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Abstract: Although the design of the reward function in reinforcement learning is important. It is difficult to design a system
that can adapt to a variety of environments and tasks. Therefore, we propose a method to autonomously generate rewards from
sensor values, enabling task- and environment-independent reward design. Under this approach, environmental hazards are
recognized by evaluating sensor values. The evaluation used for learning is obtained by integrating all the sensor evaluations that
indicate danger. Although prior studies have employed weighted averages to integrate sensor evaluations, this approach does not
reflect the increased danger arising from a higher amount of more sensor evaluations indicating danger. Instead, we propose the
integration of sensor evaluation using logarithmic transformation. Through a path learning experiment, the proposed method was
evaluated by comparing its rewards to those gained from manual reward setting and prior approaches.
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1. INTRODUCTION
Recent years have seen an increase in the socioeconomic

demand for robots[1-3]. Specifically, unmanned robots have
been introduced in complex and changeable environments
such as disaster sites, to minimize human fatalities. Fully
autonomous robots are expected to not only accomplish their
tasks, but also detect hazards and avoid hardware and soft-
ware failures. Therefore, reinforcement learning (RL)[4]
has been used to discover appropriate environmental actions
through trial and error. Owing to its versatility, RL has
been employed for numerous complex and practical appli-
cations[5, 6]. Reward is an important element of RL, as the
reward function’s design affects the learning ability. Within
learning tasks and environments, higher complexity neces-
sitates a more thorough contextual understanding increasing
the burden on the reward function’s designer. Accordingly,
many researches have been conducted on the design of re-
ward functions for reducing the design burden and enabling
adaptive learning. For example, there are methods such as in-
verse reinforcement learning which estimates rewards from
actions[7], and methods that design curiosity as an internal
reward[8, 9].

As an autonomous reward design method, we propose
Self-Generation of Reward (SGR)[10-13], wherein rewards
are generated by evaluating input values to the robot’s on-
board sensors. Using task- and environment-independent
evaluation indicators, our objective is to help robots adapt
to a variety of environments. In particular, the evaluation
proposed thus far have enabled the recognition of danger.

† Yuya Ono is the presenter of this paper.

Because robots are usually equipped with multiple sen-
sors, multiple sensor evaluations are combined to generate
rewards. In the integration of sensor evaluations, only those
evaluations that indicate danger are used to obtain a weighted
average. However, this approach does not reflect the fact that
the level of danger increases with the amount of individual
sensor evaluations that indicate danger. Therefore, our in-
tegration approach is designed to vary monotonically with
the evaluations. In this paper, we propose the integration of
sensor evaluations using logarithmic transformation. Conse-
quently, changes in the level of danger are reflected appro-
priately. Within this study, we conducted simulation experi-
ments using path learning and compared our method’s results
with those obtained by two types of manual reward function,
and prior approaches. Designing rewards that consider the
task and environment

2. SELF-GENERATION OF REWARD
The following section, provides an outline of SGR, evalu-

ation indicators and the calculation of sensor evaluations.

2.1. Outline of the method
The SGR model is based on the learning process of an or-

ganism in a real environment, with minimal instruction from
others. Organisms act according to their evaluation of plea-
sure and displeasure in response to external stimuli obtained
via sensory organs[14, 15]. Similarly, an agent may evalu-
ate the current state by expressing its pleasure or displeasure
based on input values picked up by on-board sensors. Fur-
thermore, evaluations in RL can be expressed as rewards for
states and actions. In other words, we presume that sensor-



Fig. 1. System diagram of SGR

based evaluations would enable the agent to learn indepen-
dently regardless of its environment or task. Figure 1 illus-
trates SGR system.

In SGR, environmental stimuli are acquired by the agent
via sensors, and the obtained sensor values are evaluated by
specific indicators to generate rewards. These indicators ex-
tend the feelings of pleasure and displeasure found in living
organisms to a wide variety of sensors.

Currently, we propose three types of evaluation indicators:
magnitude of input, predictability of input, and time with no
input. All of these indicators are designed to target the sense
of displeasure.

2.2. Evaluation Indicators
The following section describes the calculation method of

the evaluation value for each indicator in SGR. These evalu-
ation values range is from 0 to 1. The evaluation value cor-
responding to the magnitude of input EM i(tn) is obtained
by Eq. (1), where the constants maxi and Ni are pre-set
by the sensors mounted on the robot. The magnitude of
Ni determines the amount of change in the evaluation value
EM i(tn).

