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Abstract 

 
Machining is a method that important to the manufacturing process in the industry. 

Productivity and product quality are always concerned with significant issues in 

manufacturing technologies. Modern manufacturing aims to improve the machining accuracy 

and efficiency of parts and products. However, machining variables involve the complex 

machining phenomena that usually generates process limitations and reduces product quality. 

Machining error is one of responsiveness in complex machining phenomena. It has directly 

influenced by varying cutting conditions, workpiece shape, material characteristics, cutting 

force, and workpiece deformation. Therefore, a reliable method for predicting machining 

errors is essential to solving these requirements. 

 

Small-lot production has attracted attention in the new tendency of manufacturing. Due to 

the changing consumer behavior, the personalized, high-quality, and technology trends 

require the service of direct-to-consumer manufacturing. Product prototype and mould 

making for mass production are regarded as small-lot production that suitably serves by 

milling process. On the other hand, end-milling is also a capable method for direct operating 

on parts or products with a large variety of materials. This method does not require expensive 

and time-consuming preparation. This research deals with a machining error modelling for 

the end-milling of elastomer material because it's uniquely elastic deformation, crack 

generation, and difficult to control machining error. Conventional control method of 

machining error in elastomer end-milling has been studied with a limitation because most 

machining services of the elastomeric parts are based on enterprise-dependent dexterities or 

know-how. Therefore, this material has been selected to be a case study in this research. 

 

In order to secure machining accuracy and control the phenomenon, this dissertation 

proposes the machining error models through a systematic framework for machining error 

modelling. In the framework, the candidates of model variables are evaluated based on the 

preliminary experiments. Candidate variables are the cutting conditions and physical state 

variables such as workpiece deformation and cutting force. The proposed models are 

constructed by conventional data-centric approach, mechanistic knowledge-based approach, 

and principal component analysis (PCA) based statistical approaches. The correlation 
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coefficient and multiple regression method are employed to compute the model's coefficient 

and form the linear regression model. Three different models: the conventional cutting 

condition model, mechanistic model, and statistical model are constructed. At the statistical 

model construction, a proposed systematic procedure to determine the effective variable is 

utilized. Afterward, the models are investigated by using larger experimental cases as the 

evaluation experiment. From the experimental results, the models could generate a 

comparison between calculated and measured machining errors. In addition, the statistical 

model provides relatively good agreement. Therefore, it could be confirmed the proposed 

machining error modelling. 

 

Keywords: Machining error, Complex machining phenomena, Small-lot production, 

Elastomer end-milling, Conventional control method, Mechanistic knowledge-based, 

Statistical approach 
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概要 

 
 機械加工は、製造業における部品製造プロセスにとして重要な加工方法です。生産性と製

品品質は、常に製造技術の重要な課題として考えられてきました。現代の製造業は、部品や

製品の加工精度と効率を向上させることを求められています。機械加工プロセスには、複雑

な加工現象が含まれ、多くの場合ではプロセスの制約が発生し、製品の品質が低下します。

加工誤差は、複雑な加工現象の代表的なもののひとつであり、切削条件、工作物形状、材料

特性、切削抵抗、工作物変形などの変化に影響されます。したがって、これらの要件を解決

するには、加工誤差を予測するための信頼できる方法が不可欠です。 

 

新たな製造業のトレンドとして、小ロット生産が注目されています。消費者の行動の変化に

より、個人化された高品質の製品が求められる傾向が高まり、消費者と直結した製造サービ

スが提案されています。また、大量生産のための製品試作や金型製作も、エンドミル加工に

よって実現される小ロット生産といえます。エンドミル加工は、多種多様な材料を使用した

部品や製品を直接加工するための有効な方法です。この加工方法は、費用と時間のかかる金

型の準備を必要としません。この研究では、柔軟弾性体のエンドミル加工における加工誤差

モデリングを扱います。これは、柔軟弾性体が独特の弾性変形特性と亀裂の発生形態を有

し、加工誤差の制御が難しいためです。柔軟弾性体エンドミル加工における加工誤差の従来

の制御方法は、柔軟弾性体部品の機械加工サービスを提供する企業のノウハウに依存し、体

系的な研究は十分なされていません。したがって、本論文は、提案する加工誤差モデル化手

法の対象として柔軟弾性体のエンドミル加工を対象とすることにしました。 

 

加工精度を確保し、加工プロセスを制御するために、本論文では、加工誤差モデリングのた

めの体系的なフレームワークをもとにした加工誤差モデルの構築手法を提案します。提案

するフレームワークでは、モデル変数の候補は予備実験に基づいて評価されます。候補とな

るモデル変数は、切削条件と、工作物の変形や切削抵抗などの物理的状態変数です。提案さ

れたモデルは、従来のデータ中心のアプローチ、経験的な知識を基にしたアプローチ、およ

び主成分分析（PCA）を基にした統計的アプローチによって構築されます。モデルの係数を

計算し、線形回帰モデルを形成するために、相関係数と重回帰法が採用されています。従来

の切削条件ベースモデル、経験的モデル、統計ベースモデルの 3 つの異なるモデルが構築

されます。統計モデルの構築では、有効変数を決定するために提案された体系的な手順が利

用されます。その後、評価実験としてより大きな実験事例を用いてモデルの妥当性を評価し
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ます。実験結果は、提案手法により構築されたモデルを用いて計算された加工誤差と測定さ

れた加工誤差の比較に用います。比較の結果として、提案手法を基にした統計ベースモデル

は実験結果と最も良好な一致を示しました。以上の結論として、提案された加工誤差モデリ

ング手法の妥当性を確認することができました。 

 

 

キーワード：加工誤差、複雑な加工現象、小ロット生産、柔軟弾性体エンドミル加工、モデ

ルベース加工誤差制御、統計的アプローチ
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1. Introduction 

 

This chapter will provide an initiative to the study by first discussing the research background 

and context, followed by the purpose of the research and its outcome. Afterward, the structure 

of the dissertation will be expressed. 

 

 

1.1 Background of Research 

1.1.1 Manufacturing processes in modern production  

Manufacturing is a critical part of any economy, whether still developing or already advanced. 

This sector has been at the top of the changing global trends over the recent decades. As a 

continuously competitive circumstance, several developing economies emerged as prominent 

manufacturing nations. Their demand decreased during a recession, and employment in 

manufacturing fell rapidly in advanced economies. Consumers' requirements have become 

increasingly diverse. The manufacturers must decide to enhance their services to modernize 

production and respond to those specific needs. The popularization of these specialty 

manufacturers has been part of a growing trend that drew the maker closer to the consumer 

than ever before. Consumers are now searching out the products they desire rather than just 

taking from the manufacturers' offers. Due to the changing behavior of consumers and 

economic tendencies, the Covid-19 pandemic, the rising cost of labor, the growth of e-

commerce and mobile technology will lead more attention to small-lot production, batch 

production, or direct-to-consumer manufacturing. The product life cycle will be shorter. 

Consumers are drawn more towards personalized, high-quality goods with a mark of 

craftsmanship and an environmentally friendly approach to production. [1-2] 

 

As the continuing revolution of the manufacturing industry and the role of technology are 

increasing, the variety of tools and materials could deliver products to the customer faster. 

Many significant trends are shaping manufacturing in the present day, for example; [3-4] 

 Increased Focus on Skills - the opportunity to learn new knowledge and skills to fill 

the gap in the industry increased the level of expected skills 
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 Additive Manufacturing - three-dimensional objects and shapes are created by adding 

layers opposed to the more traditional subtractive manufacturing. This method allows 

manufacturers rapidly produce prototypes for their designers and engineers. Its recent 

affordability has been a great driver of its growth and its role in helping smaller 

suppliers take more control of their manufacturing 

 Advanced Automation - artificial intelligence, sensors, and vision systems are just a 

couple of ways that basic automated systems can be transformed into advanced 

automation with a lot of technology available today at a very reasonable price 

 Smart Machinery - machine-to-machine communication is part of data-driven 

manufacturing. Besides, the Internet of Things is expected to provide data analytics 

and inventory data to companies in real-time 

Regarding the mentioned trends above, there are many conventional manufacturing methods 

consisting of forming, joining, coating, casting, moulding, machining, and 3D printing with 

the subtypes of each process as shown in Table 1-1. [5-6] 

 

Table 1-1 Main types of manufacturing processes and their sub types  

Main Type Sub Type Description Advantage & Limitation 

Forming Forging, Stamping 

Bending, Shearing, 

Grinding 

A manufacturing process uses suitable 

stresses such as compression, tension, 

or shear to deform the material and get 

the desired shape. This process 

involves deformation and displacement 

of material leads to no material 

removal or loss of material. 

It can be processed with 

high precision but cannot 

process with complex 

shapes. 

Joining Welding, Soldering, 

Adhesive Joining, 

Brazing, Fastening, 

Mechanical Assembly 

A joining or assembling process is part 

of every production process where two 

or more parts are combined together to 

get the required product. 

Necessary for assembly 

works. Needed high level 

of skills for welding 

Health risks from welding 

fume. 

Coating Powder Coating,  

Sputter Deposition, 

Electroplating 

A method of covering the part surface 

with powder or zinc or other chemicals 

to protect it from corrosion, wear, and 

other defects. It is also to improve the 

material electrical conductivity or 

magnetic response. 

Necessary for protecting 

products from corrosion. 

Risk of asthma and skin 

irritation, and skin 

sensitization. 
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Table 1-1 Main types of manufacturing processes and their sub types (cont.) 

Main Type Sub Type Description Advantage & Limitation 

Casting Centrifugal Casting,  

Die and Mould Casting, 

Sand Casting,  

Shell Moulding 

A process that pours liquid metal into a 

mould containing the hollow shape of 

the desired outcome. 

Suitable to provide a basic 

shape and size to the 

product, but mostly it cannot 

provide complex shapes, 

intricate details and smooth 

surfaces in mass production. 

Moulding Injection Moulding,  

Blow Moulding,  

Extrusion Moulding, 

Rotational Moulding, 

Thermoforming,  

Powder Metallurgy 

A manufacturing process that uses a 

rigid frame to shape hot liquid or 

ductile raw material. It is mostly used 

to manufacture plastic products. 

Suitable for mass production 

but unsuitable for small-lot 

production because it will 

take cost and time. 

 

Machining Milling, Turning,  

Drilling, Shaping, 

Honing, Finishing 

A manufacturing process is used to cut 

a piece of raw material into the desired 

shape and size with the help of a 

controlled material removal process. 

These processes are based on a 

common theme known as subtractive 

manufacturing and are used for all 

genres of products, especially metal 

products. 

Compatible with various 

materials, shapes, and small-

lot production or prototype. 

The error involved many 

factors as machining error. 

Additive 

Manufacturing 

3D Printing,  

Rapid Prototyping,  

Direct Digital 

Manufacturing,  

Additive Fabrication 

A manufacturing process which 

reversible to subtractive manufacturing 

of machining. It can build 3D objects 

by adding layer-upon-layer of material, 

whether the material is plastic, metal, 

or concrete. 

This technology is growing 

at speed due to its high 

efficiency and accuracy. 

 

Ordinary manufacturing is traditional mass production in which molding became important 

role-playing. Manufacturing repetitive parts and components with common shapes or even 

complex shapes are required time and cost-consuming mould. On the other hand, a product 

prototype, job shop manufacturing, and batch production are suitable with rapid production 

for cost reduction. However, 3D printing or additive manufacturing involves the genre of 
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materials limitations it can process. Therefore, some small-lot production or specific products 

such as mould making (core and cavity), personal dental, and medical parts needed the 

machining methods. [7-9] 

 

1.1.2 Machining Error in End-milling Process  

The modelling of machining operations has been evolving as a necessary engineering tool for 

simulating the operational physics ahead of costly production trials of parts used in the 

industry [22]. For achieving an accurate machining process, the model-based approaches are 

sought as an alternative method of trial-and-error concepts. These notions are interesting and 

investigated by researchers in many recent years. These lofty scrutinizes indicate that a 

model-based approach must be promising. For these reasons, predictive models are constantly 

being developed by estimating predicted machining errors with experimental results. 

 

In traditional machining, material removal is accompanied by the formation of chips, the 

machining process is an essential source of innovation and significantly contributes to 

research and development, increasing productivity and quality of products. Machining 

accuracy affects product quality, caused of the significant process parameters. The parameters 

involved material removal volumes that influence the process precision. These obtained 

effective outcomes such as an affected layer, surface roughness, and machining error. A 

machining prediction model is required to reduce the cost and time of machining. 

Nonetheless, good surface quality is indispensable. 

 

Direct machining to raw materials is desirable for small-lot production in order to avoid the 

cost and time consuming of mould production. The typical conventional researches of 

machining processes are investigation of the single physical phenomenon affected by physics-

based factors such as cutting force, vibration, thermal expansion. However, considering 

influences from the multiple physical phenomena is also necessary. In these phenomena, more 

determinants than single physical aspect involved the machining error, surface roughness, and 

other contributions consisting of the cutting force, workpiece deformation, chip separation, 

and machining conditions. In order to find the direct relations between machining conditions 

and the target values that correspond to the complex phenomena, by considering the single 

and multiple phenomena, there are previous researches that attempted to investigate 

machining process modelling prediction. Figure 1-1 shows the relation of factors and 

contributions that influenced machining phenomena. [10-13] 
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Complex machining phenomena are affected by varying determinants such as cutting 

conditions, workpiece shape, and material characteristics. There are three categories of 

approaches for investigating the phenomena included physics-based, data-centric, and 

mechanistic. Firstly, based on computational mechanics such as Finite Element Method 

(FEM) analysis. Second, utilize statistics to find direct relations between machining 

conditions and values that represent phenomena. Finally, combine empirical knowledge and 

appropriate numbers of preliminary experiments. Recently, the second approach has become 

dramatic for accurately predicting in order to find direct information to control complex 

phenomena. However, it is unable to be applied against machining because it requires huge 

amount of learning data set which is difficult to prepare for a variety of wildly different 

workpiece shapes and different machining methods. 

