

2段縦型撹拌槽における交換流量

メタデータ	言語: Japanese
	出版者:公益社団法人化学工学会
	公開日: 2023-10-05
	キーワード (Ja): 撹拌槽, 撹拌, 交換流量, 槽径, 混合
	キーワード (En): Stirred Vessel, Agitation, Exchange
	Rate, Vessel Diameter, Mixing
	作成者: 大平, 勇一, 島田, 祐樹, 佐野, 航, 島津, 昌光
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/0002000058

2段縦型撹拌槽における交換流量

大平 勇一节・島田 祐樹・佐野 航・島津 昌光

室蘭工業大学大学院工学研究科 環境創生工学系専攻,050-8585 北海道室蘭市水元町27-1

キーワード: 撹拌槽, 撹拌, 交換流量, 槽径, 混合

2 つのタービン翼を備えた 2 段縦型撹拌槽の交換流量におよぼすリング状仕切板の開孔率, 撹拌速度の影響を実験的に検討した. 翼径 D_iは槽径 D_Tの 1/2 とした. 交換流量 Q は撹拌速度 n,開孔率 A_rに比例して大きくなった. 2 段縦型撹拌槽の場合でも,修正無次元交換流量 Q/(nD_i³A_r)と撹拌レイノルズ数の関係は 3 段縦型撹拌槽の場合と同じであった. また,修正無 次元交換流量 Q/(nD_i³A_r)は 2 段縦型撹拌槽の槽高さの-1.7 乗に比例することがわかった.

緒

発酵によって製造される日本酒や醤油などの液状食品は同一日 時,同一室内で製造を開始しても発酵槽ごとに品質にバラツキが生 じる.そのため、複数の発酵製品を混合して品質を揃える混合操作 が必要となる.しかし,混合を行う際の操作条件や時間は経験によ るところが大きく,混合に必要以上の時間をかけている場合が多い. 省エネルギーの観点から最適混合時間の推算方法が求められてい る.混合に用いられる槽は直径に対して高さ2-3倍のものが多い. この条件では十分な長さを必要とする拡散モデル(Nagata et al., 1957)の適用は難しい.

著者らは多段縦型撹拌槽の逆流量,交換流量の定量化について検 討を進めている.多段横型撹拌槽に逆混合モデル (Ando *et al.*, 1981; Fukuda *et al.*, 1990) を 6 段縦型撹拌槽に適用した.撹拌液として水 を用いた場合,交換流量 Q を含む Eq. (1) によって供給流量 q の 広い範囲にわたって逆流量fを推定できることを明らかにするとと もに交換流量 Q を求める式を導出した (Ohira *et al.*, 2011).

$$f = Q - \frac{1}{2}q \tag{1}$$

さらに, 水飴水溶液と濃度 10 kg m⁻³ 以下の CMC 水溶液を用いて, 6 段縦型撹拌槽の交換流量 Q におよぼす液粘度の影響を実験的に 検討した (Ohira *et al.*, 2013). 交換流量 Q, 撹拌速度 n, 翼径 D_i, 開孔率 A_r からなる修正無次元交換流量を Q/(nD_i³A_r), 撹拌レイノル ズ数を N_{Re} とすると,

$$\frac{Q}{nD_{\rm l}^3 A_{\rm r}} = a N_{\rm Re}^{\ b} \tag{2}$$

となる.ここで、Eq. (2) 中の定数 a, b は撹拌レイノルズ数 N_{Re} の範囲によって定まる値であり、次のようになる.

$$a = 3.1 \times 10^{-4}, \ b = 1.0$$
 (1×10²< N_{Re} < 7×10²) (3)

 $a = 3.2 \times 10^{-3}, \ b = 0.50$ (8×10²< N_{Re}< 4×10³) (4)

```
a = 0.20, \qquad b = 0.0 \qquad (4 \times 10^3 < N_{\rm Re} < 2 \times 10^4) \quad (5)
```