EM i(tn) =

[
1 + exp

{
µi(tn)− maxi+δi(tn)

2

Ni(maxi − δi(tn))

}]−1

(1)

EM i : Evaluation value for the magnitude of input,
i : Sensor number,
tn : n-th input in action at time t,
µi : Average of input values,
δi : Threshold,
maxi : Maximum input value, Ni : Constant

We now define the average of input values µi(tn) and
threshold δi(tn). First, the average of input values µi(tn)
used in the evaluation indicator is obtained by Eq. (2). This
figure is used to handle multiple inputs.

µi(tn) =
1

n

n∑
j=0

inputi(tj) (2)

µi : Average of the input values, inputi : Input value

The threshold δi(tn) is the base value of evaluation, as
EM i(tn) produces a higher evaluation when the input is

smaller than δi(tn). δi(tn) is updated for every a sensor input
according to Eq. (3). This allows the agent to autonomously
perform evaluations appropriate to the environment.

δi(tn)← δi(tn) + βi{µi(tn)− δi(tn)} (3)

δi : Threshold, βi : Constant

The evaluation value Ep i(tn) for predictability of input
is obtained by Eq. (4) using the prediction error Di(tn) and
constant Si. Here, Di(tn) is calculated from the absolute
value of the difference between the predicted and measured
values of the input from Eq. (5). Predicted values of the
input fi(tn) are calculated using Eq. (6) by generating them
using support vector regression (SVR)[16]. The input value
of SVR is a constant number of inputs of sensor i from t1 to
tn−1.

EP i(tn) = exp

{
−Di(tn)

2

Si

}
(4)

Di(tn) = |inputi(tn)− fi(tn)| (5)

fi(tn) = wTϕ(tn) + b (6)

EP i : Evaluation value for predictability of input,
Di : Prediction error, Si : Constant,
fi : Predicted values of input using SVR,
w : One-dimensional coefficient vector,
ϕ : Feature transformation functions in kernel functions,
b : Bias

The evaluation value ET i(tn) corresponding to time with
no input is obtained by Eq. (7) using the variable di(tn) and
constant ki. Here, a longer duration wherein the input value
remains zero corresponds to a lower evaluation. The de-
gree of reduction in evaluation is determined by the variable
di(tn), which increments at every instance the input value is
0, according to Eq. (8).

ET i(tn) = exp

{
−di(tn)

ki

}
(7)

di(tn) =

{
γidi(t− 1n) (inputi(tn) ̸= 0)
di(t− 1n) + 1 (inputi(tn) = 0)

(8)

ET i : Evaluation value for time with no input,
di : Function to detect no input, ki : Constant,
γi : Attenuation

2.3. Calculation of Sensor Evaluation
The following section describe the overall calculation of

sensor evaluation. Because each sensor i must be represented
by a single evaluation value, the three evaluation indicators
must be integrated. Accordingly, the sensor evaluation value
Ei(tn) is defined as the weighted geometric mean of the val-
ues obtained from Eqs. (1), (4), and (7). The integrated value
is obtained according to Eq. (9). By integrating only those
evaluations lower than 0.5, which represents the midpoint of
the evaluation value range, it is possible to express the danger



level as sensory information. Disregard of evaluation values
is represented by setting the weights to 0 or 1 using Eq. (10).
The m-squared root in Eq. (9) is determined by the sum of
the weights obtained by Eq. (11). If the evaluation values for
all indicators are disregarded, sensor i is disregarded com-
pletely.

Ei(tn) ={
m
√
EM i(tn)ωM · EP i(tn)ωP · ET i(tn)ωT (m ̸= 0)

0.5 (m = 0)

(9)

ωx =

{
1 (Ex i < 0.5)
0 (Ex i ≥ 0.5)

(10)

m = ωM + ωP + ωT (11)

Ei(tn) : Sensor evaluation value, m : Sum of weights,
ωx : Weight of evaluation indicator x,
Ex i : Value of evaluation indicator x

Subsequently, the multi-input sensor evaluation value is
obtained. Because multiple inputs are used simultaneously,
the sensor evaluation is updated with the evaluations previ-
ous inputs along with that of the current input. The updated
equation for evaluation MEi at sensor i is expressed as Eq.
(12), wherein MEi

is updated at each input using the dis-
count rate γe, and initialized at each evaluation.

