). 
(c) Reference natural-state temperature log (solid line) and observed temperature log (dotted line) along WD-1a well. 
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the rock-physics model (Fig. 2b), assuming that the pore fluid is 
NaCl–H2O, the physical parameters constitute five components: tem-
perature, effective porosity, pressure, salinity, and the exponent m. More 
details on implementing the rock and NaCl–H2O resistivities are pre-
sented in the Supplementary Material (Text S1). 

Estimating temperatures at depth based on resistivity has the 
following characteristics: (i) Non-uniqueness, as resistivity can be 
interpreted based on multiple temperature states and physical quanti-
ties. (ii) Ill-posedness, since five physical parameters cannot be esti-
mated from resistivity without assumptions. To address these issues, we 
propose the following processing steps (Fig. 3): Step 1 involves the 
estimation of 1D temperatures and either effective porosities or salinities 
at depth by using Bayesian rock-physics modelling. Pressure, the expo-
nent m of the rock-physics model, and either effective porosity or 
salinity are fixed in this 1D estimation (Fig. 3). By conducting the 1D 
estimation first, we mitigate the need for identifying numerous param-
eters for 3D estimation. To mitigate the non-uniqueness of temperature 
estimation from resistivity, the interpolated temperatures obtained from 
temperature logs were used to constrain the temperature above the 
upper boundary of the Kakkonda granite or at an elevation of − 2000 m 
(with the upper boundary being deeper than an elevation of − 2000 m), 
and temperatures below the boundary were estimated using Bayesian 
rock-physics modelling. This estimation is therefore an extrapolation of 
the temperature at depth based on the resistivity rock-physics model. In 
contrast, effective porosities or salinities were estimated at all depth 
intervals in this processing step. Although we used the interpolated 
temperatures as deterministic values in this study, the uncertainty in the 
interpolation could be considered and incorporated into a prior distri-
bution of temperatures at the boundary, if available. Step 2 involves the 
estimation of a 3D temperature structure with spatial connectivity by 
fixing effective porosity and salinity based on the estimates obtained at 
step 1 (Fig. 3). In this step, the temperature estimates obtained in step 1 
were the initial values used for sampling, and posterior probability 
distributions of the estimates were used as prior distributions of the 3D 
estimates. 

2.2. Modelling using Bayes rule 

In the Bayesian framework, the parameters and observations are 
represented by probability distribution functions (PDFs). The PDF of the 
estimated parameters, which represents the objective of the inversion, is 
denoted as the posterior PDF of the physical parameters according to 
available observations, P(θ|γ). The value corresponding to the highest 
PDF is termed the maximum a posteriori (MAP) estimate. We used the 
MAP estimate as a representative value because it arises most 
frequently. The posterior PDF in the Bayesian framework is defined by 

the likelihood, P(γ|θ), and prior PDF, P(θ). 

P(θ|γ)∝P(γ|θ)P(θ) (3) 

P(γ|θ) represents the fit between the model outputs fRPM(θ) and ob-
servations γ, given the estimates of the physical parameters θ. P(γ|θ)
includes the effects of both observation errors and forward model un-
certainties. P(θ) expresses uncertainty of the estimated parameters 
before any observations are made. Hence, P(θ) is controlled by expert 
knowledge of the estimated parameters. In this study, we used the 
likelihood function such that the discrepancy between observed re-
sistivity and estimated resistivity follows a Gaussian distribution with a 
mean value of zero and the standard deviation of σr. 

As P(θ|γ) is rarely solved analytically, it was assessed by sampling 
using a MCMC algorithm. An MCMC algorithm allows the sampling of an 
unknown probability distribution with known PDFs by an ensemble of 
chains using a stochastic process (Gelman et al., 2013). We used the 
No-U-Turn (NUTS) sampler with dual averaging (Hoffman and Gelman, 
2014). This sampling method extends the Hamiltonian Monte Carlo 
(HMC) algorithm (Neal, 2011), which samples a chain based on a 
fictitious Hamiltonian dynamic. The HMC algorithm is superior to the 
existing MCMC algorithms such as Metropolis (Metropolis et al., 1953) 
and Gibb’s sampling (Geman and Geman, 1984) with regard to its effi-
ciency for suppressing random-walk behaviour; however, costly tuning 
runs are required to determine the optimal value of hyper parameters. 
The NUTS sampler with dual averaging allowed us to determine the 
optimal values automatically. For checking convergence, we used the R̂ 
criterion (Gelman and Rubin, 1992) (Text S1). We used the Stan sta-
tistical package (version 2.19.2) (Carpenter et al., 2017) to implement 
the proposed Bayesian framework. 

