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Abstract

This paper presents a financially viable and non-destructive rail-based video

monitoring method that utilizes optical image segmentation to estimate the

canopy leaf area index (LAI) of greenhouse tomato plants. The LAI is directly

related to the time-dependent crop growth and indicates plant health and po-

tential crop yields. A rail-guided mobile camera system was commissioned that

records continuous images by scanning multiple rows of two tomato plant species

for over two years. UNET semantic image segmentation of the individual im-

age frames was performed to compute the relative leaf area over time. This

study also describes the image annotation process necessary to train the neural

network and evaluate the segmentation results. The results are calibrated and

compared to the defoliation-based (destructive) LAI estimation performed by

the grower. This UNET segmentation performs well, which is enabled through

the controlled environment and the well-defined boundary conditions provided

by the greenhouse environment and the managed measurement conditions. Our

results deviate from the manual LAI estimation by less than ten percent. Fur-

ther, we are able to minimize confusion between foreground and background

plants and other obstructions with an estimated error smaller than three per-

cent, which is strictly necessary to produce reproducible results.
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1. Introduction1

Recently, the management of large-scale greenhouse farming environments,2

as well as phenotyping, has attracted the interest of many machine learning3

and deep learning researchers. In general, modern machine learning methods4

are necessary to meet agricultural production challenges related to sustainabil-5

ity, food security, environmental conservation, and productivity [1, 2]. From6

a physical perspective, even a well-managed greenhouse ecosystem is complex7

and difficult to predict with many non-linear interrelationships arising from the8

chaotic nature of plants and the outside environment [3]. Phenotyping is criti-9

cal in greenhouse environmental management for pest and disease detection and10

generally to monitor plants for predicting the development of dry yield.11

In particular, when monitoring the general health of vines and optimizing the12

monthly fruit harvest yield, the Leaf Area Index (LAI), is the main indicator for13

managing greenhouse environments and controlling defoliation [4, 5]. The plant14

canopy density and the general number of leaves affect the energy, hydration15

[6, 7], and overall CO2 balance within a greenhouse through transpiration [8].16

Crop leaf growth strongly affects the assimilation capability of photosyntheti-17

cally active radiation [9]. Furthermore, [10] showed that the fraction of light18

interception (I) is connected to the LAI through the following power law:19

I = 1− e−kLAI . (1)

The LAI is a dimensionless quantity defined as the one-sided leaf area (AL)20

per reference area, where the reference area (AR)can be considered as a square21

hull (first-order convex hull ) around the leaf.22

LAI = AL/AR. (2)

It should be noted that this definition is only valid for broad leaf canopies,23

as presented by [11] and can be more complex when including multiple leaf24

layers within the plant canopy[12]. This means that the LAI could be larger25

than one for staged and overlapping leaves, depending on the direction of the26
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incident light. Previous research has shown that the LAI is a comprehensive27

indicator of variations in environmental, biological, and plant-structural condi-28

tions. Because the time-dependent LAI reflects the CO2 content and material29

cycles in the plant canopy [3], one can use the time-dependent LAI to control30

plant characteristics, for example, plant height and fruit/plant growth, through31

defoliation [13].32

Variations in the observed LAI value for one plant at a precise time, critically33

depend on the measurement method, environmental conditions, and theoretical34

completeness of the measurement approach. In principle, there are two groups35

of measurement methods: active/destructive and passive/non-destructive LAI36

measurements, many of which have recently been summarized by Popovic et.37

al. [14]. The most common and simplest method is active plant measurement38

by defoliation, which requires the grower to regularly remove all the leaves39

in a predetermined reference space and count the number of leafs and area40

(e.g., measuring the breadth and length of individual leaves) manually or by41

computer analysis, e.g., color [15, 16, 17] or otsu [18, 19] segmentation, etc.42