MEi ←MEi + γe(Ei(tj)−MEi) (12)

MEi : Evaluation of sensor i, γe : Discount rate,

Furthermore, because robots are generally mounted with
multiple sensors, the sensor evaluations require integration.
This process is performed using only those sensor evalua-
tions corresponding to m ̸= 0 in Eq. (11). First, the range
of evaluation values MEi

is changed from −1 to 1 using Eq.
(13) for the sake of convenience. The integration equation for
multiple sensor evaluations is defined as a weighted average
as in Eq. (14). The weights used for this weighted average
are obtained in Eq. (15).

M ′
Ei

= 2MEi − 1 (13)

M∗
prev. =

∑
i∈sensor ω(M

′
Ei
)M ′

Ei∑
i∈sensor ω(M

′
Ei
)

(14)

ω(M ′
Ei
) =

exp(−x1(M
′
Ei

+ 1))cos(x2(M
′
Ei

+ 1) + x3)

x4
(15)

M ′
Ei

: Evaluation of sensor i after range changes,
MEi

: Evaluation of sensor i,
M∗

prev. : Integrated evaluation of multiple sensors,

num : Total number of sensors to be integrated,
ω(MEi

) : Weight coefficient,
sensor : Set of sensors to be integrated
x1, x2, x3, x4 : constant

3. INTEGRATION OF SENSOR EVALUA-
TIONS USING LOGARITHMIC TRANS-
FORMATION

This following section describes the proposed method of
integrating sensor evaluations using logarithmic transforma-
tion of the sum of sensor evaluations. Although the prior
study calculated the integrated evaluation by weighted av-
erage of the sum of ones, the risk detection using that in-
tegrated evaluation is problematic. The problem is that the
value of only one danger is sometimes more dangerous when
the evaluation of only one danger is compared to the eval-
uation of multiple dangers. Because the more danger there
is, the more dangerous we consider the situation, it is prob-
lematic to detect dangers as described above. In this paper,
we consider integrating the sensor evaluations by summing
them.

However, we do not believe that the sum of the sensor
evaluations and the integrated evaluation are simply propor-
tional. This causes the greater the danger rating, the less
likely one is to perceive a difference in danger. When making
comparisons in integrated evaluations, how much difference
depends on the ratio. Thus, there is a logarithmic relationship
between the total sensor evaluation and the integrated eval-
uation. Therefore, in this study, the integrated evaluation is
the logarithmic transformation of the sum of the sensor eval-
uations to express the sum of the evaluations of the situation
as dangerous and the convergence to dangerous.

Equation (16) is shown as an integrated method of evalua-
tion using a logarithmic transformation. Because the current
evaluation indicators only focus on danger, a higher level of
danger must correspond to a lower evaluation. The cumula-
tive sum is therefore expressed as 1 −MEi

. The constant ρ
can be adjusted according to the type and number of sensors
used. The range of evaluation values is changed from Eq.
(17) for use in learning.

Mprop. = 1− ln
(
1 + ρ

∑
i∈sensor

(1−MEi)
)

(16)

M∗
prop. = Mprop. − 1 (17)

Mprop. : Integrated evaluation of multiple sensors,
MEi : Evaluation of sensor i, ρ : Constant,
sensor : Set of sensors to be integrated,
M∗

prop. : Evaluation for learning

4. SIMULATION EXPERIMENT
4.1. Experiment Summary

The experiment conducted in this study simulates a robot
learning a path, with the objective of selecting a path with
the minimal amount of danger, thus minimizing the potential
for malfunctions. The underlying purpose of this experiment
was to verify an evaluation based on the total amount of dan-
ger. The experimental setting was a 7×9 two-dimensional
grid map as shown in Fig. 2. The robot moves to each Sub-
sequent square by selecting one of four directions. The robot
was able to recognize its own coordinates, and was mounted



Fig. 2. Experimental environment

Table 1. Experimental settings

Number of trials 1000
Definition of one trial End of 200 actions

or Reaching the Goal
Learning Methods Q-Learning

Action Selection Methods ε-greedy algorithm
Goal reward 1

Reward for one action -0.05
Learning rate α 0.3
Discount rate γ 0.99

Table 2. Agent Parameters

Move time per one square 2[s]
Sampling rate of sensors 50[inputs/s]

Maximum value of vibration sensor 10
Minimum value of vibration sensor 0

Maximum value of temperature sensor 100
Minimum value of temperature sensor 0

Maximum value of collision sensor 1
Minimum value of collision sensor 0

with three types of sensors: vibration, temperature, and col-
lision. Four different reward designs were compared: two
types of manual reward function, SGR, and the proposed
method.