2.2.1. Depth models for 1D estimation of temperature, effective porosity, 
and salinity (step 1) 

To constrain the search ranges of the two parameters (temperature 
and either effective porosity or salinity), we introduced the vertical 
correlations of each parameter as depth models. Regarding the tem-
perature depth profile, deep locations where there are supercritical 
geothermal resources may exhibit thermally conductive properties 
because of low permeability. Actually, WD-1a reference temperatures 
below an elevation of − 2350 m revealed thermally conductive proper-
ties (Fig. 1c). We thus modelled deep temperature by estimating a 
constant temperature gradient in the vertical direction. As an alternative 
option, vertical heat transfer by advection may be applied as a deep 
temperature model (Bredehoeft and Papadopulus, 1965) in the area 
where advective temperature profiles are expected. 

For depth models of effective porosity and salinity, we parametrised 
the value using a state-space model of depth (Commandeur and 

Fig. 2. Example of resistivity of (a) granite and (b) NaCl–H2O as a function of temperature. In (b), resistivity was calculated with the method by Sinmyo and Keppler 
(2017) by assuming a salinity of 0.1, 1.0, 5.0, or 10.0 wt.% and pressure of 20 or 60 MPa. 
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Koopman, 2007). The state-space model in this study used the Cauchy 
distribution for the state equation and the Gaussian distribution for the 
observation equation (Kitagawa, 1987, 1996) (Text S1). The Cauchy 
distribution is a heavy-tailed distribution wherein outliers occur more 
frequently compared to the Gaussian distribution. Therefore, the 
state-space model has been used to express abrupt changes in the regular 
trend (Kitagawa, 1996; Kitagawa and Matsumoto, 1996), and can thus 
be used to express a complex effective porosity or salinity pattern with 
different depths. We then compared two cases of model combinations. 
Case A was used as a priori (fixed) value for salinity based on geological 
assumptions, and effective porosity was estimated using the state-space 
model. Case B was used to fix effective porosity in the Kakkonda granite 
and estimate salinity using the state-space model. 

The underlying idea of cases A and B is based on the phase diagram of 

the NaCl–H2O system. As the geologic environment above a magma 
chamber is considered to exhibit a high pressure and temperature, the 
exsolving magmatic fluid is assumed to be a single-phase fluid (Hein-
rich, 2007). As this magma-derived fluid ascends toward the surface, the 
pressure and temperature decrease gradually. Case A corresponds to the 
assumption that the magmatic fluid ascends without phase separation 
and salinity could be fixed as a constant through different depths. Case B 
may be a simple approximation of a result of the phenomena that the 
phase separates into a low-salinity/low-density vapour and a 
high-salinity/high-density liquid. Considering the phase diagram of the 
NaCl–H2O system (Driesner and Heinrich, 2007; Driesner, 2007), the 
phase separation takes place when the pressure and temperature con-
dition intersect the vapour + liquid coexistence surface, which is the 
boundary between a single-phase fluid and vapour + liquid coexistence 

Fig. 3. Description of the processing steps: Step 1 conducts 1D (vertical) estimation of temperatures and either effective porosities or salinities using the proposed 
Bayesian framework. Temperatures are estimated only at depth below the geological boundary, using the interpolated temperature derived from temperature logs as 
the boundary condition for shallow areas. Effective porosities or salinities are estimated at all depth ranges. Step 2 estimates the 3D temperature structure with spatial 
continuity from the series of 1D temperature estimates obtained in step 1. 
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region. This phase separation causes the spatial variation of salinity in a 
magmatic-hydrothermal environment (Weis et al., 2012; Weis 2015; 
Scott et al., 2015, 2017; Afanasyev et al., 2018). Therefore, in case B, 
salinity should be a variable with a certain freedom, while effective 
porosity is fixed to make the inverse problem tractable. The parameters 
of the two cases are listed in Table S1. We note that our estimation did 
not solve the phase separation process and the two cases do not neces-
sarily correspond to the temperature-pressure-salinity state of the phase 
diagram. In addition, to avoid the confusion about the term supercritical 
geothermal resources, we note that the deep geothermal resources can 
contain a single-phase supercritical and/or multiphase fluids, though 
the supercritical fluid is defined as a single-phase fluid in supercritical 
condition (Liebscher and Heinrich, 2007). 

