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Summary

Families of curves in the Euclidean plane naturally contain singular curves, where
the frame of classical differential geometry does not work well. We introduce the
notions of one-parameter family of Legendre curves in the Euclidean plane, con-
gruent equivalence and curvature. Especially, a one-parameter family of Legendre
curves can contain singular curves, and is determined by the curvature up to con-
gruence. We also give properties of one-parameter families of Legendre curves. As
applications, we give a relation between one-parameter families of Legendre curves
and Legendre surfaces. Moreover, we study plane line congruences (one-parameter
families of lines in plane) in terms of the curvatures as one-parameter families of
Legendre curves.
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1 INTRODUCTION

We are interested in differential geometrical aspects of families of curves in the Euclidean plane. In the method of classical curve
theory, one can never deal with families of curves to which degenerate curves belong: for example, a family of parallel curves
in plane where curves naturally become non-immersive as in Figure 1; a one-parameter family of lines in plane as in Figure 2
(the curvature of a line is identically zero). This paper aims to give a new framework to deal with such a general one-parameter
family of curves.
As smooth plane curves with singular points, that is, singular plane curves, we may consider frontals and Legendre curves in

the unit tangent bundle over the Euclidean plane. In [7], we gave existence and uniqueness theorems of the curvature of Legendre
curves. In the present paper, as plane to plane maps, we consider one-parameter families of Legendre curves. We define the
notions of a congruent equivalence and a curvature such that the one-parameter family of Legendre curves is determined by the
curvature up to congruence, which is a natural expansion of the theory for Legendre curves in [7].
We study a relation between the curvature of themap as a one-parameter family of Legendre curves and differential topological

invariants of the map some of which are induced from singularity theory. Notice that the curvature is a kind of differential
geometrical invariant. In the usual sense, differential geometry means the geometry of a map ℝn → ℝp where the dimension
number p of the target space is bigger than the dimension number n of the source space. We emphasize that our approach implies
a new direction of differential geometry: differential geometry of a map with general dimensions of the source and target spaces.
Note that K. Saji showed a different approach to this idea from the viewpoint of normal forms of singularities in his talk at Kobe,
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FIGURE 1 The family of parallel curves
to a parabola in a plane. Some curves have
cusp singularities.

FIGURE 2 A ruled surface. The linear
projection to a plane gives a plane line
congruence.

2017 (similar method for singularities of surfaces are shown in [22, 23, 28]). Also, his papers about criteria for singularities
suggest another approach [26, 27].
One of the most typical classes in one-parameter families of Legendre curves is the class of one-parameter families of lines

in plane (called the plane line congruences in the present paper). Line geometry is a classical subject (cf. [21, 31]), and recently
singularity theory provides it with new insights (cf. [6, 16, 17, 18, 30]). For example, singularities generically appearing in
line congruences (two-parameter families of lines) in 3-space or ruled surfaces (one-parameter families of lines) in 3-space are
classified in [17, 18]. We deal with a plane line congruence, and compare the curvature of it with the types of singularities of
maps and functions related to it in §5. Especially, in §6, the exact -equivalent types (up to e-codimension two) of plane
line congruences as a map ℝ2 → ℝ2 are geometrically characterized in terms of the curvature as a one-parameter families of
Legendre curves. Note that the singularities of plane line congruences as plane to plane maps are considered as the envelope or
evolute in a generalized sense (cf. Figures 8-15).
Moreover, one-parameter families of curves naturally appear when we project surfaces equipped with families of curves into

planes. For example, the projections of ruled surfaces to planes give plane line congruences, see Figure 2. There have been a lot
of works on the application of singularity theory to the area of vision science (cf. [4, 5, 16, 20]), while they have been mainly
concerned with the apparent contour of a surface (the discriminant of a projection mapping restricted to the surface). On the
other hand, if the surface is equipped with a family of curves suitably, we have the curvature of the families of the projected
curves (as a one-parameter families of Legendre curves) at points even outside the apparent contour. For instance, in §5.1.1, §6.2
and §7.1, we investigate a local nature of a plane (normal) line congruence around a point at which the Jacobian of the map is
not equal to zero, but the differential vanishes. Namely, the point is not a singularity of the map but a singularity of the Jacobian.
Note also that the Jacobian is characterized by the curvature of the plane line congruence. Thus our method possibly gives new
tools to the area of vision science. On the other hand, as smooth surfaces with singular points, that is, singular surfaces, we may
consider frontals or framed surfaces in the Euclidean space [1, 2, 11, 12]. Hence we can investigate the differential geometrical
relation between a surface and its projected image in a more general setting than ever before. This application will be discussed
in somewhere else by the authors.
The paper is organized as follows: We give the existence and uniqueness theorems of the curvatures of one-parameter families

of Legendre curves in §2. We also give properties of one-parameter families of Legendre curves in §3. As applications, we
give a relation between one-parameter families of Legendre curves and Legendre surfaces in §4. Moreover, in §5-7, we study
local geometry of plane line congruences from the viewpoint of the curvatures as one-parameter families of Legendre curves,
where normal line congruences are mainly dealt with. In §5, we study what kind of geometrical information is given from -
types of functions in the curvatures of normal line congruences. In §6, we study the relation between higher order information
of functions in the curvatures and several geometrical properties of normal line congruences: some new notions (the index of
a function, Jacobian constant curve etc.) are defined; and several unstable -equivalent types of normal line congruences are
precisely studied. In §7, we show several examples of plane line congruences with figures.
All maps and manifolds considered here are differential of class C∞.
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2 LEGENDRE CURVES AND ONE-PARAMETER FAMILIES OF LEGENDRE CURVES

Let ℝ2 be the Euclidean plane equipped with the inner product a ⋅ b = a1b1 + a2b2, where a = (a1, a2), b = (b1, b2) ∈ ℝ2. We
denote the norm of a by |a| =√

a ⋅ a.
We review on the theory of Legendre curves in the unit tangent bundle over ℝ2, in detail see [7]. We say that (, �) ∶ I →

ℝ2 × S1 is a Legendre curve if (, �)∗� = 0 for all t ∈ I , where � is a canonical contact form on the unit tangent bundle
T1ℝ2 = ℝ2 × S1 over ℝ2 (cf. [1, 2]). This condition is equivalent to ̇(t) ⋅ �(t) = 0 for all t ∈ I . We say that  ∶ I → ℝ2 is a
frontal if there exists � ∶ I → S1 such that (, �) is a Legendre curve. Examples of Legendre curves see [14, 15]. We denote
by J (a) = (−a2, a1) the anticlockwise rotation by �∕2 of a vector a = (a1, a2). We have the Frenet formula of a frontal  as
follows. We put on �(t) = J (�(t)). Then we call the pair {�(t),�(t)} a moving frame of a frontal (t) in ℝ2 and we have the
Frenet formula of the frontal (or, Legendre curve),

(

�̇(t)
�̇(t)

)

=
(

0 l(t)
−l(t) 0

)(

�(t)
�(t)

)

, ̇(t) = �(t)�(t),

where l(t) = �̇(t) ⋅ �(t) and �(t) = ̇(t) ⋅ �(t). We call the pair (l, �) the curvature of the Legendre curve.
Definition 2.1. Let (, �) and (̃ , �̃) ∶ I → ℝ2 ×S1 be Legendre curves. We say that (, �) and (̃ , �̃) are congruent as Legendre
curves if there exist a constant rotation A ∈ SO(2) and a translation a on ℝ2 such that ̃(t) = A((t)) + a and �̃(t) = A(�(t)) for
all t ∈ I .
Theorem 2.2 (Existence Theorem for Legendre curves). Let (l, �) ∶ I → ℝ2 be a smooth mapping. There exists a Legendre
curve (, �) ∶ I → ℝ2 × S1 whose associated curvature of the Legendre curve is (l, �).
Theorem 2.3 (Uniqueness Theorem for Legendre curves). Let (, �) and (̃ , �̃) ∶ I → ℝ2 × S1 be Legendre curves with the
curvatures of Legendre curves (l, �) and (l̃, �̃). Then (, �) and (̃ , �̃) are congruent as Legendre curves if and only if (l, �) and
(l̃, �̃) coincide.
We now consider one-parameter families of Legendre curves in the unit tangent bundle T1ℝ2 over ℝ2. Let U be a simply

connected domain in ℝ2.
Definition 2.4. Let (f, �) ∶ U → ℝ2×S1 be a smooth mapping. We say that (f, �) is a one-parameter family of Legendre curves
with respect to u (respectively, with respect to v) if fu(u, v) ⋅ �(u, v) = 0 (respectively, fv(u, v) ⋅ �(u, v) = 0) for all (u, v) ∈ U .
If (f, �) is a one-parameter family of Legendre curves with respect to u, then (f (⋅, v), �(⋅, v)) is a Legendre curve for each fixed

parameter v, that is, (f (⋅, v), �(⋅, v)) is an integrable curve with respect to the canonical contact 1-form on ℝ2 × S1. Therefore,
f ∶ U → ℝ2 is a one-parameter family of frontals.
In this paper, we deal with one-parameter families of Legendre curves with respect to u. We define �(u, v) = J (�(u, v)). Since

{�(u, v),�(u, v)} is a moving frame along f (u, v) on ℝ2, we have the Frenet type formula.
(

�u(u, v)
�u(u, v)

)

=
(

0 l(u, v)
−l(u, v) 0

)(

�(u, v)
�(u, v)

)

,
(

�v(u, v)
�v(u, v)

)

=
(

0 L(u, v)
−L(u, v) 0

)(

�(u, v)
�(u, v)

)

,

fu(u, v) = �(u, v)�(u, v),
fv(u, v) = A(u, v)�(u, v) + B(u, v)�(u, v),

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

l(u, v) = �u(u, v) ⋅ �(u, v),
L(u, v) = �v(u, v) ⋅ �(u, v),
�(u, v) = fu(u, v) ⋅ �(u, v),
A(u, v) = fv(u, v) ⋅ �(u, v),
B(u, v) = fv(u, v) ⋅ �(u, v).

