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A Note on the Intersection of Alternately Orientable Graphs and
Cocomparability Graphs
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SUMMARY We studied whether a statement similar to the Ghouila-
Houri’s theorem might hold for alternating orientations of cocomparability
graphs. In this paper, we give the negative answer. We prove that it is
NP-complete to decide whether a cocomparability graph has an orienta-
tion that is alternating and acyclic. Hence, cocomparability graphs with
an acyclic alternating orientation form a proper subclass of alternately ori-
entable cocomparability graphs. We also provide a separating example, that
is, an alternately orientable cocomparability graph such that no alternating
orientation is acyclic.
key words: alternately orientable graphs, cocomparability graphs, recog-
nition problem, simple-triangle graphs

1. Introduction

All graphs in this paper are finite without loops or multiple
edges. Unless stated otherwise, graphs are assumed to be
undirected, but we also deal with directed graphs. We write
uv for the undirected edge joining two vertices u and v, and
we write (u, v) for the directed edge from u to v. For a graph
G = (V,E), we sometimes write V(G) for the vertex set V
and write E(G) for the edge set E .

Let G be an undirected graph. An orientation of G is
a directed graph obtained from G by orienting each edge of
G, that is, replacing each edge uv ∈ E(G) with either (u, v)
or (v,u). We will denote an orientation only by its edge set
because the vertex set is clear from the context.

An orientation F of a graph G is transitive if (u, v) ∈ F
and (v, w) ∈ F imply (u, w) ∈ F for any three vertices u, v, w
of G, see Fig. 1(a) for example. A graph is transitively
orientable if it has a transitive orientation. Transitively ori-
entable graphs are also called comparability graphs. The
complement of a comparability graph is a cocomparability
graph, where the complement of a graph G is the graph G
such that V(G) = V(G) and uv ∈ E(G) ⇐⇒ uv < E(G) for
any two vertices u, v of G.

Comparability graphs and cocomparability graphs are
two of the most fundamental classes in graph theory, see,
e.g., [1]–[3]. They can be recognized and a transitive orien-
tation can be obtained in polynomial time, see, e.g., [2], [4].

Transitive orientations naturally correspond to posets.
A partially ordered set (poset for short) is a pair P = (V,�),
where V is a ground set and � is a binary relation on V that
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Fig. 1 An example of transitive orientation. The poset is depicted by its
Hasse diagram. The orientation F is a transitive orientation of G. The
graph G is the comparability graph of P, and the poset P corresponds to
F .

is reflexive, transitive, and antisymmetric. We denote u ≺ v
if u � v and u , v. Two elements u, v ∈ V are comparable
in P if u ≺ v or u � v. The comparability graph of a poset
P is the graph G = (V,E) such that uv ∈ E if u and v are
comparable in P, see Figs. 1(c) and 1(a) for example. Note
that a poset P can be viewed as the transitive orientation F
of its comparability graph such that (u, v) ∈ F ⇐⇒ u ≺ v
in P for any two elements u, v of P, see Figs. 1(c) and 1(a)
for example. The complement of comparability graph of a
poset P is the cocomparability graph of P.

An orientation F of a graph G is quasi-transitive if
(u, v) ∈ F and (v, w) ∈ F imply uw ∈ E(G), that is, (u, w) ∈
F or (w,u) ∈ F. In other words, an orientation F is quasi-
transitive if for any vertices u, v, w with uv, vw ∈ E(G) and
uw < E(G), we have (u, v), (w, v) ∈ F or (v,u), (v, w) ∈ F.

An orientation is transitive if and only if it is quasi-
transitive and acyclic. Thus, every transitively orientable
graph is quasi-transitively orientable. The classical theorem
of Ghouila-Houri [5] states that the converse also holds. We
note that another proof of the theorem is shown in [6].

Theorem 1. If a graph has a quasi-transitive orientation,
then it has quasi-transitive orientation that is acyclic.