2.2.2. Temperature model for 3D estimation (step 2) 
The spatial continuity of temperature can be expressed by the 

requirement of temperatures of neighbouring pixels being similar. In 
Bayesian rock-physics modelling, this requirement can be expressed by 
assuming that the difference in temperatures of neighbouring grid cells 
follows a Gaussian distribution with a constant variance and zero mean, 
which is termed the Gaussian conditional auto regressive (Gaussian 
CAR) model (Banerjee et al., 2015) (Text S1). In the 3D estimation, we 
set σr prior to the Bayesian modelling. The σr value can be tuned to show 
the spatial continuity of temperature. If σr is low, the estimated tem-
perature will be almost equal to the 1D estimation, and there will be 
spatial discontinuities. In contrast, if a high σr value is used, spatially 
continuous temperatures can be estimated. By setting σr as a priori in-
formation, a spatially continuous temperature can be estimated. How-
ever, σr needs to be determined by trial and error. The examination of σr 
by application to real data is described in Text S3. The processing step 
parameters are listed in Table S2. 

3. Implementation of the model in the Kakkonda geothermal 
field 

3.1. Kakkonda geothermal field 

The Kakkonda geothermal field is located in northern Honshu, Japan 
(Fig. 1a). The Tertiary formations comprise andesite tuffs, sandstone, 
and slate (Fig. 1b). The productive reservoir lies in the Tertiary forma-
tions. A Quaternary tonalite pluton named the Kakkonda granite is 
below the Tertiary formations (Fig. 1b). The New Energy and Industrial 
Technology Development Organization (NEDO) drilled the WD-1a well 
to a depth of 3729 m (approximately − 3020 m a.s.l) (Ikeuchi et al., 
1998) (Fig. 1b). The well encountered the Kakkonda granite at − 2150 m 
a.s.l. The temperature at the well bottom was estimated to be 500–510 
◦C using temperature melting tablets (Ikeuchi et al., 1998) (Fig. 1c). In 
the temperature profile of the WD-1a well, the temperature shows a 
convective pattern in the Tertiary formations, whereas the temperature 
pattern becomes conductive in the Kakkonda granite (Ikeuchi et al., 
1998) (Fig. 1c). Kasai et al. (1998) found fluid inclusions with 
high-salinity in the WD-1a well, whereas the shallower part of the 
geothermal field is dominated by meteoric water. The high salinity at 
depth indicates that brine was trapped in pores and grain boundaries of 
minerals in the granite that originated from the solidification of magma 
(Kasai et al., 1998). Therefore, magmatic fluids may exist inside the 
Kakkonda granite. 

3.2. Input and validation data preparation 

Resistivity data were estimated using three-dimensional inversion 
analysis of MT data, which were obtained using previous geothermal 
surveys (NEDO, 1990, 1999; Uchida et al., 2000) and a recent super-
critical geothermal resource project (Yamaya et al., 2021). Full imped-
ance tensor values of 15 periods with durations between 0.0667 and 
909 s were obtained at 74 stations (Fig. S2) that covered an area of 7 km 

(NS) × 13 km (EW) centred around the Kakkonda power plant; these 
values were inverted using the magnetotelluric inversion program 
WSINV3DMT (Siripunvaraporn and Egbert, 2009). The estimated re-
sistivity structure of the best-fit model was characterised using a 
conductive anomaly (<10 Ωm) corresponding to the upper central part 
of the Kakkonda granite (Fig. 4). 