(2.1)
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By the integrability conditions �uv(u, v) = �vu(u, v) and fuv(u, v) = fvu(u, v), (l, L, �, A, B) satisfies the conditions
⎧

⎪

⎨

⎪

⎩

Lu(u, v) = lv(u, v),
Au(u, v) = B(u, v)l(u, v) − L(u, v)�(u, v),
Bu(u, v) = �v(u, v) − A(u, v)l(u, v)

(2.2)

for all (u, v) ∈ U . We call the mapping (l, L, �, A, B) with the integrability condition (2.2) the curvature of the one-parameter
family of Legendre curves (f, �).
Each component in the above curvature is geometrically defined as in equations in (2.1). We state some additional properties

of them in the following remarks:
Remark 2.5. For a one-parameter family of Legendre curves (f, �) with respect to u, (f, �)(u, v0) is a Legendre curve for a
fixed value v0, and (l, �)(u, v0) is the curvature of it in the sense of Theorem 2.2.
Remark 2.6. For a smooth mapping f ∶ ℝ2 → ℝ2, (u, v) → (f1(u, v), f2(u, v)), the Jacobian � of f is defined as

�(u, v) = Jf (u, v) =
|

|

|

|

|

|

)f1
)u
(u, v) )f1

)v
(u, v)

)f2
)u
(u, v) )f2

)v
(u, v)

|

|

|

|

|

|

,

where
|

|

|

|

|

⋅ ⋅
⋅ ⋅

|

|

|

|

|

means the determinant of a matrix. The Jacobian � is related to information of the local density of the image
of the mapping f . Especially, �(p) = 0 for p ∈ ℝ2 means p is a singularity of f . The Jacobian plays an important role in
characterizations of singularities (see [13, 19, 26]). For a one-parameter family of Legendre curves (f, �), the Jacobian of f is
written as � = −�A, where � and A are components of the curvature of (f, �). Note also that the differential of the Jacobian
with respect to u or v measures a ratio of the change of the density of families of curves along special curves.
Remark 2.7. Let (f, �) ∶ U → ℝ2 ×S1 be a one-parameter family of Legendre curves with the curvature (l, L, �, A, B). Then
(f,−�) is also a one-parameter family of Legendre curves with the curvature (l, L,−�,−A,−B). Moreover, (−f, �) is also a
one-parameter family of Legendre curves with the curvature (l, L,−�,−A,−B).
Definition 2.8. Let (f, �) and (f̃ , �̃) ∶ U → ℝ2 × S1 be one-parameter families of Legendre curves. We say that (f, �) and
(f̃ , �̃) are congruent as one-parameter family of Legendre curves if there exist a constant rotation A ∈ SO(2) and a constant
vector a ∈ ℝ2 such that f̃ (u, v) = A(f (u, v)) + a and �̃(u, v) = A(�(u, v)) for all (u, v) ∈ U .
We gave the existence and uniqueness theorems for one-parameter families of Legendre curves in [24, 29]. However, we give

here an explicit construction of one-parameter families of Legendre curves by using the curvatures.
Theorem 2.9 (Existence Theorem for one-parameter families of Legendre curves). Let (l, L, �, A, B) ∶ U → ℝ5 be a smooth
mapping with the integrability condition. There exists a one-parameter family of Legendre curves (f, �) ∶ U → ℝ2 ×S1 whose
associated curvature is (l, L, �, A, B).
Proof. Let (u0, v0) ∈ U be fixed. We define a smooth mapping � ∶ I × Λ → ℝ by

�(u, v) =

u

∫
u0

l(u, v)du +

v

∫
v0

L(u0, v)dv.

Then � satisfies the conditions �u(u, v) = l(u, v) and �v(u, v) = L(u, v) for all (u, v) ∈ U . We define �(u, v) =
(cos �(u, v), sin �(u, v)) and hence �(u, v) = (− sin �(u, v), cos �(u, v)). We also define a smooth mapping f ∶ U → ℝ2 by

f (u, v) =

u

∫
u0

�(u, v)�(u, v)du +

v

∫
v0

(A(u0, v)�(u0, v) + B(u0, v)�(u0, v))dv.

By a direct calculation, fu(u, v) = �(u, v)�(u, v) and fv(u, v) = A(u, v)�(u, v) + B(u, v)�(u, v). It follows that (f, �) ∶ U →
ℝ2 × S1 is a one-parameter family of Legendre curves with the curvature (l, L, �, A, B). □
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Theorem 2.10 (Uniqueness Theorem for one-parameter families of Legendre curves). Let (f, �) and (f̃ , �̃) ∶ U → ℝ2 ×S1 be
one-parameter families of Legendre curves with the curvatures (l, L, �, A, B) and (l̃, L̃, �̃, Ã, B̃) respectively. Then (f, �) and
(f̃ , �̃) are congruent as one-parameter family of Legendre curves if and only if (l, L, �, A, B) and (l̃, L̃, �̃, Ã, B̃) coincide.
Proof. Suppose that (f, �) and (f̃ , �̃) are congruent as one-parameter family of Legendre curves. Then there exist a constant
rotation A ∈ SO(2) and a constant vector a ∈ ℝ2 such that f̃ (u, v) = A(f (u, v)) + a and �̃(u, v) = A(�(u, v)) for all (u, v) ∈ U .
It follows that �̃(u, v) = A(�(u, v)). By a direct calculation, (l, L, �, A, B) and (l̃, L̃, �̃, Ã, B̃) coincide.
Conversely, let (u0, v0) ∈ U be fixed. By using congruence as one-parameter family of Legendre curves, we may

(f, �)(u0, v0) = (f̃ , �̃)(u0, v0). By the construction in the proof of Theorem 2.9, (f, �)(u, v) = (f̃ , �̃)(u, v) for all (u, v) ∈ U . □

3 PROPERTIES OF ONE-PARAMETER FAMILIES OF LEGENDRE CURVES

Let (f, �) ∶ U → ℝ2 × S1 be a one-parameter family of Legendre curves with respect to u and (l, L, �, A, B) be the curvature.
We say that � ∶ Ũ → U is a one-parameter parameter change if � is a diffeomorphism of the form �(p, q) = (u(p, q), v(q)).

Proposition 3.1. Under the above notations, (f̃ , �̃) = (f◦�, �◦�) ∶ Ũ → ℝ2×S1 is a one-parameter family of Legendre curves
with respect to p and the curvature (l̃, L̃, �̃, Ã, B̃) is given by

l̃(p, q) = l(�(p, q))up(p, q),
L̃(p, q) = l(�(p, q))uq(p, q) + L(�(p, q))vq(q),
�̃(p, q) = �(�(p, q))up(p, q),
Ã(p, q) = A(�(p, q))vq(q),
B̃(p, q) = �(�(p, q))uq(p, q) + B(�(p, q))vq(q).