There are numerous non-destructive remote sensing approaches that depend43

on specific environmental conditions. They are either radio-based approaches,44

as elaborated by Orlando et al. [20] and Campos et al. [21], image-based45

approaches [11] or 3D sensing approaches such as photogrammetry [22] point-46

cloud based evaluation [23]. For most image-evaluating solutions, rule or deep47

learning-based segmentation techniques are used to separate the relative leaf48

area in the image from the background and other distractors. This is particularly49

a trend in hand-held applications, as found in [24, 25, 16], and [20], where50

either the relative leaf area (in pixels) or the leaf-to-leaf voids are calibrated51

to reflect the LAI amplitude. Computing LAI is limited by the precision and52

accuracy of the detection/segmentation method. However, it is seldom noted53

that reproducibility and precision are highly dependent on the quality of the54

segmentation routine, especially among the approaches that generally discount55

spatial and contextual considerations. In other words, camera position changes,56

field of view (FOV, parts of the plant that are imaged), confusion with other57
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plants, and distractors can greatly influence the observational accuracy.58

Recently Fang et. al. [26, 27] have confirmed relatively high variations in59

reproducibility when estimating LAI in image based smartphone apps, which60

are most likely caused by environmental and plant-morphological changes over61

time and the limited environmental perception abilities of the individual app62

based segmentation routines. To improve the LAI estimation accuracy and63

reproducibility, it is necessary to establish a robust LAI measurement routine.64

Advanced deep learning based segmentation methods have great potential to65

improve segmentation accuracy [11, 28] and introduce environmental perception,66

which has been widely used in autonomous vehicle and drone research [29, 30,67

31, 32].68

In this study, we present a novel approach to estimate the LAI of greenhouse69

grown vines of Solanum lycopersicum also known as the common Tomato plant.70

Our approach is non destructive, reproducible and produces results comparable71

to manual LAI estimation through defoliation, while being more efficient. The72

measurement method is optimized for large greenhouse facilities with long and73

narrow plant rows, where a camera (optical RGB) mounted on a rail wagon74

is scanning an entire row with LAI being computed from the neural network75

based segmentation map of the produced image data.76

We estimate LAI by analyzing video frames captured using a rail-mounted77

camera system. In the next section, Methods and Materials, we introduce the78

Target greenhouse environment, and described how the reference data is ob-79

tained. The optical LAI measurement approach is introduced and explained in80

the section 2.2. The Results section compares this method with traditional LAI81

estimation through defoliation. Finally, general findings and the validity of the82

approach are discussed in section, Discussion and Conclusions.83
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2. Methods and Materials84

2.1. Target greenhouse environment85

This section introduces the target greenhouse environment and the technique86

used to determine LAIgrower as a reference for the non-destructive LAI mea-87

surement method. This research was conducted at the Air Water Greenhouse88

Complex in Chitose, Hokkaido, Japan.89

Hokkaido is the northern-most of Japan’s islands and lies in a temperate90

climate zone. This is in strong contrast to the rest of Japan, which is classified91

as subtropical. More specifically, the area of central Hokkaido is classified as92

plant hardiness zone 5, which means temperatures in winter can reach values93

below −20 ◦C and are usually not above 30 ◦C in summer . Therefore, vines,94

such as tomatoes, planted in greenhouse environments are usually grown during95

summer, starting in February and ending in November.96

The target greenhouse covers an area of 4 ha (40,000 m2) containing approx-97

imately 50,000 tomato plants. In this study, the LAI is evaluated for the mini-98

tomato bearing daltary and mid-size tomato bearing tomimaru species. Until99

the development of the proposed deep learning-based procedure, the grower100

estimated the LAI by partially defoliating the canopy of a predefined set of101

reference plants. In this paper, this method of LAI measurement is termed102

grower LAI (LAIgrower). The LAIgrower estimation for both tomato species103

was performed by measuring the leaf attributes of four reference tomato plants104

in the center of the tomato greenhouse and computing the LAI as follows:105

LAIgrower = αD|T × SL ×NL (3)