For the temperatures above the Kakkonda granite, we used the 
interpolated temperatures derived using the method in NEDO (2019) 
and Akatsuka et al., (under review) (Text S2). Temperature logs along 
the WD-1a well were used to evaluate the accuracy of the proposed 
methodology; as these were partly influenced by geothermal produc-
tion, we corrected them based on fluid inclusions obtained from well 
cuttings/cores and surrounding natural-state temperature logs; subse-
quently, the corrected temperature log was used as the reference for the 
well (Fig. 1c). For validation, we also used the temperature log along 
Well-21, which is located approximately 1100 m southeast of WD-1a 
(Ikeuchi et al., 1998). Well-21 also penetrated the Kakkonda granite, 
where a conductive temperature pattern was also observed (Ikeuchi 
et al., 1998). As the temperature log along Well-21 was also affected by 
geothermal exploitation, we corrected it based on fluid inclusions and 
surrounding natural-state temperature logs. 

As described in Section 3.1, the temperature within the Kakkonda 
granite shows a conductive temperature gradient, whereas the forma-
tions above and at the periphery of the Kakkonda granite show 
convective temperature profiles. The depth of the upper boundary of the 
Kakkonda granite along the wells was determined from the existence of 
Kakkonda granite and thermal metamorphic minerals identified in the 
drill cuttings. We used a kriging interpolation to calculate the spatial 
distribution of the upper boundary depth of the Kakkonda granite. The 
shallowest depth of the geological boundary is an elevation of approx-
imately − 500 m around the centre of the analysed area, and it deepens 
towards the periphery. 

The lower and upper depth limits of the analysed area were selected 
to be − 0.5 km and − 2.7 km, respectively (Fig. 4). As the pore-fluid re-
sistivity model was constructed up to 600 ◦C for the highest salinity, we 
set the lower depth limit to where the interpolated temperature was 
about 600 ◦C. For the upper depth limit, the depth was chosen to be 
deeper than the low resistivity zone due to the influence of clay min-
erals. Horizontally, the selected area is 4.35 km long in the EW direction 
and 4.05 km long in the NS direction, based on the geological boundary 
of the Kakkonda granite (Fig. 4). Resistivities and interpolated temper-
atures were discretised with a horizontal spacing of 150 m and a depth 
spacing of 50 m. Therefore, the number of grid cells in the EW and NS 
directions are 29 and 27, respectively, and 44 in the vertical direction. 

3.3. Prior distributions and assumptions 

A prior PDF was chosen as some externally defined quantity, based 
on a plausible geological scenario and/or a geophysical limitation. 
Effective porosities should be greater than 0 and may be less than 0.3 in 
the target depth interval. Therefore, we assigned a uniform distribution 
from 0 to 0.3. For the temperature gradient, we used a normal distri-
bution with a mean of 0.35 ◦C/m and a standard deviation of 0.035. 
When salinity was regarded as a variable, we set the value to be positive. 
For the parameters that cannot be constrained from geological and 
geophysical viewpoints (e.g., variance), we used Student’s half-t distri-
bution as a prior PDF of the non-geophysical parameters as recom-
mended in Gelman (2006). 

The compilation of published fluid inclusion data suggests that the 
salinity of the pristine magmatic fluid is 2–10 wt% (Heinrich, 2005). In 
case A, we fixed the salinity profile, with the maximum value of 6 wt% as 
an average of the possible range of the pristine magmatic fluid (Fig. S3). 
On the other hand, in case B, effective porosity was fixed at 0.035, which 
is an average of the measured porosity of the Kakkonda granite 
(0.022–0.043) (Fujimoto et al., 2000). We used 1.5 for the exponent m of 
the rock-physics model (Eq. (2)) and compared the estimated result with 
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those obtained with m = 2. We assumed a lithostatic pressure with a 
rock density of 2600 kg/m3. Considering that the observed temperatures 
show a change in the thermal conduction pattern at a depth slightly 
below the top of the granite (e.g., Fig. 1c), we set the boundary between 
interpolated temperatures and Bayesian estimation as 200 m below the 
top of the Kakkonda granite. 