Proof. Since f̃p(p, q)⋅�̃(p, q) = fu(�(p, q))up(p, q)⋅�(�(p, q)) = 0 for all (p, q) ∈ Ũ , (f̃ , �̃) is a one-parameter family of Legendre
curves with respect to p. By a direct calculation, we have the curvature (l̃, L̃, �̃, Ã, B̃). □

Next we consider a diffeomorphism on the target ℝ2.
Proposition 3.2. Let (f, �) ∶ U → ℝ2 ×S1 be a one-parameter family of Legendre curves with respect to u and (l, L, �, A, B)
be the curvature. Suppose that Φ ∶ ℝ2 → ℝ2 is a diffeomorphism. Then there exists a smooth mapping �̃ ∶ U → S1 such that
(Φ◦f, �̃) ∶ U → ℝ2 × S1 is a one-parameter family of Legendre curves with respect to u.
Proof. We denote Φ(x, y) = (�1(x, y), �2(x, y)), f (u, v) = (x(u, v), y(u, v)) and �(u, v) = (a(u, v), b(u, v)). By the Frenet type
formula, fu(u, v) = �(u, v)�(u, v), that is, xu(u, v) = −�(u, v)b(u, v) and yu(u, v) = �(u, v)a(u, v). We define

�(u, v) = (�2y(x(u, v), y(u, v))a(u, v) − �2x(x(u, v), y(u, v))b(u, v),
−�1y(x(u, v), y(u, v))a(u, v) + �1x(x(u, v), y(u, v))b(u, v))

and �̃(u, v) = �(u, v)∕|�(u, v)|. Note that �(u, v) = JΦ(u, v)tD−1
Φ (f (u, v))�(u, v), where

DΦ(u, v) =
(

�1x �1y
�2x �2y

)

(u, v), JΦ(u, v) = detDΦ(u, v),

and tA is the transpose matrix of A, and |�(u, v)| ≠ 0 for all (u, v) ∈ U . Then �̃ ∶ U → S1 is a smooth mapping.
Since Φ◦f (u, v) = (�1(x(u, v), y(u, v)), �2(x(u, v), y(u, v))), we have

(Φ◦f )u(u, v) =
(

�1x(x(u, v), y(u, v))xu(u, v) + �1y(x(u, v), y(u, v))yu(u, v),

�2x(x(u, v), y(u, v))xu(u, v) + �2y(x(u, v), y(u, v))yu(u, v)
)

= �(u, v)
(

−�1x(x(u, v), y(u, v))b(u, v) + �1y(x(u, v), y(u, v))a(u, v),

−�2x(x(u, v), y(u, v))b(u, v) + �2y(x(u, v), y(u, v))a(u, v)
)

.
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By a direct calculation, we have (Φ◦f )u(u, v) ⋅ �̃(u, v) = 0 for all (u, v) ∈ U . Hence (Φ◦f, �̃) is a one-parameter family of
Legendre curves with respect to u. □

Remark 3.3. By a direct calculation, we have the curvature (l̃, L̃, �̃, Ã, B̃) of (Φ◦f, �̃) as follows:
l̃ = (1∕|�|2)

(

�
(

(�2xxb2 − 2�2xyab + �2yya2)(�1ya − �1xb)

−(�1xxb2 − 2�1xyab + �1yya2)(�2ya − �2xb)
)

+l(�1x�2y − �2x�1y)
)

,

L̃ = (1∕|�|2)
(

(

(�2xyxv + �2yyyv)a − (�2xxxv + �2xyyv)b
)

(�1ya − �1xb)

+
(

−(�1xyxv + �1yyyv)a + (�1xxxv + �1xyyv)b
)

(�2ya − �2xb)

+L(�1x�2y − �2x�1y)
)

,

�̃ = |�|�,
Ã = (1∕|�|)A(�1x�2y − �2x�1y),

B̃ = |�|B + (1∕|�|)A
(

(�1xa + �1yb)(�1ya − �1xb) + (�2xa + �2yb)(�2ya − �2xb)
)

.

We now consider existence conditions for a one-parameter family of Legendre curves of a given map f ∶ U → ℝ2.
Proposition 3.4. Let f ∶ U → ℝ2, f (u, v) = (x(u, v), y(u, v)) be a smooth mapping and p = (u0, v0) ∈ U .
(1) If rank df = 2 at p ∈ U , then there exists � around p such that (f, �) is a one-parameter family of Legendre curves with

respect to u around p.
(2) If rank df = 1 at p ∈ U , then there exists � around p such that (f, �) is a one-parameter family of Legendre curves with

respect to u or with respect to v around p.
(3) Let rank df = 0 at p ∈ U . Suppose that there exist smooth map germs �1, �2 ∶ (U, p) → ℝ with �1(p) ≠ 0, �2(p) ≠ 0,

k1, k2 are natural numbers and l1,l2 are non-negative integers such that x(u, v) = �1(u, v)(u − u0)k1(v − v0)l1 and y(u, v) =
�2(u, v)(u − u0)k2(v − v0)l2 . If 1 ≤ k1 ≤ k2 and l1 ≤ l2 (respectively, k1 ≥ k2 ≥ 1 and l1 ≥ l2), then there exists � around p
such that (f, �) is a one-parameter family of Legendre curves with respect to u around p.
(4) Suppose that f (u, v) is given by the form f (u, v) = (x(u, v), y(v)). Then there exists � such that (f, �) is a one-parameter

family of Legendre curves with respect to u.
Proof. (1) Put f̃ (u, v) = (u, v). If we take � ∶ U → S1, �(u, v) = (0, 1), then (f̃ , �) is a one-parameter family of Legendre
curves with respect to u around p. From the assumption, taking a suitable coordinate of the target space ℝ2, f (u, v) is expressed
as f̃ (u, v). Thus the statement follows from Proposition 3.2.
(2) From the assumption, by taking suitable coordinates of the source and target spaces, f (u, v) is expressed as f̃ (u, v) =

(u,  (u, v)) or (v,  (u, v)). By Propositions 3.1 and 3.2, in order to prove the statement, it is enough to show that f̃ (u, v) is a
one-parameter family of Legendre curves with respect to u or v around p. Suppose that f̃ (u, v) = (u,  (u, v)). If we take

� ∶ U → S1, �(u, v) = (1∕
√

 2u (u, v) + 1)(− u(u, v), 1),

then (f̃ , �) is a one-parameter family of Legendre curves with respect to u around p. On the other hand, suppose that f̃ (u, v) =
(v,  (u, v)). If we take

� ∶ U → S1, �(u, v) = (1∕
√

 2v (u, v) + 1)(− v(u, v), 1),

then (f̃ , �) is a one-parameter family of Legendre curves with respect to v around p.
(3)We may assume that p = (u0, v0) = (0, 0). By a direct calculation, we have

fu(u, v) = ((�1u(u, v)u + �1(u, v)k1)uk1−1vl1 , (�2u(u, v)u + �2(u, v)k2)uk2−1vl2).

If 1 ≤ k1 ≤ k2 and l1 ≤ l2, then there exist non-negative integers n1, n2 such that k2 = k1 + n1 and l2 = l1 + n2. If we take
� ∶ U → S1 by

�(u, v) =
(−(�2u(u, v)u + �2(u, v)k2)un1vn2 , �1u(u, v)u + �1(u, v)k1)

√

(�2u(u, v)u + �2(u, v)k2)2u2n1v2n2 + (�1u(u, v)u + �1(u, v)k1)2
,
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then (f, �) is a one-parameter family of Legendre curves with respect to u around p. In the case k1 ≥ k2 ≥ 1 and l1 ≥ l2, we
can prove similarly.
(4) Suppose that f (u, v) = (x(u, v), y(v)). Then fu(u, v) = (xu(u, v), 0). If we take � ∶ U → S1, �(u, v) = (0, 1), (f, �) is a

one-parameter family of Legendre curves with respect to u. □

Example 3.5. Let (f, �) ∶ ℝ2 → ℝ2 be given by f (u, v) = (uv, v2), �(u, v) = (0, 1). Since fu(u, v) = (v, 0), (f, �) is a
one-parameter family of Legendre curves with respect to u (cf. Proposition 3.4 (4)).
On the other hand, let f ∶ ℝ2 → ℝ2 be given by f (u, v) = (uv, u2). Then fu(u, v) = (v, 2u). There does not exist � ∶ ℝ2 → S1

such that (f, �) is a one-parameter family of Legendre curves with respect to u, see Example 4.3. The figures are in Figure 3.

FIGURE 3 The left figure shows the one-parameter family of Legendre curves on f (u, v) = (uv, v2) with respect to u. The right
figure shows the family of curves on f (u, v) = (uv, u2) with respect to u, which is not a one-parameter family of frontals.

Example 3.6. (Parallel curves of Legendre curves) Let (, �) ∶ I → ℝ2 × S1 be a Legendre curve with the curvature (l, �).
The parallel curve k ∶ I → ℝ2 is given by k(t) = (t) + k�(t) for fixed k ∈ ℝ (cf. [8, 9]). Then (k, �) ∶ I → ℝ2 × S1 is also
a Legendre curve with the curvature (� + kl,l). We define (f, �̃) ∶ I ×ℝ → ℝ2 × S1 by

f (t, k) = k(t) = (t) + k�(t), �̃(t, k) = �(t).

Then (f, �̃) is a one-parameter family of Legendre curves with respect to t with the curvature (l, 0, �+kl, 1, 0). Figure 1 shows
an example of a family of parallel curves.
Moreover, we define (f, �̃) ∶ ℝ × I → ℝ2 × S1 by

f (k, t) = k(t) = (t) + k�(t), �̃(k, t) = �(t).

Then (f, �̃) is a one-parameter family of Legendre curves with respect to kwith the curvature (0,l,−1, �+kl, 0). The mapping
f is an example of plane line congruences, see section 5.