同手法を槽径 0.10 m および 0.17 m の 3 段縦型撹拌槽に適用したところ, 撹拌レイノルズ数 $N_{\rm Re}$ が 1×10³よりも大きい範囲で測定した交換流量 Qは,

<i>a</i> = 0.030,	b = 0.20	$(1 \times 10^3 < N_{\rm Re} < 6 \times 10^3)$	(6)
a = 0.17,	b = 0.0	$(6 \times 10^3 < N_{\rm Re} < 2 \times 10^4)$	(7)

で推算できることを報告した (Ohira et al., 2019; Ohira and Shimadzu, 2021). 6 段縦型撹拌槽と 3 段縦型撹拌槽でレイノルズ数依存性が 異なっている.両縦型撹拌槽で共通しているのは最上槽と最下槽の 2 槽であり,異なっているのは組み込まれている中間槽の数である. 6 段縦型撹拌槽は中間槽 4 つが組み込まれており,その比率は 4/6 (=2/3)である.一方の 3 段縦型撹拌槽は中間槽 1 つが組み込まれ ており,その比率は 1/3 である.組み込まれた中間槽の数が影響し ていると予想される.中間槽を組み込まない 2 段縦型撹拌槽で定量 的な検討を行えば,中間槽がない 2 段縦型撹拌槽の交換流量におよぼ す撹拌速度,開孔率,槽高さの影響について実験的検討を行った.

1. 理論

前報(Ohira *et al.*, 2011, 2013, 2019; Ohira and Shimadzu, 2021)までと同様,交換流量*Q*の測定には横型撹拌槽で導いた液混合時間測定法(Ando *et al.*, 1990)を適用した.各槽を完全混合と仮定すると、トレーサーの物質収支式は次のようになる.

$$\frac{v}{2}\frac{dc_1}{d\theta} = Q(C_2 - C_1) \tag{8}$$

$$\frac{v}{dc_2} = Q(C_1 - C_2) \tag{9}$$

$$\frac{1}{2} \frac{1}{d\theta} - Q(C_1 - C_2)$$
 (1)
れらの式を、初期条件:

 $\theta = 0, \quad C_1 = C_0, \quad C_2 = 0$

で解くと、第1槽と第2槽のトレーサー濃度差 $\Delta C (= C_1 - C_2)$ は次式で表すことができる.

Fig.1 Schematic diagram of experimental apparatus

Fig.2 Tracer concentration difference as a function of time

$$\Delta C = C_0 exp\left(-\frac{4Q}{V}\theta\right) \tag{10}$$

第1槽と第2槽のトレーサー濃度差ΔCの経時変化を調べ,片対数 グラフにプロットする.プロットを直線近似すると,その直線の傾 きの値は Eq. (10)の-4Q/Vと一致する.この関係から交換流量Q を求めることができる.

なお,混合時間は Eq. (10) より求められる. Eq. (2) 等を用い て操作条件から交換流量 Q をあらかじめ求めておき,初濃度 C_0 , 製品の許容誤差 (ΔC),液体積 V を定めれば混合時間 θ を求めるこ とができる.

2. 実験装置および方法

交換流量測定用実験装置は 2 段縦型撹拌槽と計測部からなる. **Figure 1**に 2 段縦型撹拌槽の概略図を示す. 2 段縦型撹拌槽は内径 $D_{\rm T}$ が 0.10 m のアクリル樹脂製で,高さ Hは 0.20–0.40 m である. 邪魔板は $D_{\rm T}$ /10 の幅のものを 4 枚対称に取り付けた. 撹拌レイノル ズ数が大きい範囲においても検討できるよう,内径 0.10 m の 2 段 縦型撹拌槽に板厚 0.8 mm のリング型アルミニウム板を仕切板とし て装着し,孔径 70 mm, 85 mm のものを用意した. それぞれの開孔 率 $A_{\rm T}$ は 0.716,0.484 であり,仕切板を装着しない場合の開孔率 $A_{\rm T}$