4. Results 

4.1. Evaluation of 1D estimation using well data from WD-1a 

We first evaluated our method of 1D estimation (step 1) using the 
WD-1a reference temperature log (solid line in Fig. 1c). As the result of 
the estimation, the maximum R̂ values in cases A and B were 1.07 and 
1.13, respectively, which suggests that the MCMC samplings converged 
sufficiently. The MAP estimates and the credible interval at 95% along 
the well are shown in Fig. 5. The percentage errors of the estimated 
temperatures in the Kakkonda granite were 0.8% and 3.5%, respectively 
(Fig. 5). Because of the good agreement, we concluded that both cases 
enable the estimation of temperature-at-depth distribution with good 
accuracy. In contrast, estimated effective porosities and salinities were 
different between the cases. In case A, estimated effective porosities at 
different depths were <~0.02; this value was smaller than the fixed 
effective porosity of 0.035 in case B (Fig. 5). The estimated salinity in 
case B was <~3 wt%, whereas the fixed maximum salinity of 6.0 wt% 
was used in case A (Fig. 5). Regarding the exponent m, estimated tem-
peratures when m = 1.5 were similar to those when m = 2.0, whereas 
the estimated porosities when m = 1.5 in case A were lower than those 
when m = 2.0 (Fig. S4). As the measured porosity of WD-1a rock core 
samples below an elevation of − 2300 m was 0.022–0.035 (Fujimoto 
et al., 2000), m = 1.5 may be a more appropriate assumption compared 
to m = 2.0. 

4.2. Estimation of temperature, effective porosity, and salinity distribution 
in the Kakkonda field 

To confirm the convergence of the MCMC computation, we checked 
whether R̂ values of each 1D estimation were lower than the threshold 
(R̂< 1.4). Because the R̂values in 95.9% of the locations (751 horizontal 
grid cells out of 783 (27 × 29)) in case A and 99.0% of the locations (775 
horizontal grid cells out of 783 (27 × 29)) in case B were lower than 1.4 
(Fig. S5), we considered that the MCMC calculations sufficiently 
converged and the estimates were statistically reliable. Furthermore, in 
cases A and B, the differences between MT resistivities and resistivities 
calculated by our analysis were small (< ± 0.05 Ωm) (Fig. 6), indicating 
the parameters were properly estimated. The computational cost of the 
temperature estimation was approximately 30 min per 1D estimation 
when a personal computer with four AMD EPYC 7502P CPUs was used. 
Therefore, it took 392 h to conduct the calculation for all grid cells (i.e., 
27 × 29 horizontal grid cells in total). 

The cross sections of temperature-effective porosities (case A) and 
temperature-salinity (case B) were mapped and presented in Fig. 6. The 
cross sections enable an understanding of the general trend of the spatial 
temperature distribution; for example, in the central and eastern parts of 
the study area, the high temperature (>400 ◦C) region was estimated to 
exist at shallower depths (Fig. 6). The cross sections of estimated 
effective porosities in case A show that the background of effective po-
rosities in the analysed area was low (<0.03), whereas relatively high 
effective porosities (>0.1) were estimated in accordance with low re-
sistivities (<10 Ωm) (Fig. 6a). In contrast, the cross sections in case B 
show that the low resistivity region corresponds to high salinity (>15%) 
around the bottom of the analysed area (Fig. 6b). 

The estimated 3D temperature structure derived from the Gaussian 
CAR model is shown in Fig. 7. After testing the σr values 0.01, 0.05, and 
0.1, we selected σr = 0.05 as an optimal value (Fig. S6 and text S3). The 
computational cost of the 3D temperature estimation was approximately 
26 h. Compared with the WD-1a reference temperature, the percentage 
errors below an elevation of − 2350 m (below the upper boundary of the 

Fig. 4. Resistivity obtained using the MT 
method along the elevation of − 2 km (a), EW 
cross section (b), and NS cross section (c). The 
location of the cross section (a) is plotted using 
black dashed lines in (b) and (c), whereas the 
locations of (b) and (c) are plotted using black 
dashed lines in (a). The black rectangle in (a) 
indicates the area analysed, and the white 
dashed lines in (a) indicate the locations of the 
cross sections provided in Fig. 6. The black 
square and circle in (a) indicate the locations of 
the Kakkonda power plant and WD-1a well, 
respectively. The location of the section in 
Fig. 1b is plotted using a pink dashed line in (a). 
The white dashed lines in (a) indicate the sec-
tion shown in Fig. 6. The coordinates in the EW 
and NS directions are based on the Japan 
Geodetic Datum 2011 No.10 (reference coor-
dinate: longitude = 140.83333 and latitude =
40.00000).   
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Kakkonda granite) were 1.0% (Fig. 7c) and 4.8% (Fig. 7e) in cases A and 
B, respectively. For further validation, we also calculated the percentage 
error by performing a comparison with the temperature log along Well- 
21. The percentage errors along Well-21 were 4.7% in case A (Fig. 7d) 

and 3.6% in case B (Fig. 7f) below an elevation of − 1900 m. The results 
show a good agreement as these temperatures were estimated without 
referring to the deep temperature logs. The estimated temperature 
patterns mostly follow the shape of the Kakkonda granite (Fig. 7a and 