where SL is the area of the square enclosing a single leaf, computed as the106

product of the leaf width wL the leaf height hL in m2. NL: Nr. of Leaves107

per m2, α: The species-dependent absorption coefficient, which depends on the108

leaf shape. This value is provided by the distributer of the tomato seeds and109

1Chitose climate according to weather park (https://ja.weatherspark.com)
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presents the mean fraction of the leaf area to its enclosing square computed by110

the leaf length and width. It roughly accounts for the complex shape of each111

leaf, from which the average leaf area (AL) can be computed as follows:112

AL = αD|T ×
NL∑
n

wLn × hLn

NL
= αD|T × SL. (4)

The values for α for tomimaru and daltary are αT = 0.620 and αD = 0.618,113

respectively. The different values of α for tomimaru and daltary are the result114

of the slightly varying leaf morphology of the two tomato species. It should be115

noted that only the leaves of the upper branches of every plant were considered116

in this study.117
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Figure 1: Grower LAI for both tomato species, daltary (top) and tomimaru (bottom) for the

years 2017 to 2020.
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The LAIgrower evolution from 2017 to 2020 is presented in Figure 1. It118

should be noted that the uncertainties of each LAI measurement were rela-119

tively high because of the reference plants were only partially defoliated and120

the fact that there is only a small ensemble of reference plants used in this121

study. The seedlings were planted out in cultivation lines, which were spaced122

approximately 1.2 meters apart. The canopy tip was held by a guide string to123

secure and displace the plant canopy during the maturity process. Displace-124

ment in combination with defoliation below the fruit line is necessary to keep125

the canopy and fruit at a constant height, which is convenient for harvesting,126

plant management and the UNET-based LAI estimation approach, which is127

discussed in the next section.128

2.2. Optical LAI estimation (through UNET)129

2Throughout this paper, the week date is referenced as the ISO week number.
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2.2.1. Methodology130

Rail heating

3m

Maturity displacement A1 A2 B

Cultivation line
Camera wagon

C

Cultivation
bed

Guide string

CameraCamera

Grower LAI
estimation area 

UNET LAI
estimation area 

Camera
FOV

Figure 2: Data collection environment and cultivation line. Illustration of the cultivation line

with young tomato plants (A1), mature tomato plants right (A2), and camera car on the back.

Canopies are kept vertically in place because of the regular defoliation and displacement of

the guide string. B: side view of the cultivation line with the camera car and the camera’s

FOV indicator. The areas used to estimate LAIgrower and the proposed UNET approach are

indicated in pink. C: Top view of the cultivation line with camera car’s direction of travel.

The rail is used to guide the camera car as well as for heating in spring and fall.

This section describes our non-destructive LAI estimation approach as well131

as the data processing, calibration, and evaluation procedures. The proposed132

LAI estimation approach relies on a moving camera system, which scans an133

entire tomato plant row and creates a relatively large number of frames for134

various tomato plants from various angles using a large FOV. A camera with135

a constant elevation is mounted on a rail wagon and used to scan one row of136

tomato plants, as presented in Figure 2.137

The camera is at a constant distance from the tomato row and has a con-138
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stantly wide spherical FOV to keep more than 90% of the canopy within the139

FOV. Furthermore, all the tomato rows in the greenhouse had approximately140

the same width and height, with all of them filling a similar cylindrical volume.141

The elevation angle of the lens is zero. Automatic exposure compensation used142

with an exposure time range between (0.0002 - 0.001)s. The running velocity143

is predetermined by the manufacturer. The camera captured video frames at144

an adequate rate of 10 fps, while the wagon traverses the rail at a constant145

velocity of approximately v = 0.2m/s. Further, we have confirmed the veloc-146

ity through independent distance and time measurements. Owing to the wide147

lens angle, plant images are captured from multiple perspectives. In principle,148

this improves the differentiation between the tomato plant rows in the front149

and those in the background because the rows traverse the FOV with different150

relative velocities relative to the wagon.151

Figure 3: A: Camera mounted wagon: The camera is indicated by the red arrow. B: Image

of greenhouse tomato row with actual image (left) and annotation overlay (right) with back-

ground (black), building structure (white), plant (green), and tomato (red). C: The tomato

row image as observed by using the annotation overlay. The yellow frame indicates the FOV

of the image. The pink frame indicates the area in which LAIgrower is measured.