An orientation of a graph is alternating [7] if it is transi-
tive on every chordless cycle of length greater than or equal
to 4, that is, the directions of the edges alternate on the
cycles, see Fig. 2(a) for example. A graph is alternately ori-
entable if it has an alternating orientation. Note that, by
definition, every transitively orientable graph is alternately
orientable. Alternately orientable graphs can be recognized
and an alternating orientation can be obtained in polynomial
time [7].

It was conjectured that a statement similar to the

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers



1224
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Fig. 2 An example of alternating orientation. The poset is depicted
by its Hasse diagram. The orientation F is an alternating orientation
of the cocomparability graph of P. Note that F is not transitive since
(a2, c2), (c2, b1) ∈ F but (a2, b1) < F . The union of F and the transitive
orientation corresponding to P is acyclic.

Ghouila-Houri’s theorem (i.e., Theorem 1) might hold for
alternating orientation [7], that is, it was conjectured that
every alternately orientable graph has an alternating orien-
tation that is acyclic. Later, however, a counterexample was
provided [8]. Thus, graphs with an acyclic alternating orien-
tation form a proper subclass of alternately orientable graphs.
Moreover, it is NP-complete to decide whether a graph has
an alternating orientation that is acyclic [9].

Recall that a cocomparability graph is the complement
of a transitively orientable graph. A cocomparability graph is
a permutation graph if and only if it is transitively orientable,
see, e.g., [2]. Permutation graphs can be recognized in linear
time [4].

A cocomparability graph is a trapezoid graph if it is
alternately orientable, but the converse does not hold [10].
Thus, alternately orientable cocomparability graphs form a
proper subclass of trapezoid graphs. Alternately orientable
cocomparability graphs can be recognized in polynomial
time [9].

A cocomparability graph G is a simple-triangle
graph [11] if and only if there is an alternating orienta-
tion F of G and a transitive orientation D of G such that
F ∪D is acyclic [12]. Figure 2 shows an example from [12].
Thus, simple-triangle graphs form a subclass of alternately
orientable cocomparability graphs. This inclusion is known
to be proper [12]. Simple-triangle graphs can be recognized
in polynomial time [9], [13], [14].

It was recently shown that, for simple-triangle graphs,
a statement similar to the Ghouila-Houri’s theorem holds as
follows. Let G be a cocomparability graph, and let D be a
transitive orientation of G. We say that an orientation F of
G is ∆-free if F ∪ D contains no directed cycle (u, v, w) with
(u, v), (v, w) ∈ F and (w,u) ∈ D. Note that F ∪ D is acyclic
if and only if F is acyclic and ∆-free. Thus, G is a simple-
triangle graph if and only ifG has an alternating orientation F
that is acyclic and ∆-free. The following statement holds [9].

Theorem 2. If a cocomparability graph has an alternating
orientation that is ∆-free, then it has an alternating orienta-
tion that is acyclic and ∆-free.

Now, it is natural to ask whether every alternately ori-
entable cocomparability graph has an alternating orientation
that is acyclic. We give a negative answer to this question.

2. Preliminaries

A cycle of a graph G is a sequence of distinct vertices
(v1, v2, . . . , vk) of G with v1v2, v2v3, . . . , vk−1vk, vkv1 ∈ E(G).
The length of the cycle is the number k of the edges on the
cycle. A chord of a cycle is an edge joining two vertices that
are not consecutive on the cycle. A cycle is chordless if it
contains no chords.

Let F be an orientation of G. A directed cycle of F
is a sequence of distinct vertices (v1, v2, . . . , vk) of G with
(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) ∈ F. The length of a
directed cycle is defined analogously to the undirected case.

Any cocomparability graph contains no chordless cycle
of length greater than or equal to 5, see, e.g., [15], [16].
Thus, we have the following.

Lemma 3. An orientation of a cocomparability graph is
alternating if and only if it alternates on every chordless
cycle of length 4.

Any chordless cycle of odd length n has no alternating
orientation if n ≥ 5. Since the directions of the edges alter-
nate on every cycles of even length, we have the following.

Lemma 4. An alternating orientation is acyclic if and only
if it contains no directed cycles of length 3.

3. NP-Completeness

The following is our main result.

Theorem 5. It is NP-complete to decide whether a graph has
an alternating orientation that is acyclic, even if the graph
is a cocomparability graph.