4 RELATIONS BETWEEN ONE-PARAMETER FAMILIES OF LEGENDRE CURVES AND
LEGENDRE SURFACES

We give a relation between one-parameter families of Legendre curves and Legendre surfaces.
We say that (x,n) ∶ U → ℝ3 × S2 is a Legendre surface if (x,n)∗� = 0 for all (u, v) ∈ U , where � is a canonical contact

form on the unit tangent bundle T1ℝ3 = ℝ3 × S2 over ℝ3 (cf. [1, 2]). This condition is equivalent to xu(u, v) ⋅ n(u, v) = 0 and
xv(u, v) ⋅ n(u, v) = 0 for all (u, v) ∈ U . We say that x ∶ U → ℝ3 is a frontal if there exists n ∶ U → S2 such that (x,n) is a
Legendre surface.
Proposition 4.1. (1) Let (f, �) ∶ U → ℝ2 × S1 be a one-parameter family of Legendre curves with respect to u, where
f (u, v) = (x(u, v), y(u, v)) and �(u, v) = (a(u, v), b(u, v)). Then x ∶ U → ℝ3,x(u, v) = (x(u, v), y(u, v), v) is a frontal. More
precisely, (x,n) ∶ U → ℝ3 × S2 is a Legendre surface, where

n(u, v) =
(a(u, v), b(u, v),−b(u, v)yv(u, v) − a(u, v)xv(u, v))

√

1 + (b(u, v)yv(u, v) + a(u, v)xv(u, v))
.
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(2) Let (x,n) ∶ U → ℝ3 × S2 be a Legendre surface of the form x(u, v) = (x(u, v), y(u, v), v) and n(u, v) =
(a(u, v), b(u, v), c(u, v)). Then (f, �) ∶ U → ℝ2 × S1 is a one-parameter family of Legendre curves with respect to u, where

f (u, v) = (x(u, v), y(u, v)), �(u, v) =
(a(u, v), b(u, v))

√

a2(u, v) + b2(u, v)
.

Proof. (1) Since xu(u, v) = (xu(u, v), yu(u, v), 0) and xv(u, v) = (xv(u, v), yv(u, v), 1), we have xu(u, v) ⋅ n(u, v) = 0 and xv(u, v) ⋅
n(u, v) = 0. It follows that (x,n) is a Legendre surface.
(2) Since xu(u, v) = (xu(u, v), yu(u, v), 0) and xv(u, v) = (xv(u, v), yv(u, v), 1), we have xu(u, v)a(u, v) + yu(u, v)b(u, v) = 0

and xv(u, v)a(u, v) + yv(u, v)b(u, v) + c(u, v) = 0. If a(u, v) = b(u, v) = 0, then c(u, v) = 0. It is a contradiction the fact that
n(u, v) ∈ S2. Therefore, we have (a(u, v), b(u, v)) ≠ (0, 0) for all (u, v) ∈ U . It follows that (f, �) is a one-parameter family of
Legendre curves. □

Remark 4.2. Let (f, �) ∶ U → ℝ2×S1 be a one-parameter family of Legendre curves with respect to u. Then (x, �̃1, �̃2) ∶ U →
ℝ3 ×Δ is also a one-parameter family of framed curves with respect to u, where x(u, v) = (f (u, v), v), �̃1(u, v) = (�(u, v), 0) and
�̃2(u, v) = (0, 0, 1) (cf. [12, 24]). Moreover, (x,n, s) ∶ U → ℝ3 × Δ is a framed surface, where

n(u, v) =
(a(u, v), b(u, v),−b(u, v)yv(u, v) − a(u, v)xv(u, v))

√

1 + (b(u, v)yv(u, v) + a(u, v)xv(u, v))
, s(u, v) = (−b(u, v), a(u, v), 0)

(cf. [11, 12]).
Example 4.3 (Example 3.5). Let (f, �) ∶ ℝ2 → ℝ2 be given by f (u, v) = (uv, v2), �(u, v) = (0, 1). Then x ∶ ℝ2 → ℝ3,x(u, v) =
(uv, v2, v) is a frontal by Proposition 4.1.
On the other hand, let f ∶ ℝ2 → ℝ2 be given by f (u, v) = (uv, u2). Then x ∶ ℝ2 → ℝ3,x(u, v) = (uv, u2, v) is a cross cap. It

is an example which is not a frontal.

5 PLANE LINE CONGRUENCES

We deal with local geometry of plane line congruences (one-parameter families of lines in plane). Let I be an open interval, and
 ∶ I → ℝ2 and e∶ I → S1(⊂ ℝ2) be smooth mappings. We define a plane line congruence as a map of the following form:

f ∶ ℝ × I → ℝ2, (u, v) → (v) + ue(v).

 and e are respectively called the base and direction curves of the plane line congruence f , and the pair (, e) is often regarded
as the plane line congruence f itself.
Proposition 5.1. The mapping (f, �) ∶ ℝ × I → ℝ2 × S1, f (u, v) = (v) + ue(v), �(u, v) = J (e(v)) is a one-parameter family
of Legendre curves with respect to u, and the curvature is given as follows:

l(u, v) = 0,
L(u, v) = |e(v) e′(v)|,
�(u, v) = −1,
A(u, v) = A(v) + uL(v),
B(u, v) = |J (e(v)) ′(v)|,

where ′ means d∕dv, |⋅, ⋅| means the determinant of the vectors in ℝ2 and A(v) = |e(v) ′(v)|. Especially L,A,B are functions
depending only on the parameter v.
Proof. Since fu(u, v) ⋅ �(u, v) = e(v) ⋅ J (e(v)) = 0 for all (u, v) ∈ ℝ × I , (f, �) is a one-parameter family of Legendre curves
with respect to u. We calculate the curvature of (f, �). Put �(u, v) = J (�(v)) = −e(v). Since �u(u, v) = 0 and fu(u, v) = e(v),
we have l(u, v) = 0 and �(u, v) = −1. By �v(u, v) = −e′(v),

L(u, v) = |�(u, v) �v(u, v)| = |e(v) e′(v)|.
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Finally, we have fv(u, v) = ′(v) + ue′(v), thus
A(u, v) = |fv(u, v) �(u, v)| = |e(v) ′(v)| + u|e(v) e′(v)|

and
B(u, v) = |�(u, v) fv(u, v)| = |J (e(v)) ′(v)|.

□

Conversely, we can construct the mapping of a plane line congruence for given smooth functionsL,A,B∶ I → ℝ and a fixed
point v0 ∈ I , following the construction in the proof of Theorem 2.9: First put �(v) = ∫ v

v0
L(v)dv, �(v) = (cos �(v), sin �(v))

and hence �(v) = (− sin �(v), cos �(v)). Then we get mappings , e∶ I → ℝ2 as follows

(v) =

v

∫
v0

(A(v)�(v) + B(v)�(v))dv, e(v) = −�(v).

Then (f, �) ∶ ℝ × I → ℝ2 × S1, f (u, v) = (v) + ue(v), �(u, v) = J (e(v)) is a one-parameter family of Legendre curves with
respect to u with the curvature (0, L,−1, A + uL,B).
Remark 5.2. The congruent type of a plane line congruence is distinguished even by the choice of the coordinate of the
parameter v, though the family of lines in the plane are the same.
We are interested in local geometry of plane line congruences, thus deal with germs of direction and base curves , e∶ (I, 0)→

ℝ2 constructed from function germs L,A,B∶ (I, 0) → ℝ. Recall that L,A,B are clearly characterized by geometry of , e.
Note also that A and L coincide with the following functions which are meaningful with respect to a geometry of the mapping
f (u, v) = (v) + ue(v).

The Jacobian: For a plane line congruence f (u, v) = (v) + ue(v), the Jacobian �(u, v) coincides with the function A(u, v):
�(u, v) = |e(v) ′(v)| + u|e(v) e′(v)| = A(v) + uL(v) = A(u, v).

The differential of the Jacobian with respect to u: u is a special parameter of the map of a plane line congruence parametrizing
each line for fixed v, and the derivative of the Jacobian with respect to u coincides with the function L:

)�
)u
(u, v) = L(v).