Fig. 5. Estimated temperatures and effective porosities/salinities along the WD-1a well in case A (a) and B (b). The black lines indicate reference temperatures along 
the WD-1a well, and red, blue, and orange lines represent the MAP estimates of temperatures, effective porosities, and salinities, respectively. Red, blue, and orange 
areas indicate the 95% credible interval of the estimated parameters. Brown horizontal lines indicate the upper boundary of the Kakkonda granite. Error percentages 
of (a) and (b) were 0.8% and 3.5%, respectively. 
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Fig. 6. (a) Case A: The series of 1D estimates of 
estimated temperatures, effective porosities, MT 
resistivities, and differences between observed and 
estimated resistivities along sections I (I-1, I-2, I-3, 
and I-4), II (II-1, II-2, II-3, and II-4), and III in Fig. 5 
(III-1, III-2, III-3, and III-4). (b) Case B: The series of 
1D estimates of estimated temperatures, salinities, 
and differences between observed and estimated 
resistivities along the same sections. White solid and 
dashed lines in I-1, I-2, II-1, II-2, III-1, and III-2 
represent the geological boundaries and the 
− 2.05-km elevation, along which the temperature 
was estimated using spatial interpolation and the 
Bayesian framework. We used a scientific colormap 
by Crameri et al. (2020).   
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7b), which corroborates that the Kakkonda granite is a heat source. 

5. Discussion 

In case A, our result demonstrates that the effective porosity in-
creases with depth at a deep part of the low-resistivity region (Fig. 6a). 
This estimation does not agree with the general trend in which perme-
ability decreases with depth (Manning and Ingebritsen, 1999). However, 
in a magmatic-hydrothermal system, the permeability increase may be 
interpreted because of the pore pressure increase associated with 
exsolving magmatic fluid. Using a numerical simulation, Weis et al. 
(2012) and Weis (2015) demonstrated an increase in pore pressure due 
to the release of magmatic fluids in a ductile region; subsequently, 
permeability increases approximately 5–10 fold due to the increase in 
pore pressure. High temperatures (500–600 ℃) were registered in areas 
where the estimated porosity increases with depth, and the lithostatic 
pressure condition is comparable with the numerical setting used in 
Weis (2015). Thus, the permeability/porosity increase at depth, pro-
posed by Weis et al. (2012) and Weis (2015), can explain our estimated 
effective porosity distribution. 

In case B, high salinity was inferred around the bottom of the ana-
lysed area (Fig. 6b). Studies of fluid inclusions showed that the devel-
opment of a high salinity (>20wt%) often occurs in the proximity of the 
fully or partially crystalline magmatic heat sources (e.g. Roedder, 1971, 
Hedenquist and Lowenstern, 1994; Simmons and Browne, 1997), and it 
is considered to be the result of condensation and/or boiling of 
single-phase magmatic fluid. Therefore, our estimated salinity distri-
bution can be interpreted as the result of the phase separation of 
magmatic saline. As it has been shown that the magnitude of salinity 
concentration is controlled by several geological factors, including fluid 
release temperature and magmatic fluid salinity (Afanasyev et al., 
2018), the estimated salinity distribution could be used to constrain the 
magmatic-hydrothermal system by using it to calibrate a numerical 
simulation. As the NaCl–H2O resistivity model used in this study has 
been validated only up to a salinity of 5.6 wt%, we could not obtain a 
quantitative magnitude of salinity with confidence; however, our results 
imply high salinity (>15 wt%) may exist in the Kakkonda granite. 

Furthermore, because the saline resistivity model has been validated 
mainly with a single-phase fluid, validation in multiphase (e.g., vapour 
+ liquid coexistence) conditions could be a future research topic. 