Fig.3 Exchange rate Q as a function of stirring speed n

は 0.994 になる. 2 段縦型撹拌槽の高さ H/2 の位置にリング型仕切 板を設け,撹拌槽内を 2 等分した. 1 段あたりの高さを h とすると 縦横比 h/D_{T} は 1.0–2.0 となる. 仕切板位置によって形成された 2 つ の撹拌槽中央に翼径 D_{I} が槽径 D_{T} の I/2の Rushton 型 6 枚羽根ター ビン翼を取り付けた. 導電率センサー(Kenis 製)を 2 段縦型撹拌 槽の最上槽である第 1 槽と最下槽である第 2 槽に設置した. 計測 した導電率は記録計(サイエンスキューブ,Kenis 製)を介してパ ソコンに取り込んだ. 撹拌液として温度 20±1 Cのイオン交換水(ρ = 1.0×10^{3} kg m⁻³, μ = 1.0 mPas)を用いた. 撹拌速度 n は 0.50–4.5 s⁻¹の範囲で変化させた. 塩化カリウム (1 級,和光純薬工業製)をイ オン交換水に溶解させた 1 kmol m⁻³ 塩化カリウム水溶液をトレー サーとして用いた. 2 段縦型撹拌槽内の液体積が 1530 mL であるた め,塩化カリウム水溶液を添加しても液体積の変化が無視できるよ う,液体積の約 1/1000 である 1.5 mL を添加した. 完全に混合する と 2 段縦型撹拌槽内のトレーサー濃度は 10^{-3} kmol m⁻³ となる.

実験操作は前報(Ohira and Shimadzu, 2021)と同様で,2 段縦型 撹拌槽の第1槽のトレーサー濃度 C_1 と第2槽のトレーサー濃度 C_2 の差であるトレーサー濃度差 $\Delta C (=C_1-C_2)$ の経時変化を測定した. 前述の理論に基づいてトレーサー濃度差 ΔC の経時変化から交換 流量Qを求めた.

3. 実験結果および考察

ー例として、槽高さ 0.20 m、撹拌速度 1.0 s⁻¹、開孔率 0.994 (仕 切板未設置) の場合のトレーサー濃度差の経時変化を Figure 2 に 示す.トレーサーを添加するとトレーサー濃度は急激に増加し、約 10s 後から減少した.同図中に示すように高濃度差部分のデータを 直線近似し、その直線の傾きを求めた. Eq. (10) に基づき交換流量 Qを計算すると、1.73×10⁻⁵ m³ s⁻¹ となる.他の条件についても同様 に測定を行い、交換流量 Qを求めた. 2 段縦型撹拌槽の交換流量 Qと撹拌速度 n の関係を Figure 3 に示す.開孔率 A_r によらず、撹拌 速度 n を大きくすると交換流量 Qは大きくなった.各条件でデー タが直線状に並んでいるため、撹拌速度 2.0 s⁻¹以上のデータを直線 で近似してその傾きを求めた.傾きは開孔率 A_r ごとにほぼ 1.0 とみ なすことができる.2 段縦型撹拌槽の交換流量 Qは撹拌速度 n の

Fig.4 Value of Q/n as a function of the opening ratio of the ring-type partition plate A_r

1.0 乗に比例することがわかった.

 $Q \propto n^{1.0} \tag{11}$

なお, 撹拌速度 n が小さい条件では傾き 1.0 の直線から若干はずれ ている. これは 3 段縦型撹拌槽でも見られた現象であり, 後述する ように撹拌レイノルズ数 N_{Re}が 6.0×10³以下の場合である.