 

 

 

Fig. 1-1 Factors and contributions of machining phenomena 

 

In order to eliminate the error from the machining process, it is necessary to secure machining 

accuracy. These essential parameters affect complex machining phenomena. For this reason, 

various machining scenarios are studied and proposed by researchers. A compositional 

machining simulation framework [14-16] presented the possibility of generating machining 

errors with predictive methods for standard metal cutting processes. It is planned to assume 

that the workpiece has good rigidity and perfect shape transfer. Low rigidity and different 

fracture mechanisms lead to large machining error. Regarding a physics-based approach, the 

analysis of workpiece deformation, chip separation, the cutting force has become seriously 
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studied in soft materials [17-20]. Recently, a mechanistic approach was proposed for model-

based prediction of machining error in elastomer end-milling [21]. On the other hand, the 

data-centric method has become mainly investigated because of the expectation to find direct 

information to control the phenomena. Machine learning has become popular role-playing to 

assist in terms of data analytics and statistical methods. However, big data sets and massive 

preparations are needed. In addition, machine learning also requires time and resources 

because there are complicated methods. Therefore, the proper modelling with the minimum 

preparation has eagerly required for predicting complex phenomenon such as machining 

error, surface roughness, and workpiece quality. A systematic construction of compositional 

model based on the statistical evaluation is a promising approaches because aggregated 

models of aspect models which correspond to each single phenomenon are expected to 

represent characteristics of complex phenomenon.  

 

1.1.3 Machining Error in Elastomer End-milling  

Studying basic problems that have obvious limitations compared to a real-world problem has 

several benefits. This dissertation mainly aimed to propose a framework for complex 

machining phenomena and error generation modelling. In order to confirm a proposed 

systematic procedure of evaluation framework, error modelling of elastomer end-milling is 

investigated as an extraordinary than the other conventional materials case study.  

 

 

Fig. 1-2 Error generation phenomenon in elastomer 

 

A basis on the modeling of machining error in elastomer end-milling, a basic error generation 

process of elastomer end-milling is analyzed to clarify possible error-related factors. There are 
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two basic error generation phenomena which deteriorate the machine accuracy. Figure 1-2 

shows the workpiece deformation at surface generation and imperfection of shape transfer by 

undesirable chip separation. According to feed per tooth in elastomer end-milling, it usually 

limited very small because of the limitation of workpiece holding and workpiece deformation. 

Except the special machining situation such as employing diamond tool, surface generation 

processes in elastomer end-milling with usual cutting tool become a mixed situation for 

rubbing and tearing off as illustrated in Fig. 1-2(b). However, analyses of the elastomer end-

milling are required to consider chip separation with both of geometrical non-linearity and 

material non-linearity under the solid contact environment. The numerical calculations with 

the high non-linearity often cause numerical instability. Therefore, more stable method is 

necessary to employ. Furthermore, determination of chip separation criterion in elastomer 

cutting has not been solved [23-24]. 

 

The elastomer end-milling commence attracted considerable attention because of its excellent 

characteristics, uniquely elastic deformation, and difficulty controlling machining error. 

Although the standard metal machining processes are planned by assuming rigid workpiece 

and perfect shape transfer, elastomer’s characteristics consist of low rigidity and different 

fracture mechanism causing large machining errors. Concerning the workpiece deformation, 

measurement and elastic analyses in elastomer end-milling have been investigated [25] with 

a similar method to metal end-milling [19]. However, there is limited research about the 

shape transferring error of elastomer because the chip separation mechanism of elastomer is 

quite different from the mechanism of metals [20, 26]. The unique mechanical properties of 

elastomers, particularly the large elongation to fracture and low thermal conductivity, can 

greatly affect chip formation during machining [27]. This research proposes the continuing 

developed model as the empirical model for machining error in elastomer end-milling 

prediction models with complex machining phenomena. From the mentioned framework, 

preliminary experiments have been designed and considered for constructing the error 

models. A conventional machining error model has been generated from the cutting 

conditions. A second model simulated physical state value and mechanistic knowledge-based 

has been created as a mechanistic model. Finally, the statistical model which a hybrid of the 

correlated variables between cutting conditions and mechanistic knowledge has been 

constructed as an empirical statistics-based model. Afterward, these created models are 

investigated by evaluating the predicted machining error with larger experimental results by 

comparing calculated machining error and measured error from actual cutting experiments. 
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1.2 Purpose and Outcomes of Dissertation 

The principal purpose of this dissertation is to propose a machining error modeling framework 

and empirical machining error prediction models in the case of elastomer end-milling as a 

case study. In order to confirm a proposed systematic procedure, the study attempts to focus 

on the following; 

 

1) To propose a modelling framework and investigate the systematic procedure of 

machining error modelling 

2) To construct the machining error prediction models in diversified conditions 

3) To evaluate the developed model by comparing the estimated and actual machining 

error obtained from prediction models 

 

 

1.3 Structure of Dissertation 

This dissertation contains six chapters in which three sections of the details are organized and 

explained as follows; the first section, chapters 1 and 2, express the theoretical and previous 

methodological perspective through relevant literature. In the second section, chapters 3 and 

4 will propose the machining error modelling framework, modelling concepts, experiment 

configuration, and machining error prediction models construction via the preliminary cases. 

Finally, in chapter 5, the evaluation experiment will be expressed to confirm the prediction 

models and the machining error results will be discussed. Chapter 6 is the conclusion and the 

further aspect of the research. The structure of the dissertation will show in Fig. 1-3. 

 

Chapter 1 will provide an initiative to the study by first discussing the research background 

and context, followed by the purpose of the research and its outcome. Afterward, the structure 

of the dissertation will express. 

 

Chapter 2 engages with the theoretical and methodological perspectives and previous studies 

on machining error prediction through the relevant theory and literature reviews. 

 

Chapter 3 introduces the compositional modelling for the machining error prediction model. 

A mapping function of the complex machining phenomena led to the concept of modelling 

frameworks. Firstly, a framework for machining error modelling will be proposed for creating 
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the model. Then an evaluation framework will be investigated by a fundamental evaluation of 

the machining error model to confirm a good agreement of the measured machining error. 

 

Chapter 4 proposes diverse machining error models based on elastomer end-milling. These 

machining error prediction models consist of conventional cutting conditions, mechanistic, 

and statistical. The concepts of modelling, experimental setup and configurations, preliminary 

experiment, model construction, and formula will systematically be described. 

 

Chapter 5 expresses an evaluation experiment with the larger cases of machining conditions 

for evaluating the prediction models. Finally, the results of machining error will be discussed 

and compared. 

 

Chapter 6 is the final chapter of this dissertation which will express the conclusion of this 

research. After that, the tendency of the research will be presented as a further aspect. 
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Fig. 1-3 Structure of the dissertation

Chapter 1:  

Introduction 

Chapter 2:  

Literature Review 

Chapter 3:  

Framework for Machining Error Modelling 

Chapter 4:  

Compositional Machining Error Prediction Models 

Chapter 5:  

Evaluation Experiment and Results Discussion 

Chapter 6:  

Conclusion and Further Aspect 



 

 

2. Literature Review 

 

This chapter engages with the theoretical and methodological perspectives and previous 

studies on machining error prediction through the relevant theory and literature reviews. 

 

 

2.1 Small-lot Manufacturing 

Small-lot production describes the manufacture of a small number of items of the same type 

and design. The production run varies from between three and one hundred items. Unlike 

industrial mass production, products are made in small numbers for a very limited market 

only. Production is considerably more expensive. Small lot productions are common in 

product design as well as in crafts [7-9]. A “limited edition” is produced in considerably 

greater numbers than a small lot production.  

 

The lot size refers to the quantity of an item ordered for delivery on a specific date or 

manufactured in a single production run. In other words, lot size basically refers to the total 

quantity of a product ordered for manufacturing. A smaller lot of production is an important 

part of many lean manufacturing strategies. Inventory and development directly affect the lot 

size. There are other factors too, which are less evident but equally essential. A small lot size 

causes a reduction in variability in the system and ensures smooth production. It enhances 

quality, simplifies scheduling, reduces inventory, and encourages continuous improvement. 

 

On the other hand, a product prototyping or non-mass production such as make-to-order 

(MTO) production needs to utilize machining methods [10, 28]. Particularly in the small-lot 

production of elastomeric parts, a reliable and accurate production method is eagerly desired 

[29-30]. In order to guarantee essential quality indexes such as surface roughness and 

machining error, a prediction model is highly required for reducing the cost and time of 

machining [15-16]. 
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2.2 Machining Error 

Machining is a subtractive manufacturing process that involves material removal. This 

method is usually in the form of chips removal from the workpiece. Machining using a cutting 

tool or energy source, the material has been removed from the workpiece. [31] 

 

2.2.1 Machining Process Classification  

In traditional machining, material removal is accompanied by the formation of chips, which is 

accomplished by using a cutting tool with cutting edges. On the other hand, nontraditional 

machining processes are chip-less material removal processes that involve energy usage for 

material cutting. The traditional machining operations include turning, drilling, milling, 

shaping/planning, broaching, grinding, and so on. Machining can be regarded as a system 

consisting of; workpieces, cutting tools, and equipment (machine tools). Figure 2-1 shows the 

classification of machining process. [32] 

 

 

 

Fig. 2-1 Machining process classification 
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2.2.2 Conventional Machining Process 

Conventional machining processes involve using machine tools, such as lathes, milling 

machines, drill presses, shapers, or others, with a sharp cutting tool that removes material to 

achieve the desired geometry. The cutting tool may be either a single-point tool or a multiple-

point cutting tool. Notable examples of conventional machining processes include turning, 

drilling, milling, shaping, broaching, and so on.  

 

 

a) Basic turning operation [33] 

 

 

b) Basic milling operation [34] 

 

Fig. 2-2 Conventional machining operation 
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Turning involves the removal of material from a rotating cylindrical workpiece using a single-

point cutting tool; the latter has a feed motion. In machining, there exists a relative motion 

between tool and workpiece which is the primary motion called cutting speed, whereas the 

second motion is called a feed. There are three fundamental cutting conditions: cutting speed, 

feed, and depth of cut. Cutting speed is the greatest of the relative velocities of the cutting 

tool or workpiece. For example, in a turning machining operation, the surface speed of the 

workpiece is the cutting speed (v), usually expressed in m/min (see Figure 2-2 a). Feed (f) is 

the distance moved by the tool (or sometimes by the work) per revolution, usually expressed 

as mm/rev. Depth of cut (d) is the distance the cutting tool penetrates the work. Milling 

involves the use of a rotating cutter with multiple-point cutting edges; here, the cutting tool 

has speed motion, and the work has feed motion. (see Figure 2-2 b) 

 

2.2.3 Machining Accuracy and Surface Quality 

In conventional machining processes, it is often desirable to remove high stock from the bulk 

material (solid) as well as to achieve reasonably good surface quality. However, the 

achievement of both objectives in a single pass is not possible. Thus, machining is usually 

carried out in two steps with varying cutting conditions (cutting speed, feed, and depth of 

cut). The two steps in machining are (a) roughing pass and (b) finishing pass. In the roughing 

pass, a bulk amount of material is quickly removed from the workpiece as per the required 

feature. In this step, a higher feed rate and depth of cut are employed to achieve a high 

material removal rate from the work. The roughing pass creates a shape close to desired 

geometry but leaves some machining allowance (material unremoved) for finish cutting. The 

roughing pass cannot provide a good surface finish and close tolerance. This is why a finishing 

pass is carried out to improve surface finish, dimensional accuracy, and tolerance level; here, 

the feed rate and depth of cut are low. Thus, the material removal rate (MRR) is reduced in 

the finishing pass, but the surface quality is improved. [35-36] 

 

2.2.4 Cutting Phenomena 

The complex machining phenomena are influenced by varying cutting conditions, shape of 

workpiece, and material characteristics. Previously, there are three types of investigations to 

predict the complex phenomena. They are physics-based, data-centric and mechanistic 

approaches.  

     



 

 

Chapter 2: Literature Review 

15 

 

 Physics-based Approach - This approach based on the computational mechanics 

such as Finite Element Methodology (FEM) analysis. They are required only 

minimum numbers of preliminary experiments that expected to be applicable to 

various machining situation [37]. FEM based machining process models are 

used in research and industry for process design and optimization. They require 

a constitutive description of the material behavior to accurately model and 

predict process response [38]. 

 

 Data-centric Approach - Data-centric become popular recently, they require a 

huge amount of experimental data. In usual machining situation, it is difficult to 

measure physical information during the machining operation. In order to 

achieve accurate and stable prediction method with limited preliminary 

experiments, it is necessary to utilize empirical process knowledge effectively 

[39]. They utilize statistics to find direct relations between the machining 

conditions and values which represent phenomena. Furthermore, they also 

utilize preliminary experiment as much as possible to construct reliable 

phenomena model.  

 

 Mechanistic Approach - This approach combines empirical knowledge and 

appropriate numbers of preliminary experiments [40]. Workpiece deformation 

and shape transfer error should be considered to formulate a mechanistic model 

of machining error in end-milling. It can be calculated by using FEM analysis 

when appropriate calculation model is prepared. This calculation process can be 

achieved based on established systematic procedure. In addition, the workpiece 

deformation field at continuous workpiece can be considered smooth 

distribution. 

 

For predicting complex phenomena, data-centric approaches have been mainly investigated 

because they are expected to find direct information to control the phenomena. Anywise, 

these approaches cannot be adapted against machining variety such as different workpiece 

shape and different machining method. Figure 2-3 shows the factors of cutting phenomena. 
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Fig. 2-3 Cutting Phenomena (modified from [41]) 

 

2.2.5 Orthogonal Cutting Model 

The machining process is a complex 3D operation. A simplified 2D model of machining is 

available that neglects many geometric complexities, yet describes the process quite well. 