Remark 5.3. The above characterizations say that the congruent invariantsL andA of the mapping f of a plane line congruence
is determined just by a function � satisfying �uu = 0.
Two map germs f, g∶ (ℝn, 0)→ (ℝp, 0) are said to be-equivalent (written as f ∼ g) if there exist diffeomorphism germs

�∶ (ℝn, 0) → (ℝn, 0) and � ∶ (ℝp, 0) → (ℝp, 0) such that f = �◦g◦�. When � is the identity in the above, f and g are said to
be-equivalent (written as f ∼ g). A lot of works on the classification of germs with the above equivalences have been done
in the context of singularity theory. See [1, 2, 3, 13, 16] for basic idea of singularity theory, and [19, 25, 26] for classification of
map germs (ℝ2, 0) → (ℝ2, 0) with respect to -equivalence. The  or -equivalent class of mappings or functions are worth
studying from the viewpoint of differential topology. Especially, we investigate the relation between the congruent invariants of
a plane line congruence and the or-equivalent classes of mappings or functions related to the plane line congruence.
A one-variable function f ∶ (I, t0) → (ℝ, 0) has type Ak at t0 ∈ I if f (i)(t0) = 0 for i = 1,… , k and f (k+1)(t0) ≠ 0. Then f

is-equivalent to ±vk+1 (cf. [3]). The following relation between e and L immediately holds:
Proposition 5.4. For k ≥ 1, e∶ (I, 0) → S1 is -equivalent to the germ of type Ak (whose normal form is ±vk+1) if and only
if L∶ (I, 0)→ ℝ is-equivalent to the germ of type Ak−1 and L(0) = 0. In addition, when L(0) ≠ 0, e is always of type A0.
Proof. Taking a suitable coordinate, e is locally expressed as �(v) = ∫ v

0 L(v)dv around 0 ∈ I . □

In addition, the next proposition says that we can locally parametrize any plane line congruence by a normal line congruence
that is studied in the next subsection:
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Proposition 5.5. For a given germ (, e)∶ (I, 0) → ℝ2, put �(v) = ∫ v
0 B(v)dv and ̂ =  + �e∶ (ℝ, 0) → ℝ2. Then (̂, e)

satisfies the following:
1. (, e)(v) and (̂, e)(v) define the same line for any v.
2. |J (e) ̂′|(v) = 0 for any v.

Proof. Since ̂(v)+ ue(v) = (v)+ (u+ �(v))e(v), the statement (1) is clear. The statement (2) follows from a direct calculation:
|J (e) ̂′| = |J (e) ′| + �′|J (e) e| + �|J (e) e′| = B + B(−1) + � ⋅ 0 = 0.

□

Remark 5.6. Let (̂, e) in Proposition 5.5 have the curvature (l̂, L̂, �̂, Â, B̂). Then the curvature is expressed in terms of
(l, L, �, A, B) (the curvature of (, e)) as follows:

l̂ = l = 0, L̂ = L, �̂ = � = −1, Â = A + �L, B̂ = 0.

Especially, in the same use of the notation “hat”, Â = A + �L.

5.1 Normal line congruences
We deal with a normal line congruence: a plane line congruence satisfying B = |J (e) ′| ≡ 0. Therefore the congruent type of
a normal line congruence and thus the corresponding base and direction curves , e are uniquely determined by the invariants A
andL. It is also remarkable that the pair (L,A) coincides with the curvature (l , � ) of the Legendre curve (, e) ∶ I → ℝ2×S1.
Especially, the non-inflective case with L = l ≠ 0 is well studied in [8].
Remark 5.7. Conversely, let a function �(u, v) satisfying �uu = 0 be given. Then we can uniquely determine functions A(u, v)
and L(v) thus a congruent type of normal line congruences. Especially � coincides with the Jacobian of the congruent type
(precisely, the representatives).
The following are the Taylor expansion (or normal form) of such (v) = (1(v), 2(v)) and e(v) = (e1(v), e2(v)) with Li =

(diL∕dvi)(0) and Ai = (diĀ∕dvi)(0):
1(v) = A0v +

1
2!
A1v

2 + 1
3!
(−A0L20 + A2)v

3 + 1
4!
(−3A0L0L1 − 3A1L20 + A3)v

4 +⋯ ,

2(v) =
1
2!
A0L0v

2 + 1
3!
(A0L1 + 2A1L0)v3 +

1
4!
(A0(L2 − L30) + 3A1L1 + 3Ā2L0)v

4 +⋯ ,

e1(v) = L0v +
1
2!
L1v

2 + 1
3!
(−L30 + L2)v

3 + 1
4!
(−6L20L1 + L3)v

4 +⋯ ,

e2(v) = −1 + 1
2!
L20v

2 + 3
3!
L0L1v

3 + 1
4!
(−L40 + 3L

2
1 + 4L

2
0L2)v

4 +⋯ .

Recall that the Jacobian � of the map of the plane line congruence f (u, v) = (v) + ue(v) is expressed as
�(u, v) = A(v) + uL(v).

From the above expressions, the following is easily seen.
Proposition 5.8. The following are equivalent:

1. �(0) = 0, that is, f is not immersive at 0.
2. A(0) = |e(0) ′(0)| = 0.
3.  is not immersive at 0.
Since A and L are function germs of one variable, they are -equivalent to one of the Ak-types. From now on, we fix the

-types of A and L respectively, and study the  or -types of singularities in some functions or mappings which give us
geometric information of normal line congruences. We must remark that the types of A and L are not always independent of
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the coordinate change of the source space to (, e) (see §6.1). Note also that normal line congruences are divided into four types
depending on L0, A0:

(1) A0, L0 ≠ 0, (2) A0 ≠ 0, L0 = 0, (3) A0 = 0, L0 ≠ 0, (4) A0 = L0 = 0.

Since neither e, , f , � nor �u are singular, we do not deal with the case (1).

5.1.1 Inflective regular base curves
Consider the case (2) A0 ≠ 0 and L0 = 0. Then the map of a normal line congruence f is immersive at 0; but e and �u are not
regular, and  is immersive but inflective or more degenerated. Note that e and �u depend only on L, while � and  depend on
both A and L.
Let A be of type Ak1−1 and L be of type Ak2−1, and write

A(v) = A0 +
Ak1
k1!

vk1 +⋯ , L(v) =
Lk2
k2!

vk2 +⋯

where Ak1 , Lk2 ≠ 0 (k1, k2 ≥ 1). In the following we show types of leading terms of certain functions or mappings.
Proposition 5.9 (� with A0 ≠ 0 and L0 = 0). In the above setting, there are 3 cases with respect to the Jacobian �:

1. for k1 = 1, � is regular;
2. for k1 ≥ k2 + 1,

�(u, v) = A0 + vk2
(Lk2
k2!

u +⋯
)

∼ A0 + uvk2 ;

3. for k2 + 1 > k1 ≥ 2,
�(u, v) = A0 +

Ak1
k1!

vk1(1 +⋯) ∼ A0 ± vk1 .

Proof. Since the Jacobian of the map of a normal line congruence is expressed as

�(u, v) =

(

A0 +
Ak1
k1!

vk1 +⋯

)

+ u
(Lk2
k2!

vk2 +⋯
)

,

we have the result. □

Proposition 5.10 ( with A0 ≠ 0 and L0 = 0). In the above setting,  has an inflection point at 0. Especially, it has the contact
type of (k2 + 1)-th order with the tangent line at 0.
Proof. Recall that  is constructed as

(v) = (1(v), 2(v)) =

v

∫
0

(

A(v) cos �(v), A(v) sin �(v)
)

dv

with �(v) = ∫ v
0 L(v)dv. Thus we have

1(v) =

v

∫
0

(

A0 +
Ak1
k1!

vk1 +⋯

)

cos
( Lk2
(k2 + 1)!

vk2+1 +⋯
)

dv = A0v +⋯ ,

2(v) =

v

∫
0

(

A0 +
Ak1
k1!

vk1 +⋯

)

sin
( Lk2
(k2 + 1)!

vk2+1 +⋯
)

dv = A0Lk2
1

(k2 + 2)!
vk2+2 +⋯ .

□

Summing up the above results for relatively small numbers of k1 and k2, we get the Table 1.



12 Y. Kabata ET AL

A L = l = �u � e  L∕A

A0 A0 regular A1 (1, 3) (1,≥ 2)
A1 regular A2 (1, 4) (1,≥ 2)
A2 regular A3 (1, 5) (1,≥ 2)
A≥3 regular A≥4 (1,≥ 6) (1,≥ 2)

A1 A0 uv A1 (1, 3) (2,≥ 3)
A1 v2 A2 (1, 4) (2,≥ 3)
A2 v2 A3 (1, 5) (2,≥ 3)
A≥3 v2 A≥4 (1,≥ 6) (2,≥ 3)

A2 A0 uv A1 (1, 3) (3,≥ 4)
A1 uv2 A2 (1, 4) (3,≥ 4)
A2 v3 A3 (1, 5) (3,≥ 4)
A≥3 v3 A≥4 (1,≥ 6) (3,≥ 4)

TABLE 1 The types of �, e,  are shown for given types of A,L. f and  are regular, but  has an inflection point at the origin,
and the order is determined by the type of L = l ; Especially, (m1, m2) in the column means the degrees of leading terms of
 = (1, 2). The last column shows 2-multi indices (see §6.1) of L∕A.