次に撹拌速度 2.4 s⁻¹以上(撹拌レイノルズ数が 6×10³以上)のデ ータを対象として、交換流量 Qを撹拌速度 n で除した値 Q/nと開 孔率 A_r の関係を Figure 4 に示す.若干のバラツキがあるもののデ ータはほぼ直線状に並んでいる.データを直線で近似し、その傾き を求めると 1.0 であった.交換流量 Qを撹拌速度 n で除した値 Q/nは仕切板の開孔率 A_r の 1.0 乗に比例することが確認された.

$$\frac{Q}{n} \propto A_r^{1.0} \tag{12}$$

修正無次元交換流量 $Q/(nD_i^3A_t)$ と撹拌レイノルズ数 N_{Re} の関係を Figure 5 に示す. 撹拌レイノルズ数 N_{Re} が 1.0–6.0×10³ では, 撹拌レ イノルズ数 N_{Re} の増加とともに修正無次元交換流量 $Q/(nD_i^3A_t)$ の値 は大きくなった. 撹拌レイノルズ数 N_{Re} が 6.0×10³以上では, 修正 無次元交換流量 $Q/(nD_i^3A_t)$ の値は 0.17 でほぼ一定であった. このこ とから, 修正無次元交換流量 $Q/(nD_i^3A_t)$ の撹拌レイノルズ数 依存性 は Eq. (2) 式で表すことができ, パラメータ $a \ge b$ の値はそれぞれ 次の値となる.

a = 0.030, b = 0.20	$(N_{\rm Re} = 1 - 6 \times 10^3)$	(13)
a = 0.17, b = 0.0	$(N_{\rm Re} = 6 \times 10^3 - 1.2 \times 10^4)$	(14)

Eq. (13) は Eq. (6) と同じであり, Eq. (14) も撹拌レイノルズ数 $N_{\rm Re}$ の範囲が異なるものの Eq. (7) と同じである. 同図中には 3 段 縦型撹拌槽のデータ (Ohira *et al.*, 2019) を破線で示した. 撹拌レイ ノルズ数 $N_{\rm Re}$ が 1.0×10³–1.2×10⁴ では 3 段縦型撹拌槽のデータとほ ぼ一致した.

中間槽が4槽組み込まれている6段縦型撹拌槽の場合,撹拌レ イノルズ数 N_{Re} が1.0–4.0×10³の場合,修正無次元交換流量 $Q/(nD_i^3A_r)$ は撹拌レイノルズ数 N_{Re} の0.5乗に比例し(Ohira et al., 2013),今回検討した2段縦型撹拌槽,および中間槽が1槽組み込まれている3段縦型撹拌槽の修正無次元交換流量 $Q/(nD_i^3A_r)$ は撹拌

Fig.5 Modified dimensionless exchange rate $Q/(nD_i^3A_r)$ as a function of Reynolds number N_{Re}

Fig.6 Parameter a as a function of aspect ratio h/D_T

レイノルズ数 N_{Re} が 1.0-6.0×10³ で撹拌レイノルズ数 N_{Re} の 0.2 乗に 比例する (Ohira *et al.*, 2019). 中間槽の減少とともに撹拌レイノル ズ数 N_{Re} のべき数の値が小さくなる理由については現在も検討中 であるが,中間槽が多くなると修正無次元交換流量 $Q/(nD_i^3A_i)$ の撹 拌レイノルズ数依存性に影響をおよぼしていると推察される.

続いて、6 枚羽根タービン翼は 2 枚に固定したまま撹拌槽の高さ $H を変え、1 段あたりの縦横比 h/D_T の影響を実験的に検討した.な$ お、前報(Ohira et al., 2011, 2013, 2019; Ohira and Shimadzu, 2021)および前述の知見から開孔板の影響は修正無次元交換流量 $<math>Q/(nD_i^3A_i)$ でまとめる限り影響はない.そこで、開孔板未装着(A_r = 0.994)のみで実験した.縦横比 h/D_T が1.5の場合を●で、2.0の場 合を◆で Figure 5 中に示した.縦横比 h/D_T が大きくなると修正無 次元交換流量 $Q/(nD_i^3A_i)$ は小さくなった.これは撹拌翼 2 枚から伝 達されるエネルギーが一定であるにもかかわらず、液体積が大きく