Orthogonal cutting uses a wedge-shaped tool in which the cutting edge is perpendicular to 

the cutting direction. As the tool is forced into the material, the chip is formed by shear 

deformation along a shear plane oriented at an angle φ (shear angle) with the surface of the 

workpiece. Along the shear plane, plastic deformation of work material occurs. The tool in 

orthogonal cutting has only two elements of geometry: (1) rake angle and (2) clearance angle. 

The rake angle α determines the direction of chip flow as it is formed, and the clearance angle 

provides a small clearance between the tool flank and the newly generated work surface. 

During cutting, the cutting edge of the tool is positioned at a certain distance below the 

original work surface. This corresponds to the chip thickness prior to chip formation [41]. 

Figure 2-4 shows a simple two-dimensional orthogonal cutting model and the significant 

geometrical parameters involved in chip formation. This model assumes the tool as a single 

point characterized by rake angle (α) and clearance angle (β). The rake angle (α) is 

dominant in controlling the cutting forces, tool chip contact length, and vibrations. A small 
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value of the clearance angle (normally 6o-7o) prevents the rubbing between the tool and the 

machined surface and hence controls wear on the tool and residual stresses on the machined 

surface. Shearing of un-deformed chip thickness (t) occurs on a plane defined by a shear angle 

(f). The contact length (Lc) is the distance on the rake face of the tool at which the deformed 

chip (tc) is in contact with the tool rake face i.e. it is a measure of the rake face surface over 

which the chip flows. This contact length can be further classified as the sum of sticking (lst) 

and sliding (lsl) lengths. The important theories based on the orthogonal cutting model which 

have paved the way for the analysis of the chip formation process include Merchant’s model. 

 

 

 

Fig. 2-4 Orthogonal cutting model [42] 

 

2.2.6 End-milling Process 

End-milling refers to a physical surface preparation process used to generate material chips 

by feeding a metal workpiece into a revolving cutter. End-milling is a practical and very 

common procedure in industrial fabrication applications. 

 

End-milling is widely used in machining moulds and dies, as well as, various aircraft 

components. In order to ensure cutting quality, tool life prolongation, and productivity, 

accurate milling process analysis is critically necessary for beforehand process planning and 

adaptive controlling. During the entire milling process, cutting force is one of the most 

important issues, as well as an efficient and precise cutting force model, is thus crucial for 

selecting machining parameters such as feed rate and spindle speed. 

 

Conventional milling process (up-cut), the metal is removed in the form of small chips by a 

cutter rotating against the direction of the travel of the workpiece. The chip thickness is 
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minimum at the beginning of the cut and maximum at the top of the cutting. The climb milling 

process (down-cut) claimed that there’s less friction involved and consequently less heat is 

generated on the contact surface of the cutter and workpiece. The cutting tool moves in the 

same direction as the workpiece and removes the material. The process of up-milling and 

down-milling is illustrated in Fig. 2-5. 

  

 

Fig. 2-5 Process of up-milling and down-milling [43] 

 

2.2.7 Cutting Force and Deformation in Milling 

A considerable amount of investigations has been directed toward the prediction and 

measurement of cutting forces. This is because cutting force is a result of the extreme 

conditions at the tool-workpiece interface and this interaction can be directly related to many 

other output variables such as generation of heat and consequently tool wear and quality of 

machined surface as well as chip formation process and the chip morphology. Measurement 

of forces becomes mandatory in certain cases say, adequate equations are not available, 

evaluation of the effect of machining parameters cannot be done analytically and theoretical 

models have to be verified. Several works are available in the literature that makes use of 

different types of dynamometers to measure the forces. The dynamometers being commonly 

used nowadays for measuring forces are either strain gauge or piezoelectric types. Though the 
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piezoelectric dynamometer is highly expensive, this has almost become standard for recent 

experimental investigations in metal cutting due to its high accuracy, reliability, and 

consistency. [44] 

 

Estimation of forces acting between tool and work material is one of the vital aspects of 

mechanics of cutting process since it is essential for: 

 

 Determination of the cutting power consumption  

 Structural design of the machine-fixture-tool system  

 Study of the effect of various cutting parameters on cutting forces  

 Condition monitoring of both the cutting tools and machine tools  

 

Analysis of force during machining includes the magnitude of cutting forces and their 

components and location of action of those forces as well as the pattern of the forces, say, 

static or dynamic. The Merchant’s circle diagram is shown in Fig. 2-6 with schematic 

representation of forces acting on a portion of continuous chip passing through the shear 

plane at a constant speed which is in a state of equilibrium.  

 

 

Fig. 2-6 Merchant’s circle diagram [45] 

 

Fs and Fn are called shear force and normal force, respectively, that act on the chip from 

workpiece side i.e. in the shear plane. F and N are friction force at chip-tool interface and 

force normal rake face, respectively, that act on the chip from the tool side i.e. in the chip-tool 

interface. These forces can be determined as follows: 
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                        𝐹 =  𝐹𝑐 sin 𝛼+𝐹𝑡 cos 𝛼                 ...... (2-1) 

𝑁 =  𝐹𝑐 cos 𝛼+𝐹𝑡 sin 𝛼 

𝐹𝑠 =  𝐹𝑐 cos ∅+𝐹𝑡 sin ∅ 

𝐹𝑛 =  𝐹𝑐 sin ∅+𝐹𝑡 cos ∅ 

 

Chip formation and its morphology are the key areas in the study of the machining process 

that provide significant information on the cutting process itself. The process variables such 

as cutting force, temperature, tool wear, machining power, friction between tool-chip 

interface, and surface finish are greatly affected by the chip formation process and chip 

morphology. Chip is formed due to the deformation of the metal lying ahead of the cutting 

tool tip by the shearing process. The extent of deformation that the workpiece material 

undergoes determines the nature or type of chip produced. The extent of deformation of chips 

again depends upon cutting tool geometry (positive or negative rake angle), workpiece 

material (brittle or ductile), cutting conditions (speed, feed, and depth of cut), and machining 

environment (dry or wet machining). [45] 

 

For mechanical machining, the concept of similarity is fatal. If a product that looks similar is 

used in combination with other products, the defects will continue to magnify, causing the 

processing quality of the factory to fail to meet the high-end precision manufacturing 

requirements. We all know that the problem of workpiece deformation in machining centers 

is more difficult to solve, so we must first analyze the reasons for the deformation, and then 

take countermeasures. The causes of deformation from many reasons are as follows; 

 

 The material and structure of the workpiece affect the deformation 

 Deformation caused by workpiece clamping 

 The deformation caused by the processing of the workpiece 

 Stress and deformation after processing 

 

However, the deformation of the workpiece due to cutting force induced accounts for the 

majority of machining errors, in the range of 40–70%. Therefore, many researchers have paid 

increasing attention to more efficient and accurate error prediction methods for low-rigidity 

parts [46]. In case of an end-mill with multiple cutting edges, Figure 2-7 shows a schematic 

diagram when the jth (cutting edge number) cutting edge is at the tool rotation angle θ. The 

instantaneous cutting forces of the cutting edge tangential force Ftj (θ), tool radial force Frj 

(θ), and tool axial force Faj (θ) are the cutting edge contact length (axis) corresponding to 
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the cutting width of two-dimensional cutting. It is expressed as follows using the direction cut 

amount (a), and the cut (cut thickness) h (θ). In the case of a straight-edged end-mill, Faj 

(θ) does not occur because the influence of the bottom edge of the end-mill can be ignored 

when the assumption of two-dimensional cutting is established.  

 

 

 

Fig. 2-7 Instantaneous cutting force in end-milling [47] 

 

The cutting force prediction model used in the previous studies is for metal cutting. It can be 

expressed by the formula on the left using the axial depth of cut, the nominal depth of cut, the 

coefficient per unit area, and the coefficient per unit length, as shown in Fig. 2-8, and can be 

expressed in Eq. (2-2). 

 

 

 

Fig. 2-8 Interrelationship of cutting force in end-milling [47] 
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                        𝐹𝑡𝑗(𝜃) =  𝐾𝑡𝑐𝑎ℎ(𝜃) + 𝐾𝑡𝑒𝑎                 ...... (2-2) 

𝐹𝑟𝑗(𝜃) =  𝐾𝑟𝑐𝑎ℎ(𝜃) + 𝐾𝑡𝑒𝑎 

𝐹𝑎𝑗(𝜃) =  𝐾𝑎𝑐𝑎ℎ(𝜃) + 𝐾𝑡𝑒𝑎 

ℎ(𝜃) =  𝑓𝑖𝑐𝑜𝑠𝜃 

 

where; Ftj (θ); instantaneous cutting forces of the cutting edge tangential force (N/mm2), Frj 

(θ); tool radial force (N/mm2), a(θ); axial depth of cut (mm), h(θ); thickness of cutting 

(mm), Ktc, Krc, Kte, Kre are the cutting coefficients obtained by experiments. 

 

The considerable rise in computer processing speeds makes it possible to incorporate the 

finite element methodology (FEM) for analyzing various aspects of the metal cutting process, 

thus overcoming most of the restrictive assumptions associated with analytical models. Many 

investigators have adopted FEM to gain a better understanding of the machining process. In 

this research we used ANSYS software for investigating the deformation of elastomer. 

 

The finite element method is a numerical method seeking an approximated solution to a wide 

variety of engineering problems. The engineering problems are boundary value problems (or 

field problems) containing one or more dependent variables that must satisfy a differential 

equation everywhere within a known domain and satisfy specific conditions on the boundary 

of the domain. The field is the domain of interest, often representing a physical structure 

while the dependent variables of interest are called field variables. The specified value of a 

field variable on a field scope is called a boundary condition. Field variables may include 

displacement in solid mechanics’ problems consisting of the temperature in heat flow problem 

velocity, fluid flow problems, etc. in FE modeling for physical problems. A few basic steps are 

required, which are common for any type of analysis, whether it is a structural problem heat 

flow, or fluid flow. [44-45] 

 

 

2.3 Elastomer End-milling 

Elastomers are wildly used in various applications because of their excellent characteristics, 

including low elasticity, insulation performance, and flexibility. Because elastomeric parts are 

usually mass-produced consumables, moulding is applied in their fabrication. However, a 

small-lot fabrication of elastomeric parts is needed for variation products development; 
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personalized products, and trial products. Etc. In order to achieve an agile production of 

elastomeric parts, the end-milling of elastomers has begun to attract considerable attention.  

 

The elastomer end-milling commence attracted considerable attention because of its excellent 

characteristics, uniquely elastic deformation, and difficulty controlling machining error. Since 

the standard metal machining processes are planned by assuming rigid workpiece and perfect 

shape transfer, elastomer’s characteristics consist of low rigidity and different fracture 

mechanism causing large machining errors. 

 

2.3.1 Cutting Force and Deformation Studies in Elastomer Milling 

In the conventional metal end-milling, cutting force during the end-milling is one of the 

dominant factors to machining error. The cutting force causes the workpiece deformation, 

thermal formation, machine tool deflection, and tool wear. On the other hand, most 

elastomers have low rigidity then the relationship between cutting force and machining error 

is considered a fundamental characteristic. The chip formation mechanisms of elastomers are 

moderately different from those of metal milling.  

 

Fig. 2-9 Elastomer end-milling simulation model 

 

Furthermore, the deformation of the workpiece dominantly affects the machining accuracy. 

These facts indicate that the problem to be tackled for the end-milling of soft objects or 

elastomers is to control the appropriate surface generation of the machined workpiece that 

can overcome by designing an optimized cutting tool shape and/or determining proper 
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machining conditions. Because of the large variety of elastomer objects, it is necessary to 

develop a systematic method to aggregate empirical cases to generate a mechanistic model of 

the surface generation process. There is little knowledge of those factors that are dominant to 

the error and required further knowledge. Therefore, a preliminary evaluation of the 

important factors is necessary [30]. Figure 2-9 shows the simulation model for elastomer end-

milling. Figure 2-10 proposes the concepts of the experimental design to find machining 

errors based on elastomer end-milling. 

 

 

 

Fig. 2-10 Systematic model construction procedure 
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In previous research done on elastomers machining, machining error and stable work holding 

have been necessary obstacles to appropriate end-milling of elastomeric parts. These works 

became the main inspiration for this research are as follows;    

 

Shih et al. [30] have reported that the extraordinary mechanical properties of elastomer, 

considerably enduring elongation and low thermal conductivity are capable of affect chip 

formation during machining significantly. In other words, tool wear is not a dominant factor 

for elastomer end-milling. Meanwhile, the accumulations of cutting heat and the influence of 

thermal effects are not a dominant factor of the error tendency have been reported [25]. 

Therefore, it is promising to improve the machining accuracy by considering the mechanistic 

surface generation model with the dominant factors such as cutting force, workpiece 

deformation, and machining conditions for elastomer end-milling. In 2008-2010, Teramoto 

K. et.al, have proposed a framework for machining the soft objects as well as the machining 

error in soft objects end-milling, respectively [15-16, 48]. In 2012, Kakinuma Y. et.al, studied 

the ultra-precision cryogenic machining of viscoelastic polymers [49], while Tsurimoto S. and 

Moriwaki T. studied the experiment on the cutting of silicone rubber under hydrostatic 

pressure [50]. In 2015, Nakamoto K. et.al, introduced the dexterous machining of soft objects 

by the means of a flexible clamper [51]. Similar to Kakinuma Y., in 2016 Putz M. studied the 

mechanism of cutting elastomers with cryogenic cooling as well [52]. In the same year, 

Funatani K. et.al, have proposed their research on the dexterous creation pattern of the 

urethane rubber [53].      