5.1.2 Singular mappings and base curves
Consider the case (3) A0 = 0 and L0 ≠ 0. Then the germs f and  are not immersive; on the other hand e and � are regular.
Note that this is non-inflective case in the sense of [8], and is well studied with respect to the base curve and the evolute. Let A
be of type Ak1−1 and L be of type Ak2−1, and write

A(v) =
Ak1
k1!

vk1 +⋯ , L(v) = L0 +
Lk2
k2!

vk2 +⋯

where Ak1 , Lk2 ≠ 0 (k1, k2 ≥ 1).
Proposition 5.11 ( with A0 = 0 and L0 ≠ 0). In the above setting,  is-equivalent to a map germ of the form (tk1+1, tk1+2 +
ℎ.o.t).

Proof. The base curve (v) = (1(v), 2(v)) is as follows:

1(v) =

v

∫
0

Āk1
k1!

vk1 cos
(

L0v +
Lk2

(k2 + 1)!
vk2+1 +⋯

)

dv =
Āk1

(k1 + 1)!
vk1+1 +⋯ ,

2(v) =

v

∫
0

Āk1
k1!

vk1 sin
(

L0v +
Lk2

(k2 + 1)!
vk2+1 +⋯

)

dv = L0
Āk1(k1 + 1)
(k1 + 2)!

vk1+2 +⋯ .

□

Proposition 5.12 (f with A0 = 0 and L0 ≠ 0). In the above setting, f is-equivalent to a map germ of the form
(u, uv + vk1+1 + ℎ.o.t)

for the map of the normal line congruence f (u, v) = (v)+ue(v) = (ue1(v)+1(v), ue2(v)+2(v)). Especially, f is-equivalent
to of type fold (u, v2) for k1 = 1; cusp (u, uv + v3) for k1 = 2; swallowtail (u, uv + v4) for k1 = 4.
Proof. Remark that the leading terms of e1 and e2 are expressed as

e1(v) = L0v + ℎ.o.t,

e2(v) = −1 + 1
2!
L20v

2 + ℎ.o.t.
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A L = l = �u f  A∕L

A0 A0 fold (2, 3) (1,≥ 2)
A1 fold (2, 3) (1,≥ 2)
A2 fold (2, 3) (1,≥ 2)
A≥3 fold (2, 3) (1,≥ 2)

A1 A0 cusp (3, 4) (2,≥ 3)
A1 cusp (3, 4) (2,≥ 3)
A2 cusp (3, 4) (2,≥ 3)
A≥3 cusp (3, 4) (2,≥ 3)

A2 A0 swallowtail (4, 5) (3,≥ 4)
A1 swallowtail (4, 5) (3,≥ 4)
A2 swallowtail (4, 5) (3,≥ 4)
A≥3 swallowtail (4, 5) (3,≥ 4)

TABLE 2 The types of f,  are shown for given types of A,L. � and e are regular.  is singular and (m1, m2) in the column
means the degrees of leading terms of  = (1, 2). The last column shows 2-multi indices (see §6.1) of A∕L.

Since e2(0) ≠ 0, we can replace u(u, v) = ue2(v) + 2(v). Then
f (u, v) =

(

(u − 2(v))
e2(v)

e1(v) + 1(v), u
)

and exchanging the components it is-equivalent to
(

u, u
e1(v)
e2(v)

−
2(v)e1(v)
e2(v)

+ 1(v)
)

.

Here
e1(v)
e2(v)

= −L0v + h.o.t, 2(v)e1(v)
e2(v)

+ 1(v) =
Ak1
k1 + 1

vk1+1 + h.o.t,
thus f is-equivalent to

(u, uv + vk1+1 + ℎ.o.t).
In addition, whether the germs are -equivalent to of type fold, cusp or swallowtail is determined by the leading terms of the
second component in the above form (cf. [25]). □

Summing up the above results for relatively small numbers of k1 and k2, we get the Table 2. When k1 ≥ 5, we need analyze
higher order terms in the germ in order to determine the exact-type. Refer to §6.4 for the detail with some examples.

5.1.3 Singular mappings, base curves and direction curves
Consider the case (4) A0 = L0 = 0. Then , f , � and �u are singular. Let A be of type Ak1−1 and L be of type Ak2−1, and write

A(v) =
Ak1
k1!

vk1 +⋯ , L(v) =
Lk2
k2!

vk2 +⋯

where Ak1 , Lk2 ≠ 0 (k1, k2 ≥ 1).
Proposition 5.13 (� with A0 = L0 = 0). In the above setting, there are 3 cases with respect to the Jacobian �:

1. for k1 = 1, � is regular;
2. for k1 ≥ k2 + 1, �(u, v) ∼ uvk2 ;

3. for k2 + 1 > k1 ≥ 2, �(u, v) ∼ ±vk1 .
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Proof. Since the Jacobian of the map of a normal line congruence is expressed as

�(u, v) =

(

Ak1
k1!

vk1 +⋯

)

+ u
(Lk2
k2!

vk2 +⋯
)

,

we have the result. □

Proposition 5.14 ( with A0 = L0 = 0). In the above setting, the leading terms of the Taylor expansions of 1 and 2 are

1(v) =
Ak1

(k1 + 1)!
vk1+1 +⋯ , 2(v) =

Ak1Lk2
k1!(k2 + 1)!(k1 + k2 + 2)

v(k1+k2+2) +⋯ .

Proof. The base curve (v) = (1(v), 2(v)) is as follows:

1(v) =

v

∫
0

(

Ak1
k1!

vk1 +⋯

)

cos
( Lk2
(k2 + 1)!

vk2+1 +⋯
)

dv =
Ak1

(k1 + 1)!
vk1+1 +⋯ ,

2(v) =

v

∫
0

(

Ak1
k1!

vk1 +⋯

)

sin
( Lk2
(k2 + 1)!

vk2+1 +⋯
)

dv

=
Ak1Lk2

k1!(k2 + 1)!(k1 + k2 + 2)
v(k1+k2+2) +⋯ .

□

Proposition 5.15 (f with A0 = L0 = 0). In the above setting, there are 3-cases for the map of the normal line congruence
f (u, v) = (v) + ue(v) = (ue1(v) + 1(v), ue2(v) + 2(v)):

1. for k1 ≤ k2, f is-equivalent to (u, vk1+1);
2. for k1 −1 = k2, f is-equivalent to (u, (u + v) vk1 + ℎ.o.t). Especially, when k1 = 2, f is-equivalent to of type beaks
(u, u2v − v3);

3. for k1 > k2 + 1, f is-equivalent to (u, uvk2+1 + vk1+1 + ℎ.o.t).

Proof. First, remark that the leading terms of e1 and e2 are
Lk2

(k2 + 1)!
vk2+1 and −1, respectively. Thus f (u, v) is-equivalent to

the following form:
(

u, u
e1(v)
e2(v)

−
2(v)e1(v)
e2(v)

+ 1(v)
)

=

(

u,−
Lk2

(k2 + 1)!
uvk2+1(1 +⋯) +

Ak1
(k1 + 1)!

vk1+1(1 +⋯)

)

.

Note that when k1 = 2, k2 = 1,
f ∼

(

u, (u + v) v2 + ℎ.o.t
)

∼ (u, u2v − v3 + ℎ.o.t).
From 3--determinacy of the beaks-type map germ (refer to [25]), we can determine the -type of the above germ as beaks
(u, v3 − u2v). □

Summing up the above results for relatively small numbers of k1 and k2, we get the Table 3.

6 SEVERAL GEOMETRICAL ASPECTS OF PLANE LINE CONGRUENCES

In §5.1, we focused on properties of normal line congruences which depend on the-types of functions in the curvature. In this
section, we show results on geometry of normal line congruences depending on higher order information of the functions.
For later use, we define a detailed type of a function germ:

Definition 6.1. Take a one-variable smooth function germ f ∶ (I, x0)→ ℝ, x → f (x).
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A L = l = �u � f2 e 

A0 A0 regular v2 A1 (2, 4)
A1 regular v2 A2 (2, 5)
A2 regular v2 A3 (2, 6)
A≥3 regular v2 A≥4 (2,≥ 7)

A1 A0 uv u2v − v3 A1 (3, 5)
A1 v2 v3 A2 (3, 6)
A2 v2 v3 A3 (3, 7)
A≥3 v2 v3 A≥4 (3,≥ 8)

A2 A0 uv ∗ uv2(+v4) A1 (4, 6)
A1 uv2 ∗ uv3 + v4 A2 (4, 7)
A2 v3 v4 A3 (4, 8)
A≥3 v3 v4 A≥4 (4,≥ 9)

TABLE 3 The types of �, f , e,  are shown for given types ofA,L. The 4-th column shows the second components of a mapping
(u, f2(u, v)) which is a representative of the -type of the mapping of the normal line congruence f . Note that an item with ∗
means the type of a jet, thus several-types exist over the type of the jet.

1. We say that the 1st index of f with respect to x is a non-negative integer l1 if f (i)(x0) = 0 for any integer i with
0 ≤ i ≤ l1 −1 and f (l1)(x0) ≠ 0 (here we define f (0)(x0) ∶= f (x0)); and the 1st index is∞ if f (i)(x0) = 0 for any integer
i ≥ 0.