Proof. We can verify in polynomial time whether an ori-
entation is alternating and acyclic. Thus, the problem is in
NP. We now show a polynomial-time reduction from the be-
tweenness problem, which is known to be NP-complete [17].

The betweenness problem is as follows. We are given a
positive integer n and a set T of m ordered triples of distinct
elements of [n], where [n] denotes the set {1,2, . . . ,n}. Each
triple of T is called a betweenness constraint. A permutation
π on [n] satisfies a constraint (a, b, c) ∈ T if π(a) < π(b) <
π(c) or π(a) > π(b) > π(c). The betweenness problem is to
decide whether there is a permutation on [n] that satisfies all
constraints of T .

Assume that the constraints of T are numbered from
1 to m, and let (a(k), b(k), c(k)) denote the k-th constraint.
We construct a poset P = (V,�) as follows, see Fig. 3. Let
p,q,r, s be functions from [m] to [4m] such that

p(k) = 4k − 3,q(k) = 4k − 2,
r(k) = 4k − 1, and s(k) = 4k .
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Fig. 3 An induced subposet of P depicted by its Hasse diagram. We
omit the relations betweenVh andVh′ with h + 2 ≤ h′ for simplicity.

The elements of P are partitioned so that

V =
⋃

h∈[4m]
Vh, where

Vh =


Ṽh if h = p(k) or h = s(k),
Ṽh ∪ {uk,u′k} if h = q(k),
Ṽh ∪ {wk, w

′
k
} if h = r(k),

Ṽh = {vi,h : i ∈ [n]}.

The relations of P is as follows:

1. vi,h ≺ vi,h+1 for any i ∈ [n] and h ∈ [4m − 1].
2. For any k ∈ [m],

va(k),p(k) ≺ uk ≺ wk ≺ vb(k),s(k),

vb(k),p(k) ≺ u′k ≺ w
′
k ≺ vc(k),s(k).

3. uk ≺ v and u′
k
≺ v for any k ∈ [m] and v ∈ Ṽr(k).

4. v ≺ v ′ for any v ∈ Vh and v ′ ∈ Vh′ with h + 2 ≤ h′.

It is easy to verify that P is transitive, and hence, a poset.
Let G be the cocomparability graph of P. It is clear that

P and G can be constructed in time polynomial in n and m. It
remains to show that G has an acyclic alternating orientation
if and only if there is a permutation on [n] satisfying the
betweenness constraints.

Suppose that G has an alternating orientation F that
is acyclic. It alternates on (vi,h, vj ,h, vi,h+1, vj ,h+1) for any
i, j ∈ [n] and h ∈ [4m − 1]. Hence, (vi,0, vj ,0) ∈ F ⇐⇒

(vi,h, vj ,h) ∈ F. For any k ∈ [m], the orientation F alternates
on the following chordless cycles:

(va(k),p(k), vb(k),p(k),uk,u′k), (uk,u
′
k, wk, w

′
k),

(wk, w
′
k, vb(k),s(k), vc(k),s(k)).

Then we would have the following equivalences:

(va(k),p(k), vb(k),p(k)) ∈ F ⇐⇒ (uk,u′k) ∈ F
⇐⇒ (wk, w

′
k) ∈ F

⇐⇒ (vb(k),s(k), vc(k),s(k)) ∈ F .

Thus, (va(k),0, vb(k),0) ∈ F ⇐⇒ (vb(k),0, vc(k),0) ∈ F.
We now define a permutation π by π(i) < π( j) ⇐⇒

(vi,0, vj ,0) ∈ F. Since F is acyclic, π is well-defined. Since
π(a(k)) < π(b(k)) ⇐⇒ π(b(k)) < π(c(k)) for any k ∈ [m],
the permutation π satisfies the betweenness constraints.

Suppose that there is a permutation π on [n] that sat-
isfies the betweenness constraints. We assume without loss
of generality π(1) < π(2) < · · · < π(n). We define an
orientation F of G as follows:

1. For any i, j ∈ [n] with i < j,

• (vi,h, vj ,h) ∈ F for any h ∈ [4m],
• (vi,h, vj ,h+1), (vi,h+1, vj ,h) ∈ F for any h ∈ [4m − 1].