The image capturing procedure is demonstrated in Figure 3, where image A152

shows the camera-mounted wagon, and image B is the tomato plant row (left)153

with the UNET segmentation overlay (right) and the frame FOV (yellow and154

pink outlines). Image C shows the plant row, as seen by the camera system. In155
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this project, the full FOV (yellow) and the upper one-third of the field of view156

(pink) were evaluated. This is necessary to calibrate and compare the result157

based on the upper canopy FOV to LAIgrower and because the LAIgrower data158

could be obtained for only the upper canopy containing the top branch of the159

tomato plant, as presented in Figure 2 B.160

2.2.2. Data processing overview161

A general map of how the time-dependent LAI was estimated from the video162

data is presented in Figure 4. The proposed method relies on two procedures: 1)163

image segmentation and 2) calibration to compute the LAI from the projected164

leaf area. The assumption that the LAI can be sufficiently estimated from the165

projected leaf area observed by the camera is critical for justifying the proposed166

approach and is elaborated in the following section.167

Pre-processing UNET post-processing

white balance
histogram eq.

training
segmentation

extract leaf area
calibration (LA --> LAI)

scalar
(LAI)

image tensor tensor

vi
de

o

tim
e 

se
rie

s

processing pipeline

Frame LAI

LAI

LAI

Frame

Frame

Figure 4: Data processing pipeline. Illustration of how the LAI time-series data are extracted

from the image data.

2.2.3. LAI calibration168

Owing to the non-destructive nature of the proposed sensing approach and169

the complex three-dimensional morphology of the canopy, the absolute value for170

the LAI cannot be computed directly. Therefore, the time-dependent variability171

in the LAI can only be obtained by assuming that the obtained relative leaf172

area (AL) is proportional to the LAI in time and space.173

dLAI(t)

dt
=

dAL(r⃗, t)

dt
(5)
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where r⃗ represents the spatial vector from which the canopy is observed, and174

AL is the fraction defined by the ratio of pixels containing leaves to the total175

number of pixels in the image. Because the FOV of the camera is sufficiently176

large to ensure that the entire canopy is within the FOV at any time t, a177

linear relationship between AL and the LAI can be assumed, introducing a178

gain calibration (g) as follows:179

LAI(t) = g ×AL(t) (6)

The expected gain amplitude can be determined simply by computing g for180

a randomly selected set of times T as follows:181

ḡ =

T∑
t

LAI(t)

AL(t)
/T (7)

Furthermore, the standard deviation of g can provide a measure of the extent182

to which the trend of AL deviates from the directly measured trend of the LAI.183

To obtain a good estimation of AL, each image was segmented for deep learning184

and the number of pixels associated with AL was computed as presented in the185

next section.186

2.2.4. Deep learning based image segmentation187

There are several semantic segmentation models of which the most prominent188

are the encoder-decoder convolutional neural networks such as Inverse Hour189

Glass and UNET. These have been widely discussed over the last decade and are190

well utilized in the fields of medical and microbiological research [33, 34, 35, 33].191

Trained Encoder-decoder network models fixed to the image resolution and its192

multiples. However the results generated by those networks are generally do not193

dependent on the resolution of the input image, as long as it fits into the model194

and as long as it is resized to match the size of the training images. However,195

the individual feature scale within the image needs to be preserved. This is196

favorable for our approach, since the feature size within the image das not vary197

strongly. A costume UNET model was constructed using PyTorch [36] and used198
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Figure 5: Image segmentation procedure. A: Three-channel input image. B: UNET neural

network with three contraction/extraction layers for training and inference. C: Output mask

containing seven segmentation groups labeled in D.