 

2.3.2 Machining Error Studies in Elastomer End-milling 

The machining error in the end-milling process has involved machining conditions, workpiece 

shape, and material removal characteristics. During the actual machining situation, workpiece 

shape and machining conditions such as depth of cut (DoC) and width of cut (WoC) are 

varied according to the machining process [25, 37, 54]. Furthermore, tool rotation speed and 

feed rate are sometimes adjusted to find the appropriate conditions when the new cutting 

tool, workpiece material, and/or different workpiece shape has to be applied. Regarding the 

workpiece deformation, the elastic analyses and measurement in the elastomer end-milling 

have been investigated by a similar method for metal end-milling [37-39]. 

 

Wu et, al. (2017) [21] proposed a model based mechanistic for machining error prediction. 

The model which utilized machining knowledge for empirical model formulation was 

employed. By introducing a mathematical model which reflect process knowledge, stabile 



 

 

Chapter 2: Literature Review 

26 

 

calculation with limited experimental data. As mentioned in topic 2.2.4, thus, the deformation 

at cutting point can be presented by a function of a displacement of a neighborhood point of 

cutting point. On the other hand, the shape transfer error is complicated to model 

quantitatively because it is affected by a crack generation point, a trajectory of crack 

propagation, and slippage between cutting tool and workpiece. From the analysis of crack 

generation of elastomer, the indentation forces, an indentation depth, and a local stiffness are 

important factors for the crack generation. Because the indentation depth can be related to 

the local workpiece deformation, it is assumed that the shape transfer error is affected by the 

workpiece deformation, cutting force and the local stiffness of workpiece. Based on the 

extracted factors to explain the machining error for elastomer end-milling a simplified error 

model which can be applicable to statistical analysis was introduced.  

 

In the experiment stage, a high-speed steel end-mill with a 6-mm diameter and a two-flute 

straight blade edged with a 20 µm roundness was applied on the machining center. Urethane 

rubber shore A90 hardness is employed as elastomer material because of its unique 

characteristics and mechanical properties. In addition, there are significantly difficult 

controlling chip separation and cutting phenomena [29-30]. The experiments have been 

conducted the pattern according to our previous study [55]. Table 2-1 detailed this research 

instruments, materials and their specification. Then Chapter 5 will explain of the setup and 

configurations of these instruments. 

 

Table 2-1 Experimental instruments, materials and their specification 

Instrument/Material Specification 

 

Machining center: TOMINAGA 

  Model D-Matric 24 

  Moving distance: 600 x 250 x 250 mm. 

  Table size: x-axis 900 mm., y-axis 300 mm. 

  Spindle: 40-4000 rpm. 

  Speed: up to 6,000 mm/min.  

 

Power meter: Model 3-component force sensor 9327C: KISTLER 

  Preloaded with a jig to enable measurement of cutting force 

  Measurement range; X, Y direction: -1 to 1kN, Z direction: -4 to 4kN 

  Sensor unit weight: 380g 
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Table 2-1 Experimental instruments, materials and their specification (cont.) 

Instrument/Material Specification 

 

Machine vice: IKEA-MISUMI 

  Material: Cast iron WIKFB 150 

 

High speed camera: MotionXtra NR4-S2-IDT 

  Sensor: CMOS-Polaris II 

  Recording memory: 1.25 GB 

  No. of Pixel: 1.0 Megapixel, 187.14 µm2 pixel size 

  Analysis software: Motion Studio 

 

Multi-function generator: A&D-AD-8623A 

  Output frequency range: 0.3 Hz ~ 3 MHz 

  Output wave form: Square 

  Rise and fall time: 100 ns or less 

 

LED light source 

  High-performance LED light source  

  Used instead of the conventional halogen light source 

 

AC power supply unit output: KEYENCE  

  Model: KZ U3 

  Power: DC24V1.4A 

 

Mirror 

  For reflecting workpiece deformation observation recording by  

  the HSS camera during machining 
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Table 2-1 Experimental instruments, materials and their specification (cont.) 

Instrument/Material Specification 

 

Non-contact Laser Displacement Sensor: KEYENCE KS 1100 

  High-precision shape measurement system with stage 

  Pitch Measurement: 70 µm 

CCD laser displacement meter LK- GD500 

 

 

Metallic base 

Double stick tape 

  Use NITOMS'  

  "Ultra-strong double-sided tape for polyethylene No.5015"  

  to fix the work and base 

 

High speed steel (HSS-SKH57) end-mill: MISUMI 

  Type: 2-flute straight-blade, Diameter: 6 mm.  

  Tool length: 60 mm. Cutting length: 20 mm. Edge roundness: 20 µm 

  Density: 8,160 kg/m3, Young’s modulus: 2.26e+05 MPa 

  Poisson's Ratio: 0.29, Bulk Modulus: 1.7937e+05 MPa 

  Shear Modulus: 87597 MPa,  

  Tensile Yield Strength: 2.17e-15 MPa 

  Tensile Ultimate Strength: 2.39e-15 MPa 

  Isotropic Secant Coefficient of Thermal Expansion: 1.02e-05 1/˚C 

  Isotropic Thermal Conductivity: 0.022 W/mm·˚C 

  Specific Heat Constant Pressure: 4.65e+05 mJ/kg·˚C 

  Isotropic Resistivity: 0.000832 ohm.mm 

 

Urethane rubber hardness shore A90 

  Density: 1.15e-06 kg/m3, Young’s modulus: 98.778 MPa 

  Poisson's Ratio: 0.49, Bulk Modulus: 1646.3 MPa 

  Shear Modulus: 33.147 MPa 

  k-Matrix Damping Multiplier: 0.0012 

Marker film 

  MIRACLE's "Miracle Sheet Film Seal" to transfer the marker to the work 
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During the machining process, a side view of the workpiece is reflected by a mirror and 

photographed by a high-speed camera for observing cutting behavior. These devices are 

detailed in Table 2-1. Regarding the machining observation, there are a bit uncut parts at the 

beginning of cutting, and there are a bit uncut parts at the end of machining because of the 

unique characteristic of elastomers which are difficult to machine. Figure 2-11 shows the 

observation markers on the workpiece. 

 

 

 

Fig. 2-11 Workpiece with marker film for machining observation 

 

Because of the recording time limitation of the high-speed camera, the synchronized 

measurements are also limited. Therefore, all workpieces are divided into three sections then 

the machining experiments are conducted three times for each workpiece. The number of 

three markers indicated by the red marker as shown in Fig. 2-11, referred to the measured 

positions at each experiment. The distances of each point starting from the edge of the 

workpiece are 3 mm, 11 mm, and 17 mm, respectively. 

 

 

Fig. 2-12 Behavior observation during machining  



 

 

Chapter 2: Literature Review 

30 

 

Figure 2-12 expresses behavior observation during machining. A high-speed camera is 

employed to record workpiece deformations at the quasi-two-dimensional machining. From 

the recorded images, workpiece deformations at representative points are measured by using 

visual tracking of the marker. Figure 2-13 shows the tracking screen using a software analyzer. 

 

 
 

Fig. 2-13 Tracking screen using software analyzer 

 

The machined workpiece was removed from the dynamometer after machining and placed on 

the measuring equipment. A schematic of the machining error measurement is shown in Fig. 

2-14. A non-contact laser displacement sensor was utilized for measuring the machined 

workpiece surface. The average difference between the idealized surface and measured 

surface has been calculated. The synchronized measurement points are extracted 

corresponding to the machining error. The blank workpiece that is attached to the metallic 

base (see Fig. 2-15) has been measured thickness before machining. Subsequently, a laser 

displacement sensor with a spot size of 70 micrometers was used to scan the machined 

elastomers. 

  



 

 

Chapter 2: Literature Review 

31 

 

 

 

Fig. 2-14 Schematic of machining error measurement 

 

 

Fig. 2-15 Machining and measurement configuration  
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The surface of the metallic base was used as the reference (datum) surface for machining and 

measuring, as shown in Fig. 2-16. By comparing the before and after scanning thickness data 

of blank workpiece and machined surface, machining error has been estimated. 

 

  

 

Fig. 2-16 Machined workpiece on a metallic base 

 

 

Fig. 2.17 Measurement area for machined workpiece 
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From obtained surface data, the machining error corresponding to the synchronized 

measurement points are extracted. As a machining error, average differences between the 

ideal surface and measured surface are calculated. Because of near edge areas have burr shape 

error, the machining errors are calculated by using the middle of profile curve (80% of 

workpiece width) as shown in Fig. 2-17. Afterward, obtained machined-surface data will be 

evaluated by a software analyzer and then recorded for the comparing process as illustrated 

in Fig. 2-18 and Fig. 2-19, respectively. 

 

 

Fig. 2.18 Processed surface shape evaluation 

 

 

 

Fig. 2.19 Machining error measurement 
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2.4 Statistics Implementation 

There are essential statistics approaches involved in this research. The main task of these 

statistics is distinguished into three divisions. First of all, the principal component analysis 

(PCA), is a part of machine learning which responded to the main criteria components' 

relationships to create a based-statistics machining error model in this research. Secondly, the 

correlation coefficient is a statistical method that computed the main effect of the significant 

coefficient values. Finally, the multiple regression analysis was used to calculate the solution 

on linear regression for comparing the model results. 

  

2.4.1 Principle Component Analysis 

Principal component analysis (PCA) is the main component of a problem in which several 

factors are considered. They are not treated individually but comprehensively. In other words, 

the comprehensive characteristics of some explanatory variables x1, x2, x3, …, xp can be 

expressed by linear expressions such as a1x1 + a2x2 +… + apxp. This formula is called the main 

component. The number of principal components is equal to the number of variables 

contained in the data to be analyzed. Therefore, in this study, a total of 18 main components 

can be obtained. The names of each principal component are called the first principal 

component (PC1), the second principal component (PC2), and so on. [56-59] 

 

Since the 81 data in this study deal with 18 variables, there are many numerical values, and it 

is difficult to see which processing conditions are affected. However, when the machining data 

is divided into several clusters, from the principal component analysis that it is inappropriate 

to apply a single prediction model, simple numerical values, and the degree of variation in 

each machining case, can be understood. The flow of principal component analysis is shown 

below; 

 Data reading 

 Standardization of experimental data 

 Execution of principal component analysis 

(1) Principal component score  

(2) Plot of PC1 and PC2  

(3) Plot of principal component score from PC1 to PC18 

(4) Contribution rate/ cumulative contribution rate/ eigenvalue/ eigenvector 

of each principal component 

(5) Plot of eigenvectors for each condition 
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The analysis contents will be explained in order. Since some of the 18 variables have different 

units, the standardization of experimental data is performed for the purpose of establishing a 

certain standard that allows the numerical values between each condition to be used in 

common.  

 

The principal component score is the score of each principal component in each data, and the 

data is rotated based on the principal component axis. The value corresponding to the 

coordinates when it is set. A plot of the principal component scores with each principal 

component placed on the coordinate axes. Contribution rate indicates how much the 

information represented by the eigenvalue of a certain principal component occupies in all 

the information of the data. It means the variance composition ratio of the score of the 

principal component in the total variance of the entire variable. It represents the equation 

obtained in Eq. (2-3). 

 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)2 × 100            ...... (2-3) 

 

The cumulative contribution rate is the sum of the contribution rates of each main component 

in descending order. The component shows how much the amount of information that the 

data had is explained. 

 

Eigenvalues are numerical values corresponding to each principal component. This 

eigenvalue corresponds to the variance of the principal components. It shows how much the 

main component holds the information of the original data. For n x n matrix, as following Eq. 

(2-4). 

 

Ax ⃗ = λx ⃗                    ...... (2-4) 

 

when there is a combination of "non-zero vector x ⃗" and "scalar λ" that satisfies X ⃗ is called 

the "eigenvector of A" and λ is called the "eigenvalue of A". 

 

2.4.2 Correlation Coefficient 

Correlation coefficients are used to measure how strong a relationship is between two 

variables. There are several types of correlation coefficient, but the most popular is Pearson’s. 

Pearson’s correlation (also called Pearson’s R) is a correlation coefficient commonly used in 
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linear regression. If you’re starting out in statistics, you’ll probably learn about Pearson’s R 

first. In fact, when anyone refers to the correlation coefficient, they are usually talking about 

Pearson’s.  

 

About n data (x1, y1), (x2, y2), (x3, y3), …, (xn, yn). The value obtained by dividing the 

"covariance of x and y" by the "product of the standard deviation of x and the standard 

deviation of y". It is called the correlation coefficient between x and y. Eq. (2-5) expresses the 

correlation coefficient r (-1 ≤ r ≤ + 1) and the variable names. 

 

𝑟 =
Covariance

𝑆𝐷𝑥×𝑆𝐷𝑦
=

𝑠𝑥𝑦

𝑠𝑥×𝑠𝑦
=

1

𝑛
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√
1

𝑛
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1 ×√
1

𝑛
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

  ...... (2-5) 

 

where, r refers to correlation coefficient of x and y, Sxy refers covariance of x and y, Sx refers 

to the standard deviation of x, Sy refers to the standard deviation of y, while n is the total 

number of data, (xi, yi) refers to ith data value, �̅� is an average of x, and �̅� is an average of y. 

 

The purpose of calculating the correlation coefficient is to investigate how much the physical 

quantity that can be calculated by machining conditions and machining simulation correlates 

with the machining error, and the causal relationship between the machining error and other 

conditions is investigated. It should be noted that it is not a proof. [60] 

 

2.4.3 Multiple Regression Analysis 

Multiple regression analysis is a method of predicting the value of one objective variable by 

linearly combining two or more explanatory variables. However, it is assumed that the 

objective variable has error fluctuations and that the explanatory variables have no error 

fluctuations. [60] 

 

Given p explanatory variables be x1, x2, x3, …, xp, and consider a matrix in which each measured 

value is arranged in each column as shown in Eq. (2-6). 