2. For any i ∈ [n] and k ∈ [m],

• (vi,p(k),uk) ∈ F if i < a(k) and
(uk, vi,p(k)) ∈ F if a(k) < i,

• (vi,q(k),uk) ∈ F if i ≤ a(k) and
(uk, vi,q(k)) ∈ F if a(k) < i,

• (vi,p(k),u′k) ∈ F if i < b(k) and
(u′

k
, vi,p(k)) ∈ F if b(k) < i,

• (vi,q(k),u′k) ∈ F if i ≤ b(k) and
(u′

k
, vi,q(k)) ∈ F if b(k) < i,

• (vi,q(k), wk), (vi,r(k), wk) ∈ F if i ≤ b(k) and
(wk, vi,q(k)), (wk, vi,r(k)) ∈ F if b(k) < i,

• (vi,s(k), wk) ∈ F if i < b(k) and
(wk, vi,s(k)) ∈ F if b(k) < i,

• (vi,q(k), w ′k), (vi,r(k), w
′
k
) ∈ F if i ≤ c(k) and

(w ′
k
, vi,q(k)), (w

′
k
, vi,r(k)) ∈ F if c(k) < i,

• (vi,s(k), w ′k) ∈ F if i < c(k) and
(w ′

k
, vi,s(k)) ∈ F if c(k) < i.

3. For any k ∈ [m],

• (uk,u′k), (uk, w
′
k
), (wk,u′k), (wk, w

′
k
) ∈ F

if a(k) < b(k) < c(k),
• (u′

k
,uk), (u′k, wk), (w

′
k
,uk), (w ′k, wk) ∈ F

if a(k) > b(k) > c(k).

We first prove that F is alternating. By Lemma 3, it
suffices to show that F alternates on every chordless cycle of
length 4. Note that each cycle consists of two vertices from
Vh and two vertices fromVh+1 for some h ∈ [4m−1], because
Vh induces a clique for each h ∈ [4m] and there is no edge
between Vh and Vh′ with |h − h′ | ≥ 2. Let G[Vp(k) ∪ Vq(k)]

denote the subgraph of G induced by Vp(k) ∪ Vq(k). The
subgraph G[Vp(k) ∪ Vq(k)] contains the following chordless
cycles:

(vi,p(k), vj ,p(k), vi,q(k), vj ,q(k)) with i, j ∈ [n],
(vi,p(k), va(k),p(k), vi,q(k),uk) with i ∈ [n] \ {a(k)},
(vi,p(k), vb(k),p(k), vi,q(k),u′k) with i ∈ [n] \ {b(k)},
(va(k),p(k), vb(k),p(k),uk,u′k).

Then we can check that F alternates on the cycles. Similarly,
F alternates on every chordless cycle of G[Vr(k) ∪Vs(k)] and
G[Vs(k) ∪ Vp(k+1)]. The subgraph G[Vq(k) ∪ Vr(k)] contains
the following chordless cycles:
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Fig. 4 Separating examples. Posets are depicted by their Hasse diagrams.

(vi,q(k), vj ,q(k), vi,r(k), vj ,r(k)) with i, j ∈ [n],
(uk,u′k, wk, w

′
k).

Then we can check that F alternates on the cycles. Thus, F
is an alternating orientation.

We now prove that F is acyclic. Suppose that F con-
tains a directed cycle. By Lemma 4, the cycle consists of
three vertices. Since there is no edge betweenVh andVh′ with
|h− h′ | ≥ 2, the cycle consists of vertices from Vh ∪Vh+1 for
some h ∈ [4m − 1]. It is clear that G[