Notably, although we fixed either effective porosity or salinity in the 
two cases, both parameters could be variable in a real situation wherein 
a mix of the cases is observed. For example, in the low resistivity region, 
effective porosity is high and salinity is moderate/low in a shallow part 
of the granite (like in case A), whereas salinity is high and effective 
porosity is moderate/low in a deep part (like in case B). Treating 
effective porosity, salinity and temperature as variables in our Bayesian 
framework will be difficult as all the parameters will not be estimated 
with an acceptable amount of uncertainty. Analysis strategies for such a 
case where more variables are to be estimated would be a future 
research topic. 

Conductive anomalies at deep locations are sometimes linked with 
silicate melts (e.g., Heise et al., 2010; Aizawa et al., 2014; Samrocket al., 
2021). Around the Kakkonda field, the location of magma is not well 
known and is difficult to infer because temperature and pressure con-
ditions to generate silicate melts (i.e., the liquidus curve) as well as its 
mobility highly depend on the water content dissolved in melts (Holtz 
and Johannes, 1994; Holtz et al., 2001). Nevertheless, we consider un-
likely that granitic melts exist in the analysed area because at least a very 
high pressure (~500 MPa) and high water content (~10 wt%) are 
required to form melts under the temperature conditions around the 
bottom of the analysed area (~650 ℃) (Holtz et al., 2001). 

The existing (shallow) geothermal reservoirs in the Kakkonda field 
comprise a meteoric-origin fluid with low salinity. One possibility that 
links the gap between the observed low salinity at shallow locations and 
the estimated high salinity at deep locations is that magmatic fluid is 
trapped in the Kakkonda granite. According to previous numerical 
simulations of the NaCl–H2O system, the halite precipitation occurred 
because the phase separation of the NaCl–H2O system leads to perme-
ability loss and could trap the magmatic fluid (Afanasyev et al., 2018). In 
addition, silica precipitation due to quartz solubility reduction is ex-
pected, especially in the Kakkonda granite (Saishu et al., 2014), and may 
trap the magmatic fluid. 

Fig. 7. 3D temperature structures in the analysed area in case A (a) and case B (b). The analysed area corresponds to the black rectangle in Fig. 4. The semi- 
transparent surface overlying the temperature structure represents the upper boundary of the Kakkonda granite. (c)− (f) Comparison of the MAP estimates of the 
3D processing (red lines) and reference temperatures (black dashed lines) along WD-1a and Well-21 in case A (c, d) and case B (e, f). For (a) and (b), we used a 
scientific colormap by Crameri et al. (2020). 
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6. Conclusions 

Using a Bayesian framework, this study constrains temperatures, 
effective porosities, and salinities at depth in the Kakkonda geothermal 
field, Japan, based on MT resistivities. The estimated temperatures 
follow available deep temperature logs and support the geological 
interpretation that the Kakkonda granite is a heat source. The two cases 
we investigated demonstrated that there are still uncertainties, espe-
cially with regard to effective porosity and salinity distribution; these 
uncertainties depend on the geological scenario. Despite this, our results 
suggest the existence of a magmatic-hydrothermal system at depth in the 
Kakkonda geothermal field. 

The limitation of this approach is its requirement for information 
regarding a geological boundary of the rock body that serves as the heat 
source and the conductive temperature pattern within the rock body. 
However, even where geological boundary data are not available, the 
proposed Bayesian estimation can be applied to depths if the 
temperature-at-depth profile shows a thermally conductive pattern. 

Bayesian framework estimates parameters with great certainty using 
an adequate number of observations and certain assumptions. However, 
data at depth in a geothermal field are often limited. The observations 
and assumptions used in this study can be applied to a typical 
geothermal area. Our results suggest that Bayesian rock-physics 
modelling is effective in estimating temperatures and constraining 
effective porosity and salinity distribution at depth, even with limited 
data and assumptions. 
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Elders, W.A., Friðleifsson, G.Ó., Pálsson, B., 2014. Iceland Deep Drilling Project: the first 
well, IDDP-1, drilled into magma. Geothermics 49 (1). https://doi.org/10.1016/j. 
geothermics.2013.08.012. 
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