 

𝑋 = (

𝑥11

𝑥21

⋮
𝑥𝑛1

𝑥12

𝑥22
⋯

𝑥1𝑝

𝑥2𝑝

⋮ ⋱ ⋮
𝑥𝑛2 ⋯ 𝑥𝑛𝑝

)                     ...... (2-6) 
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where; δ and the observed variables be 𝛿1, 𝛿2, 𝛿3, ..., 𝛿𝑝. The regression line in the same as 

the simple regression analysis at this time is a hyperplane on the p dimension in the multiple 

regression analysis. (as shown in Eq. (2-7)) 

 

𝛿 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝          ...... (2-7) 

 

where; δ is an objective variable, x1, x2, ...., xp are the explanatory variables, b0 is a constant 

(intercept), and b1, b2, ...., bp are the regression coefficients. 

 

The purpose of performing multiple regression analysis in this study is to formulate a model 

formula that compares the error rates of the calculated error and the measured error obtained 

from the calculation under the evaluation machining conditions with those of the conventional 

study. 



 

 

3. Framework for Machining Error 

Modelling 

 
This chapter introduces the compositional modelling for the machining error prediction 

model. A mapping function of the complex machining phenomena led to the concept of 

modelling frameworks. Firstly, a framework for machining error modelling will be proposed. 

Then the second framework, an evaluation of the machining error model framework, will be 

investigated as a fundamental evaluation of the machining error model to confirm a good 

agreement of the measured machining error. 

 

 

Fig. 3-1 A mapping function of compositional modelling 

 

In order to adapt to the diversity of the machining process, this research considers state values 

to represent machining cases. As illustrated in Fig. 3-1(a), conventional empirical models 
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utilize generalized functions which indicate direct relations between machining conditions 

and machining phenomena. [55]  

 

From the mapping functions, many complex functions which contain a large number of model 

parameters are utilized. When the focused aspect is determined, a physics-based model can 

represent the machining process accurately with a minimum number of model parameters. It 

expects to represent the machining process with a small number of model parameters by 

composing these single aspect process descriptions, as shown in Fig. 3-1(b). 

 

The systematic model construction procedure is defined as follows. 

1. Collecting candidates of model variables include machining condition and physical 

state values considering available process simulation. 

2. Designing a preliminary experiment by known characteristics of material and cutting 

tool within the capability of experiment load. 

3. Evaluating candidates of model variables based on the preliminary experiment. 

4. Formulating a process model using selected model variables 

5. Identifying the process model based on the preliminary experiment. 

6. Utilize the identified model to predict machining situations at different machining 

situations from preliminary experiments. 

 

 

3.1 A Framework of Machining Error Modelling 

The frameworks involving the error prediction of complex physical phenomena for the 

manufacturing process have been previously proposed [61]. The compositional machining 

simulation and accuracy assured machining for a closed loop machining operation were 

introduced.  

 

Based on the defined procedures, we propose a modelling framework to predict the machining 

error of elastomer end-milling. The frameworks involving the error prediction of complex 

physical phenomena for the manufacturing process are based on the previously proposed 

modelling concept [15]. The framework consists of two phases included the identification 

phase and the estimation phase. At the identification phase, limited cases of preliminary 

experiments are utilized to identify the process model. The identified model is used to predict 

actual machining situations that are different from the preliminary experiments. For 

designing preliminary experiments, it is assumed certain knowledge of the characteristics of 
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workpiece material and the cutting tool such as; the cutting force tendency, workpiece 

material characteristics, physical state values, and error generation mechanism. When the new 

material and/or cutting tool will be employed, some basic trials are necessary to grasp the 

characteristics. A schematic expression of the framework for identifying and utilizing the 

machining error model is illustrated in Fig. 3-2. The variations of workpiece materials and 

cutting tools are smaller than variations of machining conditions and workpiece shapes. 

Therefore, the framework is organized to achieve the versatility of various machining 

conditions and workpiece shapes. 

 

 

Fig. 3-2 Framework of machining error modelling 
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In order to compensate for influences of machining case variations, state values that included 

cutting force, workpiece deformation, and machining conditions are used for constructing the 

error model. Because the influence of workpiece materials and cutting tools are not considered 

in this framework, the parameter identification process is required when a new cutting tool 

and/or a workpiece material are employed for the machining process.  

 

In the identification phase as demonstrated in Fig. 3-2(a), the simplified preliminary 

experiments with the specialized machining equipment [25] are executed. It can measure 

instantaneous cutting force and workpiece displacement simultaneously at the different 

machining conditions. Furthermore, a simplified workpiece enables the evaluation of the 

machining error easily. The fundamental studies on machining have applied both a 

computational finite element methodology (FEM) and the experimental approach. For an 

initial effort of cutting force simulation, a standard discrete cutting force model has been used.  

 

The conventional cutting force model assumes which total cutting force can be approximated 

as the sum of local cutting forces [62]. The coefficients for the end-mill are determined based 

on the average force-based determination method for cutting coefficients [63]. In order to 

investigate an error generation mechanism, the measurements of instantaneous workpiece 

deformation have been conducted. A quasi-two-dimensional cutting situation with the 

uniform fixture effect is constructed for machining. An image processing is employed to 

observe the actual displacements by using a pre-calculated calibration scale and origin [25]. 

From the observation, the obtained displacements can be used to estimate the mechanical 

property for FEM analysis to simulate workpiece deformation [54].  

 

Based on the previous research, the physical state values such as cutting force and workpiece 

deformation can be calculated in principle. By using the data obtained from preliminary 

experiments, the model parameters for deformation analysis and cutting force prediction can 

be determined. Physical state values at every machining situation can be calculated using the 

identified process models. Machining conditions, physical state values, and their combined 

variables are candidates of model variables of machining error.  

 

By utilizing the preliminary experiments, candidates of variables are evaluated and selected. 

An empirical model of machining error is constructed based on the selected variables. In the 

estimation phase as shown in Fig. 3-2(b), the machining error of the actual machining 

situations will be reasonably calculated based upon the selected model variables and the 

identified machining error model. 
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3.2 Evaluation of Machining Error Model 

In order to appraise the proposed framework, the cutting force model and the workpiece 

deformation model also must be estimated in principle. However, an evaluation of a combined 

model becomes complex, and it is difficult to find the problem when estimation is not 

moderately appropriate. Hence, an independent evaluating of the machining error model is 

investigated as a fundamental evaluation of the machining error model.  

 

In case if the machining error calculated by the error model offers a good agreement of the 

measured machining error, the evaluating of the framework is equivalent to the evaluation of 

the cutting force model and workpiece deformation model that has been partially reported 

[25, 62]. Based on the independent evaluating of the machining error model, preliminary 

experimental data for the workpiece deformation and cutting force corresponding to the 

machining cases that are different from the parameter identification case are employed to 

calculate the machining error. Figure 3-3 illustrates an outline of the evaluation procedure for 

the error model. The candidates of model variables are selected through the principle 

component analysis (PCA), and a machining error model is constructed as a linear model of 

the selected variables.  

 

The constructed error model coefficients are identified initially by the measured parameters 

included the cutting force, the workpiece deformation, the machining conditions, and 

machining error. The responses of cutting force and workpiece deformation in the 

constructed model correspond to the evaluation cases are substituted by the measured cutting 

force and the measured workpiece deformation. By comparing the estimated machining error 

and the measurement machining error, this error modelling is evaluated reasonably. 
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Fig. 3-3 Evaluation of machining error model 

 

 

 

 



 

 

4. Compositional Machining Error 

Prediction Models  

 
This chapter proposes the diverse machining error modelling based on elastomer end-milling. 

These machining error prediction models consist of the conventional cutting condition, 

mechanistic, and statistics model. The concepts of modelling, experimental setup, preliminary 

experiment, model construction, and their formula will be described, respectively.  

 

 

The modelling of machining operations has been evolving as an essential engineering tool to 

simulate operation physics ahead of costly production trials of parts used in industry [22]. In 

order to achieve the appropriate machining, a model-based approach is widely desired to 

become an alternative to a conventional trial and error approaches concept. Regarding these 

reasons, the prediction models are continuously developed and evaluated by comparing 

predicted machining error with experimental results. Previously, a framework of the 

compositional machining simulation has been proposed for model-based precision machining 

[14-16, 55]. Since the standard metal machining processes are planned by assuming rigid 

workpiece and ideal chip removal, it is difficult to apply for elastomer end-milling because of 

low rigidity and different fracture mechanism. There have been many researches to predict 

the machining process, such as the analysis of workpiece deformation, chip separation, cutting 

force, including the soft materials [17-20, 25, 37-39, 51, 62-65]. Previously, the mechanistic 

approach model has been proposed for predicting machining error in elastomer end-milling 

[21]. However, the proposed mechanistic approach requires the heuristic introduction of an 

empirical model. By utilizing the statistics, the sensational data have been considered to 

construct the machining error model. The machining error in the end-milling process has 

involved machining conditions, workpiece shape, and material removal characteristics. 

During the actual machining situation, workpiece shape and machining conditions such as 

depth of cut and width of cut are varied according to the machining process [21-25, 62]. 

Furthermore, tool rotation speed and feed rate are sometimes adjusted to find the appropriate 

conditions when the new cutting tool, workpiece material, and/or different workpiece shape 
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has to be applied. Regarding the workpiece deformation, the elastic analyses and 

measurement in the elastomer end-milling have been investigated by a similar method for 

metal end-milling [37-39]. However, there have been a limited number of studies on the 

elastomer shape transferring error because the elastomer chip separation mechanism is 

entirely different from the metal mechanism [20, 26]. In the conventional metal end-milling, 

cutting force during the end-milling is one of the dominant factors to machining error. The 

cutting force causes the workpiece deformation, thermal formation, machine tool deflection, 

and tool wear. On the other hand, most elastomers have low rigidity then the relationship 

between cutting force and machining error is considered fundamental characteristics. The 

chip formation mechanisms of elastomers are moderately different from those of metal 

milling. Furthermore, the deformation of the workpiece dominantly affects the machining 

accuracy. These facts indicate that the problem to be tackled for the end-milling of soft objects 

or elastomers is to control the appropriate surface generation of the machined workpiece that 

can overcome by designing an optimized cutting tool shape and/or determining proper 

machining conditions. Because of the large variety of elastomer objects, it is necessary to 

develop a systematic method to aggregate empirical cases to generate a mechanistic model of 

the surface generation process. There is few knowledge of what factors are dominant to the 

error and needed more knowledge in further. Therefore, a preliminary evaluation of the 

important factors is necessary [15]. Shih et al. [27] have reported that the extraordinary 

mechanical properties of elastomer: considerably enduring elongation and low thermal 

conductivity are capable of affect chip formation during machining significantly. In other 

words, tool wear is not a dominant factor for elastomer end-milling. Meanwhile, the 

accumulations of cutting heat and the influence of thermal effects are not a dominant factor 

of the error tendency have been reported [25]. Therefore, it is promising to improve the 

machining accuracy by considering mechanistic surface generation model with the dominant 

factors such as cutting force, workpiece deformation, and machining conditions for elastomer 

end-milling. The analysis target uses the data obtained in the experiments from previous 

research [21], and the machining experiments are carried out under several conditions. In 

addition, in this study, the 18 variables described below are the targets of the analysis items. 

Specifically, for machining error (M.E.), 3 workpiece conditions (width, height, length), 4 

machining conditions (rpm, feed rate, width of cutting (WoC), depth of cutting (DoC)), and 

10 physical quantities during machining (x, 1/x, fx, 1/fx, fx/x, y, 1/y, fy, 1/fy, fy/y) are 

associated. To construct the prediction models, a systematic procedure for creating the 

preliminary experiment which conducted the appropriate machining factors for parameters 

estimation is proposed. 
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4.1 Experimental Setup and Configurations 

 

 

Fig. 4-1 Instruments setup schematic 

 

Figure 4-1 represents a schematic diagram of the experimental setup and configurations in 

which the instruments are detailed in Chapter 2. 

 

Concerning the experimental configuration, the workpiece was stuck by double-side tape on 

a metallic base which was seized together with the dynamometer. In the experiments, there 

are no effects on the thickness of double-stick tape which were evaluated and confirmed based 

on their stability and uniformity. The workpiece has been operated by the down-cutting 

method while a mirror is applied to observe the cutting behavior as a side view reflection 

during the machining process. Meanwhile, the workpiece deformation is monitored by the 

recorded moving images under the image processing method using a synchronized 

transmitting trigger signal from a function generator and a high-speed camera. In actual 

machining, the machining configuration is shown in Fig. 4-1, and an actual experimental setup 

is shown in Fig. 4-2. 
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Fig. 4-2 Actual experimental setup  

 

 

4.2 Preliminary Experiment 

Initially, a preliminary experiment is conducted to obtain the data for model identification. In 

order to identify the machining error model, machining experiments of elastomer end-milling 

with various machining conditions are designed to obtain the cutting forces, the workpiece 

deformation, and the machining error. All machining cases, and machining directions are 

down cut. The concept of the preliminary experiment creation is mentioned in topic 2.3.1 and 

the systematic procedures are appeared.   

 

Table 4-1 Machining conditions for preliminary experiment 

Conditions 1 2 3 4 5 6 

Machining direction Down cut 

Width of cut (W) [mm] 1.0 0.5 0.7 1.0 

Depth of cut (D) [mm] 5.0 10.0 

Rotational speed (R) [rpm] 4000 2000 4000 

Feed Rate (F) [mm/tooth] 0.0125 0.025 

Workpiece width (A) [mm] 5.0 10.0 

Workpiece height (H) [mm] 10.0 20.0 

Workpiece length (L) [mm] 20.0 
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For the machining industry, little preparation for the experiment is a desirable requirement 

due to a necessity to avoid costly and time-consuming trials. Table 4-1 shows the machining 

condition for the preliminary experiment in elastomer end-milling cases. This experiment is 

the central part of a proposed framework for error modelling introduced in the previous 

chapter. There are 6 preliminary experiments for the processing performed in three sections; 

the early stage, middle stage, and final stage. Therefore, the total is 18 machining cases for 

this preliminary experiment. For the results of the machining error of the preliminary 

experiment, the comparison plot of regression proposed models will be shown in Fig. B-1 to 

Fig. B-3, Appendix B. 