to performed semantic segmentation to resolve the seven segmentation groups,199

as presented in Figure 5 D. The UNET model consists of three contraction and200

expansion blocks with dimensions ranging from 32 to 1281.201

The input consists of a 3 × 640 × 640 (RGBxXxY) image tensor, which is202

normalized to contain float32 values between zero and one. The trained model203

returns a tensor with dimensions of (640 × 640 × 7) containing seven intensity204

maps (one for each group). Using the softmax function, the intensity maps are205

then converted into a probability map from which the resulting annotation mask206

is computed using the argmax function. Of the seven index groups, only the207

index groups describing the background and foreground leaf area were strictly208

necessary. Confusion between leaves and other objects is increased when only209

a limited number of annotation samples are available and can be avoided by210

increasing the number of annotation groups at the cost of requiring increased211

training (in the form of time and computational resources).212

1Further information regarding the UNET model and the data processing approach are

available through the github repository https://github.com/StefanBaar/LAI_network.
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3. Data analysis and Results213

This section describes the automated data preparation, analysis, and post-214

processing pipeline presented in Figure 4, as well as the annotation procedure215

and the results. The video data consists of compressed mp4 files with an average216

length of approximately two thousand frames recorded at ten fps. Each video217

frame has been white balance corrected based on the color information of the218

highlights (pixels within a five-pixel radius around saturated pixels) of the upper219

third of each frame. Furthermore, histogram equalization was performed using220

99% of the RGB histogram. The preprocessed images were then segmented221

into seven annotation groups and the number of pixels associated with the leaf222

area for each frame was saved. Next, the annotation process is described; it223

produces the annotation groups and their pixel-based locations on which the224

model is trained.225

3.1. Annotation and augmentation226

Pixel-based annotations were prepared using Adobe Photoshop because it is227

easy to use and supports drawing tablets. One layer was used for each group228

in addition to the original image used as the first layer in the layer stack. An-229

notation examples are presented in Figure 6, where the raw images are shown230

side-by-side with their respective annotations Routines were prepared to con-231

vert psd files into Pytorch tensors using the Python library psd-tools [37]. Two232

hundred annotations were prepared that contained randomly selected pseudo233

images from the individual tomato datasets. The images and annotations were234

augmented using a random crop (70%-100% image area), random rotation, and235

random horizontal spatial flipping. The training data set was inflated to 10k236

images through spatial augmentation using the scipy [38], scikit-image [39], and237

PyTorch [36] sub-modules, as well as costume functions. Furthermore, on-the-fly238

random augmentations were performed during training using random brightness239

adjustment (± 20%), random histogram equalization (0% - 2%), and a random240

color jitter (amplitude: ± 10%).241
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Figure 6: Annotation overview. Four annotation examples with each pre-processed (histogram

equalized and white balanced) raw image on the left and the representative annotations on

the right.
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3.2. Training242

The augmented dataset was divided into equally sized training and evalua-243

tion datasets. The network was trained using the ADAptive Moment (ADAM)244

estimation optimizer to compute the gradient descent and update the weights245

of the UNET model during training. ADAM was chosen because it is gen-246

erally known for its computational efficiency, minimal memory requirements,247

appropriateness for noisy and sparse gradients, and that it is well implemented248

in PyTorch [36]. As a loss function, PyTorch implementation was used for249

cross-entropy loss. A variable learning rate was used depending on the training250

progress, lr = (0.003, 0.002, 0.001, 0.0008) and the network was trained for 550251

epochs with a batch size of 40. Training was implemented in parallel over four252

NVIDIA GTX 1080Ti GPUs until the training and validation errors reached253

values below 10% and 20%, respectively, for at least 10 epochs, as presented in254

Figure 7.255

lr=0.003 0.002 0.001 0.0008 

Figure 7: Left: training and validation loss for each epoch. Right: Image example comparing

leaf annotation and leaf inference.