2. For an integer n ≥ 2, we say that the n-th index of f with respect to x is ln ∈ ℕ if f (i)(x0) = 0 for any integer i with
ln−1 < i < ln and f (ln)(x0) ≠ 0, where ln−1 is an n − 1-th index of f ;

3. Suppose f has the finite n-th index with respect to x, and the i-th index is li for an integer i with 0 ≤ i ≤ n. The tuple
(l1,⋯ ,ln) is called the n-multi index of f with respect to x.

Example 6.2. Let f ∶ (I, 0)→ ℝ be a one-variable smooth function germ which is written as
f (x) =

al1
l1!

xl1 +
al2
l2!

xl2 +
al3
l3!

xl3 +⋯ +
alm
lm!

xlm + ℎ.o.t.

with integers 0 ≤ l1 < l2 < l3 < ⋯ < lm and non-zero real values al1 , al2 ,⋯ , alm . The i-th index of f is li for an integer i
with 1 ≤ i ≤ m, and the m-multi index is (l1,⋯ ,lm).
Remark 6.3. The multi-index for f ∶ (I, x0) → ℝ is not coordinate free (in other words, not invariant under -equivalence),
however it plays an interesting role in a context of local differential geometry. This notion is a natural expansion of the type of
the curvature function of a plane curve at a degenerate point such as a vertex or inflection point (cf. [16]). Clearly, a vertex on a
plane curve can be characterized by that the curvature function at the point has the 2-multi index (0, m) for m ≥ 2 (m = 2 for an
ordinary vertex). In addition, an inflection point can be characterized by that the curvature function at the point has the 2-multi
index (l1,l2) for l1 ≥ 1 (l1 = 1 for an ordinary inflection). In the above settings, m measures the degree of the contact of the
curve with circles; l1 measures the degree of the contact of the curve with lines. One aim of introducing multi-index is focusing
on the second index l2 (especially for the case l1 ≥ 1) to the components of the curvature of a Legendre curve appearing in our
setting.
The notion of multi index is characterized by the following equivalence of functions.

Definition 6.4. Let f, g∶ (I, x0)→ ℝ be smooth functions.
1. When the 1st indices of f, g are 0, f, g are(0,l2,⋯,ln)-equivalent if

f − jli−1f (x0) ∼ g − jli−1g(x0)

for any integer i with 1 < i ≤ n.
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2. When the 1st indices of f, g are more than 0, f, g are(l1,⋯,ln)-equivalent if
f − jli−1f (x0) ∼ g − jli−1g(x0)

for any integer i with 1 ≤ i ≤ n.
The next proposition follows from the definition (see also Example 6.2).

Proposition 6.5. Suppose f ∶ (I, x0)→ ℝ is a smooth function germ.
1. The following are equivalent:

(a) f has a n-multi index (0,l2,⋯ ,ln).
(b) f − jli−1f (x0) is(0,l2,⋯,ln)-equivalent to Ali−1-type for a non-negative integer i with 2 ≤ i ≤ n.

2. The following are equivalent:
(a) f has a n-multi index (l1,⋯ ,ln) for a positive integer l1.
(b) f − jli−1f (x0) is(l1,⋯,ln)-equivalent to Ali−1-type for a non-negative integer i with 1 ≤ i ≤ n.

As an example, the function f in Example 6.2 is(l1,⋯,lm)-equivalent to
±xl1 ± xl2 ± xl3 ±⋯ ± xlm .

6.1 The 2-multi indices of L∕A and A∕L
Let (, e) ∶ (I, 0)→ ℝ2 ×S1 and (̃, ẽ) ∶ (Ĩ , 0)→ ℝ2 ×S1 express plane line congruence germs. Assume that (, e) ∼ (̃, ẽ),
then we have the relations of curvatures between (l, L, �, A, B) of f (u, v) = (v) + ue(v) and (l̃, L̃, �̃, Ã, B̃) of f̃ (u, q) =
̃(q) + uẽ(q) as follows:

l̃(u, q) = 0,
L̃(u, q) = L(u, v(q))vq(q),
�̃(u, q) = −1, (6.1)
Ã(u, q) = A(u, v(q))vq(q) = A(v(q))vq(q) + uL(u, v(q))vq(q),
B̃(u, q) = B(u, v(q))vq(q)

where �(u, q) = (u, v(q)) is a one-parameter parameter change of a special form in the source space (see Proposition 3.1). Thus
the -types of function germs in the curvature of a plane line congruence germs (, e) ∶ (I, 0) → ℝ2 × S1 as a one-parameter
families of Legendre curves depends on the coordinate of (, e). On the other hand, it is easily seen that the ratio of two functions
in L,A,B,A is invariant. Especially, we study functions of the form L∕A or A∕L in the following.
From now on, we consider a normal line congruence (, e) ∶ (I, 0) → ℝ2 × S1 which is characterized by function germs

L,A ∶ (I, 0)→ ℝ. If A(0) ≠ 0, the base curve  is regular and [8] shows that −L∕A is equal to the curvature � of  as a regular
curve. Thus the ratio of L and A plays an important role, and we want to expand the notion.
LetA,L∶ (I, 0)→ ℝ be function germs with the 2-multi indices (a1, a2) and (l1,l2), respectively. If l1 ≥ a1 (resp. a1 ≥ l1),

then we can define a function germ −L∕A (resp. −A∕L). Remark that, from the equation (6.1), the above −L∕A (resp. −A∕L)
is invariant under the coordinate change of (, e).
Write

A(v) =
Aa1
a1!

va1 +
Aa2
a2!

va2 +⋯ , L(v) =
Ll1
l1!

vl1 +
Ll2
l2!

vl2 +⋯ . (6.2)
Then we have the following formula for the 2-multi index of the above newly defined functions.
Proposition 6.6. 1. When l1 ≥ a1,

2-multi index of −L
A
=

⎧

⎪

⎨

⎪

⎩

(l1 − a1,l2 − a1) (l1 − l2 > a1 − a2)
(l1 − a1, ∗) (l1 − l2 = a1 − a2)

(l1 − a1,l1 + a2 − 2a1) (l1 − l2 < a1 − a2)

⎫

⎪

⎬

⎪

⎭

.
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Here ∗ is a number more than or equal to l2 − a1, where the equality holds when
a2!l1!Ll2Aa1 − a1!l2!Ll1Aa2 = 0.

2. When a1 ≥ l1,

2-multi index of −A
L
=

⎧

⎪

⎨

⎪

⎩

(a1 − l1, a2 − l1) (a1 − a2 > l1 − l2)
(a1 − l1, ∗) (a1 − a2 = l1 − l2)

(a1 − l1, a1 + l2 − 2l1) (a1 − a2 < l1 − l2)

⎫

⎪

⎬

⎪

⎭

.

Here ∗ is a number more than or equal to a2 − l1, where the equality holds when
l2!a1!Aa2Ll1 − l1!a2!Aa1Ll2 = 0.

Proof. Proving the statement (1) is enough. When l1 ≥ a1, the generalized curvature is written as

L
A
=
a1!
l1!

Ll1
Aa1

vl1−a1 +

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a1!
l2!

Ll2
Aa1
vl2−a1 (l1 − l2 > a1 − a2)

(

a1!
l2!

Ll2
Aa1

− (a1!)2

l1!a2!

Ll1Aa2
A
2
a1

)

vl2−a1 (l1 − l2 = a1 − a2)

− (a1!)2

l1!a2!

Ll1Aa2
A
2
a1

vl1+a2−2a1 (l1 − l2 < a1 − a2)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+⋯ ;

especially, when l1 − l2 = a1 − a2, the coefficient of the second term is written as
a1!

l1!l2!a2!
1
A2a1

(a2!l1!Ll2Aa1 − a1!l2!Ll1Aa2).

Thus we have the statement (1). □

Remark 6.7. Generally, the second indices ofL∕A andA∕L depend on the choice of coordinate v. However, in the case a1 = l1
the second indices of L∕A and A∕L become independent of the choice of the coordinate v, like the degree of a vertex of a
regular curve.

6.2 Jacobian constant curves
According to §5, for a normal line congruence f (u, v) = (v) + ue(v), the Jacobian coincides with the function A(u, v):

�(u, v) = A(v) + uL(v) = A(u, v).