 

 

4.3 Conventional Cutting Conditions Model 

Due to using preliminary experiments obtained data, model parameters for deformation 

analysis, cutting force prediction, and coefficients of the empirical models are determined. 

From the machining error modelling framework, in the estimation phase, the machining error 

of the actual machining situations will be calculated, based on the identified cutting force 

model, workpiece deformation model, and machining error model.   

   

In order to evaluate the proposed framework, the simplified evaluation cases are investigated 

by using reported machining cases [21]. One is a direct modelling case, and the other is a 

proposed compositional modelling case. For the direct conventional cutting conditions 

modelling case, only the cutting conditions are introduced as an error model variable. Four 

machining conditions are considered for model construction: width of cut (WoC), depth of 

cutting (DoC), feed rate of cutting, and rotational speed of the spindle, then the machining 

error can be formulated as follows;   

 

 

𝛿 = 𝛼1𝑊 + 𝛼2𝐷 + 𝛼3𝑅 + 𝛼4𝐹 + 𝛼5            ...... (4-1) 

 

 

where W represent width of cut, D represent depth of cut, R represent rotational speed of 

spindle, F represent feed rate of cutting and α1…α5 are model coefficients, and δ is 

machining error. 
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4.4 Mechanistic Model 

The mechanistic modeling for machining error in elastomer end-milling has been introduced 

by Wu, et.al [21]. The model which utilized machining knowledge for empirical model 

formulation was employed. By introducing a mathematical model which reflect process 

knowledge, stabile calculation with limited experimental data. As mentioned in topic 2.2.4, 

thus, the deformation at cutting point can be presented by a function of a displacement of a 

neighborhood point of cutting point. On the other hand, the shape transfer error is 

complicated to model quantitatively because it is affected by a crack generation point, a 

trajectory of crack propagation, and slippage between cutting tool and workpiece. From the 

analysis of crack generation of elastomer, the indentation forces, an indentation depth, and a 

local stiffness are important factors for the crack generation. Because the indentation depth 

can be related to the local workpiece deformation, it is assumed that the shape transfer error 

is affected by the workpiece deformation, cutting force and the local stiffness of workpiece. 

 

The model applied machining knowledge for the empirical model formulation was employed. 

By proposing the mathematical model which reflects process knowledge, the offered model is 

applicable of skipping evaluating the complicated phenomena of elastomer [23-24, 54]. Based 

upon the empirically extracted factors to explain machining error for elastomer end-milling 

phenomena, a simplified error model that able to apply to statistical analysis was introduced 

[21]. Regarding the empirical assumptions, the machining error can be formulated the 

mechanistic model as follows; 

 

 

𝛿 = 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑓𝑥 + 𝛽4𝑓𝑦 + 𝛽5
𝑓𝑥

𝑥
+ 𝛽6

𝑓𝑦

𝑦
+ 𝛽7             ...... (4-2) 

 

 

where x and y represent the displacements of the neighborhood point, fx and fy represent 

cutting forces at a surface generation moment, and 𝛽1 … 𝛽7 are model coefficients, and 𝛿 is 

machining error. The cutting forces have normalized by an axial depth of cut. An approximate 

local stiffness of the workpiece is the fifth and the six-term on the right side of Eq. 4-2. Because 

the displacements and the cutting force can be predicted before machining when the 

appropriate model parameters have been identified, the machining error can be predictable. 
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4.5 Statistical Model 

Regarding the mentioned model, the essential variables are obtained from the insight 

observation of humans. This method can be achieved by human heuristics that cannot be 

confirmed the applicability in advance. For this main reason, it is necessary to establish a more 

systematic methodology to evaluate the candidates of the model variables. As the application 

of the statistical technique to the variables’ evaluation, the principal component analysis 

(PCA) statistical method, used in exploratory data analysis and for making predictive models 

[56-59], is employed for analyzing the error model that is related machining error and 

variables such as machining conditions (depth of cut (DoC), width of cutting (WoC), feed 

rate of cutting (F), and rotational speed of the spindle ) and physical state values (cutting 

force and/or workpiece deformations). The correlation between both machining conditions 

and physical state values to the machining error is considered from the statistical aspect that 

can select the priority related variables for model formation. Based on this idea, the systematic 

model construction procedure is defined as follows; 

 

The purpose of the principal component analysis of this study is to confirm whether the data 

are separated into clusters. Therefore, we do not reduce the principal components according 

to the results and continue to pursue the analytical principal components. However, the idea 

is that 70% to 80% of the total information should be covered. Because the number of 

principal components is adopted, the contribution rates are increased from the top, and the 

cumulative contribution rate reaches 70% to 80%. 

 

According to acquired cutting force, workpiece deformation, and machining error, the 

principal component analysis (PCA) is instructed to recognize the priority relations of 

machining conditions and physics-based parameters that are important for constructing an 

error model. PCA has become a dimensional reduction method to reduce the dimensionality 

of large data sets by condensing a set of variables into a smaller one that preserves the amount 

of data from the large. Obviously, reducing the number of variables in a data set decreases 

accuracy, but the method in dimensional reduction is to trade a little accuracy for simplicity. 

In this study, the following 18 components that can be utilize in actual experiment are 

evaluated. There are multiple numerical values, and determining which parameters have a 

significant influence; [55, 66] 

 

1. Machining error (M.E.)  

2. Workpiece conditions; width (A), height (H), and length (L)  
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3. Machining conditions; rotational speed (R), feed rate (F), width of cutting (W), 

and depth of cutting (D)  

4. Physical state values; displacement terms of neighborhood point; (x), (1/x), (y), 

(1/y) and cutting force terms at a surface generation moment; (fx), (1/fx), (fx/x), 

(fy), (1/fy), (fy/y) 

 

Since some of the 18 variables have different units, the standardization of experimental data 

is performed to establish a certain standard that allows the numerical values between each 

condition to be used in common. Initially, standardization is employed as the first step of the 

PCA procedures. Then covariance matrix, eigenvectors, and eigenvalues are computed. The 

aim is to utilize the feature vector formed using the eigenvectors of the covariance matrix, to 

reorient the data from the original axes to the ones represented by the principal components 

(PC). The total contribution rate of each PC is equal to 1 then the data percentage can be 

rearranged. By ranking eigenvectors in order of eigenvalues, in descending order highest to 

lowest, the principal components in order of significance are obtained. 

 

Regarding PCA is employed for constructing this model, so the general-purpose Python 

programing language is utilized for executing the parameter components analysis. 

Furthermore, since characters other than alphanumeric characters written in the table are not 

displayed, all characters are rewritten to alphanumeric characters. Since performing an 

analysis method, the lengths are all the same and not included in the analysis. 

 

However, the Python programing language needed to perform statistical analysis for coding 

on the scientific computing assist platform, which is used in this research as follows; 

 

 Python version 3.8 (32-bit) 

 Visual Studio Code 

 Anaconda Prompt (Anaconda version 3) 

 

Visual Studio Code and Anaconda Prompt (Anaconda 3) Coordinate and activate. Then call 

Python in the terminal. The program is always executed while interacting with Python. The 

coding of the PCA model generated will be proposed in Appendix C, and the machining error 

as CSV data analyzed will be introduced in Appendix A. Principal component analysis by 

Python is shown in Fig. 4-3. 
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Fig. 4-3 Example of program coding for PCA approach 

 

 

Fig. 4-4 Standardization of target data (factor_analysis.csv) 

 

Figure 4-4 demonstrates the standardization of the numerical values of the target data 

(factor_analysis.csv), and Figure 4-5 expresses the scores of each principal component with a 

total of 81 data. 

 

 

Fig. 4-5 Calculation of principal component score 
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Figure 4-6 plots the principal component scores of the first and second principal components. 

In the plots of PC1 and PC2, the points are not locally concentrated, and there are 

variations. Figure 4-7 shows the plotting of the principal component scores from PC1 to 

PC18. In the plotting of the principal components, there are almost widely scattered. 

 

Fig. 4-6 A plot of principal component score  

 

 

Fig. 4-7 All principal component score plot 
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PC1 was 0.318 (about 32%) and PC2 was 0.182 (about 18%). The total up to PC7 is 0.901 

(about 90%). After PC10, the ratio of each main component is 1% or less, and the total of 

PC10 to PC18 is 0.041, which is about 4%. Figure 4-8 summarizes each contribution rate in 

a pie chart. 

 

 

Fig. 4-8 Contribution rate from PCA 

 

Figure 4-9 presents the contribution rate of each principal component when the total 

contribution rate is 1, and the percentage of the data can be explained by one principal 

component axis. 

 
 

Fig. 4-9 Cumulative contribution rate of main components 
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Furthermore, Fig. 4-9 is a line graph showing the sum of these contribution ratios in 

descending order. The slope of the line segment connecting the contribution ratio is reduced 

greatly after PC10. 

 

 

Fig. 4-10 The eigenvalues of main components 

 

The eigenvalues in this study are shown in Fig. 4-10, and the eigenvectors are shown in Fig. 

4-11. 

 

 

 

Fig. 4-11 Eigenvectors for each principal component condition 
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Fig. 4-12 Coordinated eigenvectors of variables related to PC1 and PC2 

 

In Fig. 4-12, the values of the eigenvectors of each condition related to PC1 and PC2 are 

identified at the coordinate points. 

 

Fig. 4-13 Principal Component observed variable contribution 
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Figure 4-13 shows the plot of principal component scores by comparing the first and second 

PC (PC1 versus PC2). From PCA plotting, there are variations from every component in 

which the scores are not concentrated in one area, locally. Machining error is the target 

objective which principal component scores and eigenvector can determine the influence 

related variables are displacement y, x, the width of cut: W, and feed rate; F. Width, height, 

and length (AxHxL) are workpiece conditions that should be avoided considering to apply the 

error model to various workpiece shape. Based on the PCA approach, the influential variables 

are selected then the machining error model called the statistical model can be formulated the 

hybrid machining conditions and physic-based model as follows;   

 

 

𝛿 = 𝛾1𝑥 + 𝛾2𝑦 + 𝛾3𝑊 + 𝛾4𝐹 + 𝛾5              ...... (4-3) 

 

 

where x and y represent displacements of the neighborhood point, W represent width of cut, 

F represent feed-rate of cutting and 𝛾1 … 𝛾5 are model coefficients, and 𝛿 is machining error.  

 

Furthermore, the correlation coefficients and the multiple regression analysis are applied to 

determine the coefficients and linear regression results of Eq. (4-1) to Eq. (4-3) for 

comparison, respectively. 

 

 

4.6 Machining Error Calculation 

For analyzing the data obtained from the experiments, two statistical methods are used in this 

study as the data analyzer consisted of; 

 

 Correlation coefficient 

 Multiple regression analysis 

 

The correlation coefficient method is used as a data analyzer for all 18 machined data obtained 

from preliminary experiments. The purpose of using is to determine the model's coefficients 

which affected their factors as shown in the prediction model equations. In order to identify 

the comparison of the proposed prediction models as the linear regression results, the data of 

the evaluation experiments will be performed using the multiple regression analysis. The 
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calculated error and the measurement error will be performed by correlation plotting to obtain 

a linear approximate straight line. 

 

4.6.1 Model Coefficient Calculation 

This analysis stage deals with the preliminary experiment in which there are six conditions for 

the processing performed in three sections; the early stage, middle stage, and final stage. 

Therefore, the total is 18 machining cases for this preliminary experiment. By using the 

correlation coefficient analysis, the data obtained from the preliminary experiments are 

computed by the data analyzer software. The results of the calculated coefficients are shown 

in Table 4-2. These coefficients will be substituted in the model equation for predicting the 

calculation of machining error in the next step. 

 

Table 4-2 Machining error prediction model’s variable coefficients  

Conventional model Mechanistic model Statistical model 

Variable Coefficient (α) Variable Coefficient (β) Variable Coefficient (𝛄) 

W 115.828 x 0.512 x 0.368 

D 1.256 y 0.137 y 0.262 

R 0.00389 fx 2.019 W 87.697 

F 7714.154 fy 0.823 F 4195.756 

Interception* -104.715 fx/x -25.134 Interception* -32.807 

  fy/y -13.679   

  Interception* 73.808   

* The intercept value is a constant at the final term of the equation 

  

4.6.2 Multiple Regression Calculation 

The purpose of using the multiple regression analysis is to identify the comparison of the 

proposed prediction models as the linear regression results. From the machining conditions, there 

are 21 evaluation experiments for the processing performed in three sections; the early stage, middle 

stage, and final stage. Therefore, the total is 63 machining cases for this evaluation experiment. After 

calculating the machining error from model equations by variables substitution, the data of the 

evaluation experiments are calculated using this analysis by the data analyzer software. The calculated 

machining error and the measurement machining error are computed to identify a plot of linear 

regression correlation. These correlation plots of the proposed models will be illustrated in the next 

chapter. From the assumption of the model formula and specify the data to be used for executing the 
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regression analysis. The multiple regression analysis results of the conventional cutting conditions, 

the mechanistic, and the statistical model are shown in Table 4-3 to Table 4-5. The normal probability 

plot of the proposed models is shown in Fig. 4-14 to Fig. 4-16. 