The experimental settings are listed in Table 1. The robot
performed path learning using RL, with Q-learning as the
action learning method, and ε-greedy method as the action
selection method. All action values were updated according
to Eq. (18). The reward rt+1 was determined by each of the
four approaches. The random probability ε in the ε-greedy
method, determined by Eq. (19), decreased with each suc-
cessive trial.

Q(st, at)←
Q(st, at) + α[rt+1 + γmax

b
Q(st+1, b)−Q(st, at)]

(18)

ε = 0.5× 0.99trial (19)

Q(st, at) : Action value, st : State at time t,
at : Action at time t, rt+1 : Reward,
α : Learning rate (0 < α ≤ 1),
γ : Discount rate (0 ≤ γ ≤ 1),
ε : Random probability, trial : Number of trials

The following parameters were used in this experiment.
The agent required 2[s] to move one square, and received
50[inputs] for 1[s] , in accordance with Table 2. Thus, the
agent received 100 [inputs] per action. In the first half, in-
puts were transmitted from the square in the current state to
the sensor, and in the second half, inputs were transmitted
from the square in the next state to the sensor. The input val-
ues of each sensor were set according to Eqs. (20), (21), and
(22).

inputvib. =

{
8 + 0.5 rand (uneven road)
2 + 0.5 rand (paved road) (20)

inputtemp. =

{
70 (high temperature)
20 (normal temperature) (21)

inputcoll. =

{
1 (collision)
0 (non-collision) (22)

inputvib. : Input value of vibration sensor,
rand : Random variable (−1 ≤ rand ≤ 1),
inputtemp. : Input value of temperature sensor,
inputcoll. : Input value of collision sensor

4.2. Manual Reward Setting
The following section describes the manual design of the

reward function in this experiment. The reward function was
set for each sensor. Two types of functions were used: con-
stant reward setting, and a reward the varies linearly with the
sensor values. Constant rewards are defined by Eqs. (23)-
(25).

rvib. =

{
−1 (uneven road)
0 (paved road) (23)

rtemp. =

{
−1 (high temperature)
0 (normal temperature) (24)

rcoll. =

{
−1 (collision)
0 (no-collision) (25)

rvib. : Reward for vibration,
rtemp. : Reward for temperature,
rcoll. : Reward for collision

Equations (26) and (27) correspond to reward functions
that vary linearly with sensor input, which is randomly se-
lected among the sensor inputs obtained from the next state’s
squares. However, the reward function for collisions was the
same as in Eq. (25).

rvib. = −
inputvib. −minvib.

maxvib. −minvib.
(26)

rtemp. = −
inputtemp. −mintemp.

maxtemp. −mintemp.
(27)

rvib. : Reward for vibration,
rtemp. : Reward for temperature,
min : Minimum value of sensor,
max : Maximum value of sensor

The next step is to determine the reward using Eqs. (28)
and (29)), wherein weights are assigned to the rewards for
each sensor.

rt+1 = rEX + 0.3rvib. + 0.3rtemp. + 0.4rcoll. (28)
rEX = rstep + rgoal (29)
rt+1 : Reward, rEX : External reward,
rstep : Reward for one action, rgoal : Goal reward



Table 3. Parameters for evaluation indicators
　　　　 vib. temp. coll.

N 0.08 0.08 0.08
Initial value of δi 5.0 10.0 0.5

βi 0.001 0.001 0.001
Si 20 20 20
ki 250 250 2× 106

4.3. Reward Setting by SGR
This section describes how rewards are set by SGR. The

parameters of various evaluation indicators are listed in Ta-
ble 3. The parameters of Eq. (15) are x1 = 2.0, x2 = 2.4,
x3 = 0.5 and x4 = 1.1. Reward generation using an ex-
isting method is performed according to Eq. (30), whereas
reward generation using the proposed method is performed
according to Eq. (31). Equation (29) is used to obtain rEX .
Assume a constant ρ = 1.0.