なったため、液混合がしづらくなったものと思われる.しかし、縦 横比 h/DT が 1.0 の場合と同様, 撹拌レイノルズ数 NRe が大きくなる と撹拌レイノルズ数 NReの 0.20 乗に比例して修正無次元交換流量 $Q/(nD_i^3A_r)$ は大きくなり, 撹拌レイノルズ数 N_{Re} が 6×10^3 以上ではほ ぼ一定となった. このことから, 修正無次元交換流量 Q/(nDi³Ar)の 撹拌レイノルズ数依存性は Eq. (2) で表すことができ, パラメータ aとbの値は縦横比 h/DT が 1.5 の場合は,

a = 0.016, b = 0.20	$(N_{\rm Re} = 1 - 6 \times 10^3)$	(15)
a = 0.084, b = 0.0	$(N_{\rm Re} = 6 \times 10^3 - 8.5 \times 10^3)$	(16)
縦横比 h/DT が 2.0 の場合は、		

<i>a</i> = 0.0098, <i>b</i> = 0.20	$(N_{\rm Re} = 1 - 6 \times 10^3)$	(17)
a = 0.056, b = 0.0	$(N_{\rm Re} = 6 - 8.5 \times 10^3)$	(18)

となる. 各撹拌レイノルズ数範囲で求めたパラメータ a と縦横比 h/D_T の関係を Figure 6 に示す. 撹拌レイノルズ数 $N_{\rm Re}$ の範囲に関係 なくパラメータ a は縦横比 h/DT の-1.7 乗に比例することがわかっ た.この結果より、現時点で2段縦型撹拌槽の交換流量0を求め る無次元式は、Eq. (2) に縦横比 h/DTを組み込んだ次式となること がわかった.

$$\frac{Q}{nD_l^3 A_r} = aN_{Re}^{\ b} \left(\frac{h}{D_T}\right)^{-1.7} \tag{19}$$

なお, Eq. (19) のパラメータ a, b は Eqs. (13) と (14) と同じで ある.

結 言

多段縦型撹拌槽における修正無次元交換流量におよぼすレイノ ルズ数依存性解明を目的に、6枚羽根タービンを装着した槽径0.10 mの2 段縦型撹拌槽の交換流量におよぼす撹拌速度と開孔率の影 響について実験的検討を行った.まず,2段縦型撹拌槽においても 交換流量Qは撹拌速度nの1.0乗,開孔率Arの1.0乗に比例した. 中間槽のある6段縦型撹拌槽,3段縦型撹拌槽の場合の結果と比較 すると、中間槽が多くなると修正無次元交換流量 Q/(nD_i³A_r)の撹拌 レイノルズ数依存性に影響をおよぼしていることがわかった.また, 縦横比 h/D_Tが大きくなると修正無次元交換流量 Q/(nD_i³A_r)の絶対値 は小さくなるが, 撹拌レイノルズ数依存性は変わらないことがわか った.2 段縦型撹拌槽における修正無次元交換流量 Q/(nD_i³A_r)の撹 拌レイノルズ数 N_{Re}および縦横比 h/D_T 依存性は Eqs. (13) と(14) と(19)であらわすことができる.

[謝辞] 本研究を遂行するにあたり、室蘭工業大学技術部島崎剛氏

から支援いただきました.また、室蘭工業大学の坪野祐亮君に協力いた だきました. ここに記して謝意を示します.