 

Table 4-3 Multiple regression analysis of the conventional model  

Regression Statistics 

Multiple R 0.710879 

R Square 0.505349 

Adjusted R Square 0.49724 

Standard Error 33.12819 

Observations 63 

ANOVA      

  df SS MS F Significance F 

Regression 1 68394.02 68394.02 62.31934 6.69E-11 

Residual 61 66946.08 1097.477   

Total 62 135340.1       

  Coefficients 
Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 63.69801 13.4136 4.748762 1.28E-05 36.87585 90.52016 36.87585 90.52016 

M.E. 0.562219 0.071219 7.89426 6.69E-11 0.419808 0.704629 0.419808 0.704629 

 

 

Fig. 4-14 Normal probability of the conventional model 
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Table 4-4 Multiple regression analysis of the mechanistic model  

Regression Statistics 

Multiple R 0.61851 

R Square 0.382555 

Adjusted R Square 0.372433 

Standard Error 40.89061 

Observations 63 

ANOVA      

  df SS MS F Significance F 

Regression 1 63193.59 63193.59 37.79426 6.59E-08 

Residual 61 101994.6 1672.042   

Total 62 165188.1       

  Coefficients 
Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 69.53454 16.55661 4.199806 8.84E-05 36.42755 102.6415 36.42755 102.6415 

M.E. 0.540422 0.087906 6.147704 6.59E-08 0.364642 0.716201 0.364642 0.716201 

 

 

Fig. 4-15 Normal probability of the mechanistic model  

 

 

 

 

 

0

50

100

150

200

250

300

350

0 20 40 60 80 100

M
ac

h
in

in
g
 E

rr
o

r

Sample Percentile

Normal Probability Plot



 

 

Chapter 4: Compositional Machining Error Prediction Models 

61 

 

Table 4-5 Multiple regression analysis of the statistical model  

Regression Statistics 

Multiple R 0.894271 

R Square 0.79972 

Adjusted R Square 0.796437 

Standard Error 18.95126 

Observations 63 

ANOVA      

  df SS MS F Significance F 

Regression 1 87479.8 87479.8 243.5744 5.68E-23 

Residual 61 21908.17 359.1503   

Total 62 109388       

  Coefficients 
Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 49.23481 7.673366 6.416325 2.31E-08 33.89097 64.57865 33.89097 64.57865 

M.E. 0.635843 0.040741 15.60687 5.68E-23 0.554376 0.71731 0.554376 0.71731 

 

 

Fig. 4-16 Normal probability of the statistical model  
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5. Evaluation Experiment and  

Results Discussion 

 
This chapter expressed the evaluation experimental to evaluate machining errors based on 

elastomer end-milling. The evaluation experiment consisting of diverse machining conditions 

and various workpiece dimensions will be proposed. Finally, the results of machining error 

will be discussed and compared. 

 

 

5.1 Evaluation Experiment 

Regarding the preliminary experiment which is used for identifying the machining error 

model in the framework for machining error modelling, Afterward, the machining conditions 

which different from the preliminary experiments are prepared as shown in Table 5-1. 

 

To evaluate the proposed framework of machining error modelling, the cutting force model 

and the workpiece deformation model must also be investigated in principle. However, an 

evaluation of the combined model becomes complex, and it is difficult to find the problem 

when the estimation is not appropriate. Hence, an independent evaluation of the machining 

error model is investigated as a basic evaluation of the machining error model. If the 

machining error calculated with the error model shows good agreement with the measured 

machining error, thus the evaluation of the framework is equivalent to evaluating the cutting 

force model and workpiece deformation model that has been partially reported [25, 64]. 

 

The number of machining conditions with three cases of each is designed for actual machining 

situation experiments. Then the measured cutting force and workpiece deformation are used 

to calculate to determine the machining error. There are 21 evaluation experiments for the 

processing performed in three sections; the early stage, middle stage, and final stage. 

Therefore, the total is 63 machining cases for this evaluation experiment. 
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Table 5-1 Machining conditions for evaluation experiment 

# Width of cut 

(W)  

[mm] 

Depth of cut 

(D)  

[mm] 

Rotational speed 

(R)  

[rpm] 

Feed Rate 

(F) 

[mm/tooth] 

Width x Height x Length 

(A x H x L) 

[mm] 

1 
0.3 

10.0 

4000 

0.0125 

10x10x20 

2 

0.0250 
3 

0.5 
4 2000 

5 0.7 

4000 

6 

1.0 

5.0 

0.0094 

5x10x20 7 0.0188 

8 0.0250 

9 

10.0 

0.0094 10x15x20 

10 

0.0125 

10x10x20 
11 

2000 
12 

10x15x20 13 

4000 
14 0.0188 

15 

0.0250 

10x10x20 
16 

17 2000 
10x15x20 

18 

4000 
19 0.0094 

10x20x20 20 0.0125 

21 0.0188 

 

 

5.2 Machining Error Prediction Results 

To evaluate the machining operations, the measured cutting force and workpiece deformation 

acquired from the evaluation experiments were used to calculate the machining error as the 

estimated error. The estimated error can be compared with the measured machining errors. 

The experimental data for workpiece deformation and cutting force corresponding to 

machining cases which different from parameter identification case, are employed to calculate 

machining error. The coefficients of the direct error model are identified based on machining 
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conditions and measured machining error. The coefficients of the proposed error model are 

identified by measured cutting forces, workpiece displacements, and machining error. A 

coefficient correlation approach is employed to identify the coefficients. Then the multiple 

regression analysis is conducted to execute the plot of a linear regression model for comparing 

the calculated machining error from the model and the actual experimental results. The 

identified error models are used to calculate the machining error for different machining 

conditions. Figure 5-1, 5-2, and 5-3 show comparisons between measured machining error 

and calculated machining error. The proposed models show good agreement to the measured 

error. 

 

5.2.1 Machining Error of Conventional Model 

A simplified evaluation case is a direct modelling case. For the direct modelling case, only 

cutting conditions are introduced as the error model variables. Four machining conditions: 

depth of cut, width of cut, feed rate of cutting, and rotation speed of the spindle are considered 

for model constructing. This machining error model formulation, Eq. 4-1. The measured 

machining error results in comparison to this model are shown in Fig. 5-1.  

 

Fig. 5-1 Measured machining error comparison of the conventional model 
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From Fig. 5-1, the linear regression model for comparing the machining error results between 

the model calculation and actual machining results has been shown. It can be found that the 

different error of estimated and actual machining is 19.20%     

 

5.2.2 Machining Error of Mechanistic Model 

The mechanistic modeling for machining error in elastomer end-milling has been introduced 

by Wu, et.al. [21]. The model utilized machining knowledge for empirical model formulation 

was employed. By introducing a mathematical model which reflects process knowledge, and 

stabile calculation with limited experimental data. The deformation at the cutting point can 

be presented by a displacement function of a neighborhood of the cutting point. On the other 

hand, the shape transfer error is complicated to model quantitatively because it is affected by 

a crack generation point, a trajectory of crack propagation, and slippage between the cutting 

tool and workpiece. From the analysis of the crack generation of elastomer, the indentation 

forces, an indentation depth, and a local stiffness are important factors for the crack 

generation. Because the indentation depth can be related to the local workpiece deformation, 

it is assumed that the shape transfer error is affected by the workpiece deformation, cutting 

force, and the local stiffness of the workpiece. Based on the extracted factors to explain the 

machining error for elastomer end-milling a simplified error model can be applied. A 

comparison of machining error results by mechanistic model (Eq. 4-2) is shown in Fig. 5-2. 

 

Fig. 5-2 Measured machining error comparison of the mechanistic model 
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From Fig. 5-2, the linear regression model for comparing the machining error results between 

the model calculation and actual machining results has been shown. It can be found that the 

different error of estimated and actual machining is 24.18%     

 

5.2.3 Machining Error of Statistical Model 

In this model, the essential variables are obtained from the insight observation of humans. 

This method can be achieved by human heuristics that cannot be confirmed the applicability 

in advance. For this main reason, it is necessary to establish a more systematic methodology 

to evaluate the candidates of the model variables. As the application of the statistical technique 

to the variables’ evaluation, the principal component analysis (PCA) statistical method, used 

in exploratory data analysis and for making predictive models [56], is employed for analyzing 

the error model related to machining error and variables such as machining conditions (depth 

of cut, width of cut, feed rate of cutting, and rotational speed of the spindle) and physical state 

values (cutting force and/or workpiece deformations). The correlation between both 

machining conditions and physical state values to the machining error is considered from a 

statistical aspect that can select the priority related variables for model formation. Based on 

this idea, the statistic model can be constructed as Eq. 4-3, previous chapter. 

 

Fig. 5-3 Measured machining error comparison of the statistical model 
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From Fig. 5-3, the linear regression model for comparing the machining error results between 

the model calculation and actual machining results has been shown. It can be found that the 

different error of estimated and actual machining is 14.79% 

 

5.3 Results Discussion 

A comparison of the calculated (estimated) error results and measured error results of the 

mentioned evaluation experiments (21 conditions with 3 cases of each operation) are shown 

in Table 5-2. 

 

Table 5-2 Comparison of machining error 

Experiment Proposed Model Conventional (α) Mechanistic (β) Statistical (𝛾) 

Preliminary Difference of  11.39 12.38 7.84 

Evaluation machining error (%) 19.20 24.18 14.79 

 

From the obtained information of Table 5-2, presents a comparison of the machining error 

results between the conventional cutting conditions model (α), mechanistic model (β) and 

the statistical model (𝛾) in this research.  

 

In the case of preliminary experiments which purposed to identify coefficient and construct 

the models, the average differences between the measurement machining error and the 

estimation machining error of the proposed error models were approximately 11.39%, 

12.38%, and 7.84%, respectively. (see Fig. B-1 to Fig. B-3 in Appendix B) 

 

Regarding the evaluation experiment, the average differences between the measurement 

machining error and the estimation machining error of the proposed error models were 

approximately 19.20%, 24.18%, and 14.79%, respectively. These results indicate that the 

proposed machining error models can be reasonably predicted when physical state values are 

appropriately predicted. Figure 5-1 and Figure 5-2 show the comparison of the machining 

error results obtained from the proposed conventional and mechanistic models. The error 

rates of both the maximum difference and distribution become large. Figure 5-3 shows good 

agreement with the different machining error rate predictions than previous models, due to 

the PCA-based variables selection has been considered by the significant variable component 

relationship. These indicate that the proposed empirical models of machining error can 

estimate reasonable prediction when cutting force simulation and analysis of workpiece 

deformation predict the appropriate values. 



 

 

6. Conclusion and Further Aspect 

 
This chapter is the final chapter of this dissertation which will express the conclusion of this 

research. Afterward, the tendency of the research will be presented as a further aspect. 

 

 

6.1 Conclusion 

In this research, the conventional direct empirical modelling, mechanistic modelling, and 

statistical modelling of machining error were investigated. Using a quasi-two-dimensional 

cutting on an elastomer was a case study to predict the machining error. The results of the 

proposed models can be expressed by comparing the calculated and the measured machining 

error.  

 

The proposed models were constructed by considering the variables of machining error from 

the cutting force measured in the experiment, the workpiece deformation, and the machining 

conditions. The correlation coefficient and multiple regression analysis were employed to 

create the model. The proposed models' accuracy was evaluated to confirm the validity of the 

results in the evaluation experiment. 

 

In order to express the model results more clearly, the proposed models were compared. The 

systematic procedures were introduced as the modeling framework to construct and identify 

these error models. From the experimental evaluation, the feasibility of the proposed 

framework has been confirmed.  

 

In the case of a suitable approach, it is appropriate to construct an effective data-centric model 

without only human insights. From these case studies of the machining error prediction, the 

proposed procedure can instruct the construction of a suitable error model in the end-milling. 
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6.2 Further Aspect 

The further aspect of research could target to improve more prediction accuracy of the 

machining error model. Firstly, designing a more precise preliminary experiment. Secondly, 

conduct data collection in a larger amount of machining experiments for evaluation. Next, 

consider changing for complex workpiece shape, the tool type, and other materials. 

 

In addition, improving cutting force analysis and workpiece deformation in order to obtain 

more accuracy in error prediction is also necessary. Only conventional estimation is exactly 

insufficient. Therefore, the new theoretical formulas for cutting force prediction examining 

the appropriate release face contact length and uncut amount portion (residual) to define the 

suitable coefficients are currently studied. 
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Appendix  

 

Appendix A: Machining Error Results 

Table A-1 Machining error obtained from preliminary experiments 

# WP size M/C M.E RPM x y fx/h fy/h fx/(x*h) fy/(y*h) F DoC WoC 

1 10x10x20 begin 225.14 2000 104.350 91.350 1.715 7.281 0.016 0.080 0.025 10 1 

2  middle 195.09 2000 50.500 129.475 3.943 6.224 0.078 0.048 0.025 10 1 

3  end 252.67 2000 46.900 130.750 3.533 7.108 0.075 0.054 0.025 10 1 

4 5x10x20 begin 150.26 4000 53.125 51.919 1.589 3.702 0.030 0.071 0.013 5 1 

5  middle 121.26 4000 35.415 34.273 2.017 4.064 0.057 0.119 0.013 5 1 

6  end 116.58 4000 29.858 57.417 1.947 4.184 0.065 0.073 0.013 5 1 

7 10x20x20 begin 293.75 4000 237.188 165.388 1.712 5.674 0.007 0.034 0.025 10 1 

8  middle 205.38 4000 96.331 143.275 1.678 8.055 0.017 0.056 0.025 10 1 

9  end 197.09 4000 34.590 104.650 2.433 7.876 0.070 0.075 0.025 10 1 

10 10x10x20 begin 58.88 4000 30.515 4.904 0.832 2.828 0.027 0.017 0.013 10 0.3 

11  middle 56.16 4000 13.535 9.715 0.735 2.105 0.054 0.046 0.013 10 0.3 

12  end 40.95 4000 15.827 8.467 0.697 2.061 0.044 0.041 0.013 10 0.3 

13 10x10x20 begin 123.31 4000 51.294 43.044 0.704 2.907 0.014 0.148 0.013 10 0.7 

14  middle 97.22 4000 14.148 27.915 0.570 3.584 0.040 0.078 0.013 10 0.7 

15  end 100.15 4000 8.563 32.500 0.748 3.798 0.087 0.086 0.013 10 0.7 

16 10x10x20 begin 149.56 4000 51.071 53.038 0.613 2.975 0.012 0.178 0.013 10 1 

17  middle 120.79 4000 28.506 38.356 0.621 5.510 0.022 0.070 0.013 10 1 

18  end 126.31 4000 13.787 54.894 0.535 5.170 0.039 0.106 0.013 10 1 
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Table A-2 Machining error obtained from evaluation experiments 