3.3. Results256

This section presents the evaluation of the LAI estimation of mini-tomato257

bearing daltary and mid-size tomato bearing tomimaru plants from May 2019258
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to July 2021 and the results are compared to a defoliation-based LAI measuring259

approach conducted by the grower. Both the relative leaf area AL and LAIgrower260

were measured for the upper one-third of the FOV covering two types of tomato261

plants, as presented in Figure 3 B. A number of segmentation results produced262

by inference is shown in Figure 8.263

Figure 8: Segmentation overview: Forty-seven segmentation examples created via the inference

of raw images with the proposed UNET model for the tomato species daltary (left) and

tomimaru (right). Each example contains a pre-processed (histogram equalized and white

balanced) raw image, as well as a superimposed annotation mask.

We present the correlation between inference and annotation area of fore-264

ground and background leafs (as fraction of image area) in Figure refforeback for265

the validation dataset of the individual tomato species and their combination.266
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Figure 9: Confidence of inferred background and foreground area in relation to their respective

annotation areas for two hundred images of daltary (left), tomimaru (center), and both species

combined (right).

The figure shows, that for both species, foreground and background are well267

differentiated. Also the standard deviation σ is small, which hints towards268

a strong proportionality between between inference and annotation area. As269

expected, the correlation coefficient (r) is relatively low, due to the fact that270

annotation area is determined by the perimeter of each annotation group. One271

might note from the right hand side of Figure 7, that while the general mor-272

phology of the inference map is very similar to the annotation map, the residual273

between the two maps is not zero. This is manly due to annotation offset and274

is not problematic for our approach. This is because, we do not consider the275

absolute area, but the relative area, which is highly correlated between annota-276

tion and inference maps, indicated by a small σ < 0.03 for the foreground leaf277

map. While the foreground leaf area is used to estimate LAI, the background278

leaf area is omitted. Its purpose lies solely in eliminating false positives.279

As previously mentioned, only the relative leaf area that is proportional to280

the LAI can be measured by gain amplitude g(t), which is computed using the281

relative leaf area and LAIgrower of the year 2019. The time variation of g(t) for282

the two tomato species is shown in Figure 10.283
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Figure 10: Gain calibration amplitude (relative leaf area/grower LAI ) for the tomimaru (top)

and daltary (bottom). The dashed line denotes the mean calibration amplitude. The bars

denote the variability of the measurements.

The mean of the time-dependent g was computed to calibrate the UNET284

LAI for the years 2020 and 2021 for the upper third of the FOV, as presented in285

Figure 11. The deviation between the UNET-based and defoliation-based LAI286

estimation method was computed to be less than ten percent. The different287

gain amplitudes for tomimaru and daltary arise from their different leaf shapes.288
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σ of the measurement data (2000 segmentation frames per observation) in shades of red.

The LAIs for the tomimaru and daltary tomato plants were estimated from289

the gain correction amplitude g (computed from the upper FOV and the rela-290

tive leaf area of the entire FOV). Figure 12 presents the average per plant LAI291

time evolution. The full canopy LAI data cannot be directly compared because292

defoliation-based LAI measurements could not be made for the entire plant293

canopy since it would have been time-consuming and labor-intensive. However,294

the general trend is as expected by the grower and exhibits a somewhat flat-295

ter tendency when compared to the upper canopy LAI. This is because the296

branches below the fruit line are pruned regularly, which causes only a slight297

variance in canopy leaf numbers over time.298
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defoliation

Figure 12: The LAI of the entire plant canopy computed with UNET semantic segmen-

tation (black dots) with its time averaged spline interpolation (black line) for the period May

2019 to June 2021. The variability σ of the measurement data (2000 segmentation frames per

observation) in shades of red. Defoliation instances are annotated with blue arrows.