rt+1 = rEX +M∗
prev. (30)

rt+1 = rEX +M∗
prop. (31)

rt+1 : Reward, rEX : External reward,
M∗

prev. : Evaluation value using existing approach,

M∗
prop. : Evaluation value using proposed method

4.4. Experimental Results and Discussion
A comparative experiment was conducted between four

types of reward settings: a constant manual reward setting
(Manual1), a linearly varying manual reward setting (Man-
ual2), an existing reward generation method (PrevSGR) and
the proposed method (PropSGR). Tables 4 and 5 list the re-
ward values for the up and down actions at coordinates (3,
b) and (5, b) respectively, as well as theup and down actions
at coordinates (3, f) and (5, f) respectively, which represent
the branching points in the path learning process. Comparing
the (3, b) and (5, b) routes, the (5, b) route is preferable, as
it exhibits less danger than the (3, b) route. Likewise, the (3,
f) route is preferable in the latter pair. From Tables 4 and 5,
Manual1, Manual2, PropSGR are given the reward to select
the ideal path. However, in PrevSGR, the reward for the (5,
b) route is lower than that for the (3, b) route. Table 6 lists
each sensor’s evaluations as details of the reward obtained

Table 4. Reward comparison of manual settings

(coordinate, action) Manual1 Manual2
((3, b), up) −0.65 −0.500796

((5, b), down) −0.35 −0.341027
((3, f), up) −0.35 −0.307131

((5, f), down) −0.65 −0.509011

Table 5. Reward comparison of SGR settings

(coordinate, action) PrevSGR PropSGR
((3, b), up) −0.756178 −1.017360

((5, b), down) −0.874597 −0.688434
((3, f), up) −0.639627 −0.635723

((5, f), down) −0.824031 −0.993790

by PrevSGR. The evaluation value of 0.5 was not used for
reward generation. Table 6 shows that the (5, b) route in-
cludes only one dangerous sensor evaluation, whereas the (3,
b) route has two such evaluations. Because both sensor eval-
uations for (3, b) exceed that for (5, b), averaging will not
result in a lower evaluation for the former. Consequently,
the (3, b) route was deemed more rewarding in PrevSGR.
Likewise, the reward for the (5, f) route was higher than that
for the (3, f) route even after averaging the evaluations. De-
tails corresponding to the rewards obtained by the proposed
method are listed in Table 7. In particular, a comparison be-
tween the (3, b) and (5, b) routes reveals a lower evaluation
corresponding to multiple sensor evaluations of danger.

The numbers of actions in each trial for each reward de-
sign are displayed in Fig. 3. These results demonstrate that
learning converges for all methods. Furthermore, the timing
of convergence is slightly faster for manual reward designs.
However, the purpose of SGR is to reduce the burden of re-
ward design, so we believe that a slight error is not a problem
for the performance difference. We therefore conclude that
SGR achieves equivalent performance to that of manual re-
ward setting.

The learning paths in each reward design are shown in
Fig. 4. These results indicate that only PrevSGR deviated
from the ideal path, whereas all other methods learned the
ideal path. Based on the previous discussion, it is considered
that the ideal path could not be learned because an appropri-
ate reward was not given in PrevSGR. PropSGR was able to
learn the ideal path as efficiently as the manually-set reward
function. Therefore, we were able to perform RL without
directly designing a reward function.

5. CONCLUSION
This study focused on the issue of misleading danger eval-

uation under the conventional approach. To mitigate this
issue, a monotonically varying integration was performed
according to evaluation values. Furthermore, a logarithmic
transformation was employed to appropriately integrate the

Table 6. Rewards and sensor evaluations in PrevSGR
(coordinate, Sensor evaluation

action) Reward vib. temp. coll.
((3, b), up) −0.756178 0.115371 0.196597 0.5

((5, b), down) −0.874597 0.0877015 0.5 0.5

((3, f), up) −0.639627 0.5 0.205187 0.5
((5, f), down) −0.824031 0.0665316 0.218741 0.5

Table 7. Rewards and sensor evaluations in PropSGR

(coordinate, Sensor evaluation
action) Reward vib. temp. coll.

((3, b), up) −1.017360 0.155395 0.213625 0.5
((5, b), down) −0.688434 0.106486 0.5 0.5

((3, f), up) −0.635723 0.5 0.203711 0.5
((5, f), down) −0.993790 0.129237 0.301062 0.5



Fig. 3. Number of actions per trial

Fig. 4. Learning pass

values. Experiments also confirmed that rewards were ac-
curately obtained in response to multiple sensor evaluations
indicating danger.

As future work we have something to work on. It is an ex-
periment in an environment close to the actual environment.
In this experiment, sensor values and the environment were
set up as simulations, so they different from the actual values.
Therefore, to achieve the purpose of adaptation to the actual
environment, it is necessary to do it with actual sensors and
in the actual environment. Many parameters are set manually
according to the sensor, so automatic setting or clarification
of setting guidelines is needed.
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