# WP size M/C M.E RPM x y fx/h fy/h fx/(x*h) fy/(y*h) F DoC WoC 

1 10x10x20 begin 148.27 2000 69.475 33.125 1.804 2.780 0.026 0.084 0.025 10 0.5 

2  middle 106.59 2000 43.700 33.125 2.341 3.123 0.054 0.094 0.025 10 0.5 

3  end 104.94 2000 45.875 39.300 2.416 3.346 0.053 0.085 0.025 10 0.5 

4 10x10x20 begin 178.2 2000 57.700 52.325 1.750 4.106 0.030 0.078 0.013 10 1 

5  middle 155.11 2000 35.700 60.800 2.995 4.982 0.084 0.082 0.013 10 1 

6  end 169.11 2000 59.100 55.725 2.981 5.313 0.050 0.095 0.013 10 1 

7 10x15x20 begin 217.3 2000 140.200 122.400 1.702 4.961 0.012 0.041 0.013 10 1 

8  middle 166.84 2000 81.800 90.500 3.647 5.371 0.045 0.059 0.013 10 1 

9  end 223.38 2000 55.050 74.750 3.757 5.174 0.068 0.069 0.013 10 1 

10 10x15x20 begin 268.91 2000 178.475 143.250 2.972 6.243 0.017 0.044 0.025 10 1 

11  middle 251.79 2000 112.450 155.125 2.889 6.891 0.026 0.044 0.025 10 1 

12  end 272.08 2000 46.275 135.175 3.314 8.118 0.072 0.060 0.025 10 1 

13 10x10x20 begin 117.66 4000 55.175 49.475 1.819 4.119 0.033 0.083 0.013 10 1 

14  middle 105.29 4000 30.375 36.800 2.387 4.728 0.079 0.128 0.013 10 1 

15  end 105.99 4000 25.125 57.000 1.831 5.888 0.073 0.103 0.013 10 1 

16 10x10x20 begin 221.72 4000 82.875 99.575 2.183 5.230 0.026 0.053 0.025 10 1 

17  middle 205.68 4000 56.700 64.650 1.505 8.557 0.027 0.132 0.025 10 1 

18  end 234.91 4000 18.075 107.400 2.320 8.172 0.128 0.076 0.025 10 1 

19 5x10x20 begin 169.07 4000 50.505 38.240 6.605 3.093 0.131 0.081 0.009 5 1 

20  middle 152.56 4000 11.188 29.313 1.472 3.464 0.132 0.118 0.009 5 1 

21  end 142.47 4000 7.988 43.100 1.580 4.434 0.198 0.103 0.009 5 1 

22 5x10x20 begin 189.46 4000 82.321 60.008 1.460 3.479 0.018 0.058 0.019 5 1 

23  middle 175.42 4000 28.392 74.383 1.702 5.800 0.060 0.078 0.019 5 1 

24  end 202.39 4000 37.935 74.148 2.695 6.033 0.071 0.081 0.019 5 1 

25 5x10x20 begin 283.08 4000 101.012 91.288 1.702 5.064 0.017 0.055 0.025 5 1 

26  middle 239.24 4000 33.769 67.160 2.822 6.533 0.084 0.097 0.025 5 1 

27  end 229.91 4000 38.454 79.413 2.421 7.855 0.063 0.099 0.025 5 1 

28 10x15x20 begin 119.28 4000 93.031 62.906 1.575 3.196 0.017 0.051 0.009 10 1 

29  middle 86.53 4000 42.044 34.604 1.647 3.652 0.039 0.106 0.009 10 1 

30  end 107.87 4000 3.231 41.400 1.641 4.510 0.508 0.109 0.009 10 1 

31 10x15x20 begin 174.52 4000 105.079 66.981 0.916 3.689 0.009 0.055 0.013 10 1 

32  middle 110.25 4000 40.327 64.067 1.517 5.298 0.038 0.083 0.013 10 1 

33  end 118.58 4000 18.921 52.104 2.363 5.466 0.125 0.105 0.013 10 1 
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Table A-2 Machining error obtained from evaluation experiments (cont.) 

# WP size M/C M.E RPM x y fx/h fy/h fx/(x*h) fy/(y*h) F DoC WoC 

34 10x15x20 begin 208.7 4000 134.856 100.994 1.632 4.909 0.012 0.049 0.019 10 1 

35  middle 165.4 4000 56.858 64.233 1.991 6.810 0.035 0.106 0.019 10 1 

36  end 179.65 4000 66.431 37.877 2.149 3.919 0.032 0.103 0.019 10 1 

37 10x15x20 begin 270.83 4000 142.442 129.113 2.065 6.977 0.014 0.054 0.025 10 1 

38  middle 201.3 4000 58.225 90.450 2.369 7.786 0.041 0.086 0.025 10 1 

39  end 216.59 4000 3.825 120.692 2.168 6.825 0.567 0.057 0.025 10 1 

40 10x20x20 begin 252.69 4000 170.644 96.113 1.223 3.545 0.007 0.037 0.009 10 1 

41  middle 173.77 4000 87.756 80.550 1.391 4.165 0.016 0.052 0.009 10 1 

42  end 184.62 4000 60.450 50.500 1.702 4.247 0.028 0.084 0.009 10 1 

43 10x20x20 begin 210.99 4000 179.519 126.131 1.800 3.584 0.010 0.028 0.013 10 1 

44  middle 148.95 4000 95.788 83.531 1.763 3.660 0.018 0.044 0.013 10 1 

45  end 142.54 4000 54.867 97.510 1.557 5.109 0.028 0.052 0.013 10 1 

46 10x20x20 begin 325.13 4000 212.913 147.585 1.901 5.607 0.009 0.038 0.019 10 1 

47  middle 220.76 4000 122.756 95.000 1.848 6.278 0.015 0.066 0.019 10 1 

48  end 216.29 4000 91.879 98.056 2.258 4.919 0.025 0.050 0.019 10 1 

49 10x10x20 begin 78.17 4000 43.796 17.894 0.803 2.740 0.018 0.065 0.013 10 0.5 

50  middle 62.791 4000 12.729 22.454 0.575 2.610 0.045 0.086 0.013 10 0.5 

51  end 61.86 4000 20.648 20.800 0.434 2.157 0.021 0.096 0.013 10 0.5 

52 10x10x20 begin 122 4000 43.900 37.698 0.885 2.658 0.020 0.142 0.025 10 0.3 

53  middle 103.7 4000 24.935 28.902 1.143 3.231 0.046 0.089 0.025 10 0.3 

54  end 112.3 4000 26.723 21.631 1.282 3.387 0.048 0.064 0.025 10 0.3 

55 10x10x20 begin 179.2 4000 60.817 50.129 1.168 4.189 0.019 0.120 0.025 10 0.5 

56  middle 163 4000 24.225 49.525 1.077 4.705 0.044 0.105 0.025 10 0.5 

57  end 153.6 4000 31.369 60.544 1.212 3.975 0.039 0.152 0.025 10 0.5 

58 10x10x20 begin 216.3 4000 69.400 89.573 1.107 5.648 0.016 0.159 0.025 10 0.7 

59  middle 207.7 4000 45.831 57.237 1.176 5.181 0.026 0.110 0.025 10 0.7 

60  end 206.2 4000 33.406 66.396 1.095 6.304 0.033 0.105 0.025 10 0.7 

61 10x10x20 begin 244.9 4000 59.813 79.431 0.978 7.577 0.016 0.105 0.025 10 1 

62  middle 237.1 4000 42.344 78.444 1.089 7.767 0.026 0.101 0.025 10 1 

63  end 255.2 4000 22.435 80.942 1.096 7.892 0.049 0.103 0.025 10 1 
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Appendix B: Preliminary Experiment Machining Error Results 

In the case of preliminary experiments which purposed to identify coefficient and construct 

the models, the average differences between the measurement machining error and the 

estimation machining error of the conventional cutting conditions, the mechanistic, and the 

statistical models were approximately 11.39%, 12.38%, and 7.84%, respectively. 

 

Table B-1 Multiple regression analysis of the conventional model for preliminary  

Regression Statistics 

Multiple R 0.941833 

R Square 0.887049 

Adjusted R Square 0.879989 

Standard Error 22.693727 

Observations 18 

ANOVA df SS MS F Significance F 

Regression 1 64712.55 64712.55 125.65 5.4856E-09 

Residual 16 8240.08 515.01   

Total 17 72952.64    

 
Coefficients 

Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 16.5069 12.7418 1.2955 0.2135 -10.5045 43.5183 -10.5045 43.5183 

m. error 0.8870 0.0791 11.2096 0.0000 0.7193 1.0548 0.7193 1.0548 

  

Fig. B-1 Normal probability of the conventional model for preliminary 
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Fig. B-2 Preliminary machining error comparison of the conventional model 

 

Table B-2 Multiple regression analysis of the mechanistic model for preliminary  

Regression Statistics 

Multiple R 0.97091 

R Square 0.94267 

Adjusted R Square 0.93909 

Standard Error 16.66695 

Observations 18 

ANOVA df SS MS F Significance F 

Regression 1 73082.47 73082.47 263.09 2.35231E-11 

Residual 16 4444.60 277.79   

Total 17 77527.06    

 
Coefficients 

Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 8.3783 9.3580 0.8953 0.3839 -11.4597 28.2162 -11.4597 28.2162 

m. error 0.9427 0.0581 16.2200 0.0000 0.8195 1.0659 0.8195 1.0659 
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Fig. B-3 Normal probability of the mechanistic model for preliminary 

 

 

Fig. B-4 Preliminary machining error comparison of the mechanistic model 
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Table B-3 Multiple regression analysis of the statistical model for preliminary  

Regression Statistics 

Multiple R 0.97685 

R Square 0.95423 

Adjusted R Square 0.95137 

Standard Error 14.98287 

Observations 18 

ANOVA df SS MS F Significance F 

Regression 1 74886.37 74886.37 333.59 3.86022E-12 

Residual 16 3591.78 224.49   

Total 17 78478.15    

 
Coefficients 

Standard 

Error 
t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 6.6883 8.4124 0.7951 0.4382 -11.1452 24.5218 -11.1452 24.5218 

m. error 0.9542 0.0522 18.2644 0.0000 0.8435 1.0650 0.8435 1.0650 

 

  

Fig. B-5 Normal probability of the statistical model for preliminary 
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Fig. B-6 Preliminary machining error comparison of the statistical model 
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Appendix C: PCA Programming 

Table C-1 PCA source code using Python 

 

 

 

 

  

 

# pip install factor-analyzer 

# pip install matplotlib scipy scikit-learn 

 

import pandas as pd 

import numpy as np 

from sklearn.decomposition import PCA #主成分分析 

import matplotlib.pyplot as plt 

 

df = pd.read_csv('E:\\Python\\reference\\factor_analysis.csv') 

 

# 行列の標準化 

dfs = df.iloc[:, 1:].apply(lambda x: (x-x.mean())/x.std(), axis=0) 

dfs.head(81) 

 

# 主成分分析の実行 

pca = PCA() 

feature = pca.fit(dfs) 

 

# データを主成分空間に写像 

feature = pca.transform(dfs) 

 

# 主成分得点 

pd.DataFrame(feature, columns=[ 

"PC{}".format(x + 1)for x in range( 

len(dfs.columns)) 

]).head(81) 
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(Plot with first and second principal components) 

 

plt.figure(figsize=(8,8)) 

plt.scatter(feature[:, 0], feature[:, 1], alpha=0.8, c=list(df.iloc[:, 0])) 

plt.grid() 

plt.title("principal component") 

plt.xlabel("PC1") 

plt.ylabel("PC2") 

plt.show() 

 

from pandas import plotting  

plotting.scatter_matrix( 

pd.DataFrame(feature, columns=[ 

"PC{}".format(x + 1) for x in range(len(dfs.columns)) 

]), figsize=(8,8),c=list(df.iloc[:, 0]), alpha=0.9 

)  

 

plt.show() 

 

pd.DataFrame( 

pca.explained_variance_ratio_,  

index=["PC{}".format(x + 1) for x in range(len(dfs.columns))] 

) 

 

# 累積寄与率を図示する 

import matplotlib.ticker as ticker 

plt.gca().get_xaxis().set_major_locator( 

ticker.MaxNLocator(integer=True) 

) 

plt.plot([0] + list( 

np.cumsum(pca.explained_variance_ratio_) 

), "-o") 

plt.xlabel("Number of principal components") 

plt.ylabel("Cumulative contribution rate") 

plt.grid() 

plt.show() 
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(PCA eigenvalues coding) 

 

 

pd.DataFrame( 

pca.explained_variance_,  

index=["PC{}".format(x + 1) for x in range(len(dfs.columns))] 

) 

 

# PCA の固有ベクトル 

pd.DataFrame(pca.components_, 

columns=df.columns[1:], 

index=["PC{}".format(x + 1) for x in range(len(dfs.columns))] 

) 

 

# 第 1 主成分と第 2 主成分における変数の固有ベクトルをプロットする 

plt.figure(figsize=(8,8)) 

for x, y, name in zip(pca.components_[0], pca.components_[1], df.columns[1:]): 

    plt.text(x,y,name)  

 

plt.scatter(pca.components_[0], pca.components_[1], alpha=0.8) 

plt.grid() 

plt.xlabel("PC1") 

plt.ylabel("PC2") 

plt.show() 
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