⋃
h∈[4m] Ṽh] contains

no directed cycles. We also have that G[Vq(k)] and G[Vr(k)]

contains no directed cycles for every k ∈ [m]. Suppose
that G[Vp(k) ∪ Vq(k)] contains a directed cycle. Note that
(uk, vi,p(k)) ∈ F ⇐⇒ (uk, vi,q(k)) ∈ F for any i ∈ [n] \
{a(k)}. Similarly, (u′

k
, vi,p(k)) ∈ F ⇐⇒ (u′

k
, vi,q(k)) ∈ F

for any i ∈ [n] \ {b(k)}. Note also that (vi,p(k), vj ,p(k)) ∈
F ⇐⇒ (vi,p(k), vj ,q(k)) ∈ F ⇐⇒ (vi,q(k), vj ,p(k)) ∈
F ⇐⇒ (vi,q(k), vj ,q(k)) ∈ F for any i, j ∈ [n]. Therefore,
G[Vq(k)] contains a directed cycle, a contradiction. By sim-

ilar arguments, we have that G[Vr(k) ∪ Vs(k)] contains no di-
rected cycles. Since (wk, vi,q(k)) ∈ F ⇐⇒ (wk, vi,r(k)) ∈ F
and (w ′

k
, vi,q(k)) ∈ F ⇐⇒ (w ′

k
, vi,r(k)) ∈ F for any i ∈ [n],

if G[Vq(k) ∪ Vr(k)] contains a directed cycle, then G[Vr(k)]

contains a directed cycle, a contradiction. Therefore, F is
acyclic, and the theorem holds. �

4. Separating Examples

Theorem 5 indicates that cocomparability graphs with an
acyclic alternating orientation form a proper subclass of al-
ternately orientable cocomparability graphs, because alter-
nately orientable cocomparability graphs can be recognized
in polynomial time [9]. We now show a separating example.

Example 6. The graph D in Fig. 4(b), which is the cocom-
parability graph of the poset D in Fig. 4(a), is alternately
orientable, but no alternating orientation is acyclic.
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Proof. Suppose that D has an alternating orientation F,
which alternates on the following chordless cycles:

(c1, c5, b3,a3), (c1,a3, b3, c4),

(b3, c4, b1, b2), (b1, b2, c5, c3).

Then we would have the following equivalences:

(c1, c5) ∈ F ⇐⇒ (c1,a3) ∈ F ⇐⇒ (b3, c4) ∈ F
⇐⇒ (b1, b2) ∈ F ⇐⇒ (c5, c3) ∈ F .

The orientation F also alternates on the following chordless
cycles:

(c1, c5, b3,a3), (b3, c5, c2,a3),

(c2,a3,a2,a1), (a2,a1, c3, c1).

Then we would have the following equivalences:

(c1, c5) ∈ F ⇐⇒ (b3, c5) ∈ F ⇐⇒ (c2,a3) ∈ F
⇐⇒ (a2,a1) ∈ F ⇐⇒ (c3, c1) ∈ F .

Thus, F contains a directed cycle (c1, c5, c3) if (c1, c5) ∈ F
and a directed cycle (c5, c1, c3) if (c5, c1) ∈ F. Therefore, no
alternating orientation of D is acyclic. It is routine work to
see that D is alternately orientable. �

Theorem 5 also indicates that simple-triangle graphs
form a proper subclass of cocomparability graphs with an
acyclic alternating orientation. A separating example can be
found in [12].

Example 7. The graph W in Fig. 4(d), which is the cocom-
parability graph of the posetW in Fig. 4(c), has an orientation
that is alternating and acyclic. The graph W is not a simple-
triangle graph.

Proof. As shown in [12], the graphW is not a simple-triangle
graph. It is straight to see thatW has a unique (up to reversal)
alternating orientation that is acyclic. �

5. Concluding Remarks

Inspired by the recent result for simple-triangle graphs (i.e.,
Theorem 2), we studied whether a statement similar to
the Ghouila-Houri’s theorem (i.e., Theorem 1) might hold
for alternating orientations of cocomparability graphs. In
this paper, we give the negative answer. We prove that it
is NP-complete to recognize cocomparability graphs with
an acyclic alternating orientation, indicating that simple-
triangle graphs form a proper subclass of cocomparability
graphs with an acyclic alternating orientation, which is a
proper subclass of alternately orientable cocomparability
graphs. We also provide the separating examples.
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