Nomenclature

а	= parameter in Eqs. (2) and (19)	[-]
A	= sectional area	[m ²]
$A_{\rm r}$	= opening ratio of the ring-type partition plate	[-]
b	= parameter in Eqs. (2) and (19)	[-]
C_1	= tracer concentration in 1st cell	[kmol m ⁻³]
C_2	= tracer concentration in 2nd cell	[kmol m ⁻³]
D_{i}	= impeller diameter	[m]
D_{T}	= vessel diameter	[m]
f	= back flow rate	$[m^3 s^{-1}]$
h	= height of cell	[m]
Н	= height of vessel	[m]
n	= stirring speed of impeller	$[s^{-1}]$
N	= total cell number	[-]
$N_{\rm Re}$	= Reynolds number $(=D_i^2 n\rho/\mu)$	[-]
q	= feed flow rate	$[m^3 s^{-1}]$
Q	= exchange rate	$[m^3 s^{-1}]$
ΔC	= tracer concentration difference	[kmol m ⁻³]
μ	= liquid viscosity	[Pa s]
ρ	= liquid density	[kg m ⁻³]
θ	= time	[s]

Literature cited

- Ando, K., M. Shirahige, T. Fukuda and K. Endoh: "Effects of Perforated Partition Plate on Mixing Characteristics of Horizontal Stirred Vessel," AIChE J., 27, 599-604 (1981)
- Ando, K., E. Obata, K. Ikeda and T. Fukuda; "Mixing Time of Liquid in Horizontal Stirred Vessels with Multiple Impellers," Can. J. Chem. Eng., 68, 278-283 (1990)
- Fukuda, T., K. Idogawa, M. Akiyoshi and K. Ando; "Backmixing of Liquid in Horizontal Multiple-Impeller Vessels," Can. J. Chem. Eng., 68, 1052-1056 (1990)
- Nagata, S., W. Eguchi, H. Kasai and I. Morino; "Studies on Longitudinal Mixing in Continuous Flow Reactors with Stirrers," Kagaku Kogaku, 21, 784-791 (1957)
- Ohira, Y., H. Nagano, M. Shimadzu, E. Obata and K. Ando; "Back Flow Rate and Exchange Rate of Liquid in a Stirred Vessel with Six Multiple Impellers,' Kagaku Kogaku Ronbunshu, 37, 483-489 (2011)
- Ohira, Y., M. Shimadzu, E. Obata and K. Ando; "Effect of Liquid Viscosity on Back Flow Rate and Exchange Rate of Liquid in a Vertical Stirred Vessel with Six Multiple Impellers," Kagaku Kogaku Ronbunshu, 39, 13-17 (2013)
- Ohira, Y., K. Nakajima, M. Shimadzu, E. Obata and K. Ando; "Back Flow Rate and Exchange Rate of Liquid in a Stirred Vessel with Three Multiple Impellers," Kagaku Kogaku Ronbunshu, 45, 1-5 (2019)
- Ohira, Y. and M. Shimadzu; "Effect of Vessel Diameter on Exchange Rate in a Vertical Stirred Vessel with Three Multiple Impellers," Kagaku Kogaku Ronbunshu, 47, 96-99 (2021)

Exchange Rate in a Vertical Stirred Vessel with Two Multiple Impellers

OHIRA Yuichi, SHIMADA Yuki, SANO Wataru and SHIMADZU Masamitsu

Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan

Keywords: Stirred Vessel, Agitation, Exchange Rate, Vessel Diameter, Mixing

The effects of stirring speed *n* and opening ratio of a ring–shaped partition plate A_r , on the exchange rate of vertical vessels with two multiple impellers *Q* were experimentally investigated. The impeller diameter D_i was one–half of the vessel diameter D_T . The exchange rate *Q* was proportionally greater than the stirring speed of impellers *n* and the opening ratio of the ring–type partition plate A_r . In the case of two–stage vertical stirred vessel, the relationship between the modified dimensionless exchange rate $Q/(nD_i^3A_r)$ and the agitated Reynolds number N_{Re} was the same as in the case of the three–stage vertical stirred vessel. The modified dimensionless exchange rate $Q/(nD_i^3A_r)$ was found to be proportional to the height of the two–stage vertical stirred vessel at the power of -1.7.