The LAI estimations for the upper canopy 11 and the entire canopy 12 are299

not directly comparable because the entire canopy LAI estimation evaluates a300

much larger FOV, as presented in Figure 3, which leads to smaller variations301

within a single observation.302

4. Discussion303

The pairing of an automated quasi-static optical monitoring apparatus with304

modern image segmentation routines, such as those used in this study, is very305

accurate in determining variations in the LAI over time for complex vine struc-306

tures, such as tomato plants. This approach is highly suited for industrial appli-307
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cations in greenhouse environments where plants are well aligned and managed.308

While the background and possible distractors can be sufficiently distinguished309

from the objects of interest and the training and reference loss is small enough310

(<0.2 and 0.1, respectively), a discussion about the accuracy of various seg-311

mentation algorithms appears to be unnecessary. This is because the general312

definition of the LAI is ambiguous and modern segmentation routines are suf-313

ficiently advanced.314

Regarding the training and validation losses (as reported in section 3.2), it315

must be mentioned that complex plant images, as used in this study, are very316

difficult to annotate precisely. Further, the most challenging task is the differ-317

entiation between plants in the foreground (used to compute LAI) and plants in318

the background. This is because texture, lightning conditions and morphology319

are often similar. However, to estimate LAI, determining the exact segmen-320

tation morphology is not necessary, but needs to to be only precise enough to321

reflect the projected difference in leaf area. The variation of the segmentation322

area of the foreground leafs is smaller than three percent as presented in Figure323

9. This is mainly because the foreground and background plants cannot always324

correctly be distinguished by the annotator. Therefore, the annotation quality325

(but not the segmentation quality) is highly dependent on the image detail,326

which is affected by the camera lens, sensor resolution, and lighting conditions.327

In addition, one must consider that the baseline (LAIgrower) is fuzzy with328

high uncertainty. This is because computing the exact LAI for one tomato plant329

would require exact knowledge of the number of leaves and leaf area. In general,330

plant growth within greenhouse is mostly homogenous. However, it is possible331

that some plants growth diverges from that of the reference plants. This is the332

case in the for tomimaru plants grown during the year 2020 of our observation.333

Here, the reference plants used by the grower exhibited different LAI (lower until334

week 25, and higher from there on) than the rest of the greenhouse plants. This335

caused the grower to falsely estimate the amount of defoliation, resulting in an336

feedback loop of rising LAI for upper canopy. However, for all the observations337

of daltary and the remaining observations of tomimaru are in agreement with the338
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upper canopy estimations of LAIgrower. Further, the LAI evolution, computed339

from evaluation the entire canopy is in agreement with expectations for tomato340

in an controlled greenhouse environment [13, 40]. Also, amplitude dips within341

the LAI evolution are in alignment with defoliation dates (Figure 12).342

5. Conclusion343

For non-quasi-stationary approaches (such as smartphone applications as344

well as other mobile solutions [24, 25, 16]), it is imperative to evaluate and un-345

derstand plant morphology as well as the environment. The proposed approach346

does not require to perceive the exact plant and environment morphology, be-347

cause, in the captured data, the plants and the environment are dimensionally348

and spatially homogeneous. This is ensured by the camera always traveling349

along the same path and covering the entire plant row.350

The approach proposed in this study is more labor efficient than estimating351

the LAI manually but less efficient than a set of stationary cameras because, for352

the proposed approach, the robotic camera system must be maintained and ob-353

served during measurement. The authors believe that the degree of perception354

in this and more usual approaches (e.g., hand-held devices and sets of station-355

ary cameras) could be improved by computing plant postures similarly to the356

human and hand posture estimations presented by Bazarevsky et. al. ([41, 42]357

and Liu et. al. [43]. From the plant posture, one could more precisely differen-358

tiate between foreground and background vines and also obtain higher spatial359

awareness.360
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