In general, �−1(0) (or f (�−1(0))) is called the set of singularities of the mapping f , at which f is not immersive. The singular set
of a mapping is a main object to study of singularity theory. On the other hand, even when �(0, 0) ≠ 0, the level set �−1(�(0, 0))
is sometimes an important geometrical feature of a normal line congruence (cf. §7.1).
Write

A(v) = A(0) +
Aa1
a1!

va1 +⋯ , L(v) =
Ll1
l1!

vl1 +⋯

for integers a1 ≥ 1,l1 ≥ 0 and real values Aa1 , Ll1 ≠ 0. The diffeomorphic types of the level set germ �−1(�(0, 0)) at (0, 0) in
the uv-plane are divided into the following three cases:

(i) When l1 = 0,
�(u, v) = �(0, 0)⇐⇒ u = −

A(v) − A(0)
L(v)

and f (�−1(�(0, 0))) is a Legendre curve (see Proposition 6.8);
(ii) When l1 ≥ a1 ≥ 1,

�(u, v) = �(0, 0)⇐⇒ va1
(

Aa1
a1!

+ ℎ.o.t.

)

= 0⇐⇒ v = 0

and f (�−1(�(0, 0))) is the straight line along the direction e(0);
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(iii) When a1 > l1 ≥ 1,

�(u, v) = �(0, 0)⇐⇒ vl1
(

u +
A(v) − A(0)

L(v)

)

= 0⇐⇒ v = 0 or u = −A(v) − A(0)
L(v)

,

and f (�−1(�(0, 0))) consists of the straight line along the direction e(0) and another Legendre curve (see Proposition 6.8).
In the cases (i) and (iii), there exists a branch of f (�−1(�(0, 0))) expressed by

̂ ∶=  − A − A(0)
L

e.

If there exists the above germ ̂ which goes through f (0, 0), we call it the Jacobian constant curve (for short, JC curve) of the
normal line congruence f at f (0, 0). Put

̂(v) ∶= (v) − A(v) − A(0)
L(v)

e(v)

ê(v) ∶=
⎧

⎪

⎨

⎪

⎩

A(0)e(v)+ d
dv

(

A(v)−A(0)
L(v)

)

J (e(v))
√

(

d
dv

(

A(v)−A(0)
L

))2
+A

2
(0)

when A(0) ≠ 0,

e(v) when A(0) = 0.

The next statement immediately follows from direct calculations (see [10] for the case A(0) = 0).
Proposition 6.8. (̂, ê) is a Legendre curve, and the curvature (l, �) of it is given as follows:

l(v) =

⎧

⎪

⎨

⎪

⎩

L(v) +
A(0) d

2

dv2

(

A(v)−A(0)
L

)

(

d
dv

(

A(v)−A(0)
L

))2
+A

2
(0)

when A(0) ≠ 0,

L(v) when A(0) = 0,

�(v) =

⎧

⎪

⎨

⎪

⎩

√

(

d
dv

(

A(v)−A(0)
L

))2
+ A

2
(0) when A(0) ≠ 0,

d
dv

(

A(v)
L(v)

)

when A(0) = 0.

Remark 6.9. The JC curve of a normal line congruence f at a point is exactly the evolute (or envelope) when it is a branch
of the singular value set of f (i.e. f (�−1(0))). It is well known that the evolute of a curve locally never has intersections with
normal lines at inflection points of the curve; while general JC curves at the points can exist. Especially, the existence of JC
curves is local invariant under the congruent equivalence, see Table 1 and §7.1.

6.3 Evolutes and normal line congruences
We consider the cotangent bundle � ∶ T ∗ℝ2 → ℝ2 overℝ2. Let (x, y, p, q) be the canonical coordinate and! = dp∧dx+dq∧dy
be a canonical symplectic form on T ∗ℝ2.
For a plane line congruence f ∶ ℝ×I → ℝ2, f (u, v) = (v)+ue(v), we define f̃ ∶ ℝ×I → T ∗ℝ2 by f̃ (u, v) = (f (u, v), e(v)).

Then f̃ ∗! = e′(v) ⋅ e(v)dv ∧ du = 0. Hence f̃ is a Lagrangian mapping (cf. [1, 2, 16]). Moreover, if L(v) ≠ 0 for all v ∈ I ,
then f̃ is a Lagrangian immersion. The caustic Cf of f̃ is defined by the set of the critical value of �◦f̃ = f . In this case, the
caustic Cf is given by {(v) − (A(v)∕L(v))e(v)|v ∈ I}, under the assumption L(v) ≠ 0 for all v ∈ I . Moreover, if we consider
f̂ (u, v) = ̂(v) + ue(v), where ̂ is in Proposition 5.5, then Cf̂ = Cf . Since f̂ is a normal line congruence, (̂ , e) ∶ I → ℝ2 ×S1

is a Legendre curve (a Legendre immersion when L ≠ 0) with the curvature (l̂ , �̂ ) = (L,A + �L). It follows that the caustic
Cf is given by the evolute of ̂ (cf. [8]). In fact, when L(v) ≠ 0 for all v ∈ I , the evolute of ̂ , v(̂) ∶ I → ℝ2 is given by

v(̂)(v) = ̂(v) −
�̂ (v)
l̂ (v)

e(v)

= (v) + �(v)e(v) − A(v) + �(v)L(v)
L(v)

e(v)

= (v) −
A(v)
L(v)

e(v).
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6.4 -types of normal line congruences
In §5.1, we studied the -types of germs of normal line congruences, where conditions to determine just first or second terms
of the Taylor expansions of the map germs are given for some cases. In this section, we show the conditions for singularities of
-codimension ≤ 4 to appear in map germs of normal line congruences. Here the-codimension means a codimension of the
-orbit in the space of map germs (see [16, 25] for details).

6.4.1 Butterfly
Set A0 = 0, L0 ≠ 0, A ∼ A3, then f ∼ (u, uv + v5 + ℎ.o.t) (see section 5.1.2). The normal forms of the -orbits over this
type are either (u, uv+ v5 ± v7) or (u, uv+ v5), which are 7--determined [25]. The first type is called butterfly. The difference
is determined by higher order terms of the given germ, that is, higher order terms of A,L.
Proposition 6.10. Assume that A,L are written as

A(v) =
A4
4!
v4 +

A5
5!
v5 +

A6
6!
v6 +⋯ , L(v) = L0 +

L1
1!
v +

L2
2!
v2 +⋯

where A4, L0 ≠ 0. Then f is-equivalent to
• (u, uv + v5 ± v7) if and only if P ≷ 0;
• (u, uv + v5) if and only if P = 0

where
P ∶= −15(160L40 − 147L

2
1 + 112L0L2)A

2
4 + 6L0(7L1A5 + 8L0A6)A4 − 35L

2
0A

2
5.

Especially, f is always equivalent to (u, uv + v5 − v7) if the 2nd index of L is more than 2 (that is, L1 = L2 = 0) and that of A
is more than 6 (that is, A5 = A6 = 0).
Proof. The claim follows from direct calculations using criteria of -types in [19]. First, by routine coordinate changes, f is
-equivalent to the form

(x, xy + y5 +
∑

7≥i+j≥6
cijx

iyj + ℎ.o.t)

where cij are polynomials consisting of Ai, Li as variables. Especially, the data of the following coefficients are important:

c06 =
−15L1A4 + L0A5

6A4L0
, c07 =

−5(10L40 − 42L
2
1 + 7L0L2)A4 − 21L0L1A5 + L

2
0A6

42A4L20
.

From criteria (2) of Proposition 3.3 in [19], we see that the value

c07 −
5
8
c206 =

−15(160L40 − 147L
2
1 + 112L0L2)A

2
4 + 6L0(7L1A5 + 8L0A6)A4 − 35L

2
0A

2
5

2016A
2
4L

2
0

determines the -type of f . □

Remark 6.11. The remark on index types of A,L in Proposition 6.10 can be stated also as follows: f is always equivalent to
(u, uv + v5 − v7) if L is(0,l2)-equivalent to L0 ± xl2 for l2 ≥ 3 and A is(4,l2)

-equivalent to ±x4 ± xl2 for l2 ≥ 7.

6.4.2 Gulls
Set A0 = 0, L0 = 0, A ∼ A2 and L ∼ A0, then f ∼ (u, uv2 + v4 + ℎ.o.t)(see Section 5.1.3). The -orbits over the above
form have the representatives (u, uv2 + v4 + v2p+1) with p ≥ 2 which are 2p+ 1-determined (refer to [25]). The type with p = 2
is called gulls.
Proposition 6.12. Assume that A,L are written as

A(v) =
A3
3!
v3 +

A4
4!
v4 +⋯ , L(v) =

L1
1!
v +

L2
2!
v2 +⋯
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e-cod -cod type characterization
0 1 fold : (u, v2) A ∼ A0
0 2 cusp : (u, uv + v3) A ∼ A1 and L0 ≠ 0
1 3 swallowtail : (u, uv + v4) A ∼ A2 and L0 ≠ 0
1 3 beaks : (u, u2v − v3) A ∼ A1, L0 = 0 and L ∼ A0
2 4 butterfly : (u, uv + v5 ± v7) A ∼ A3, L0 ≠ 0

and a condition in Proposition 6.10
2 4 gulls : (u, uv2 + v4 + v5) A ∼ A2, L ∼ A0, L0 = 0

and a condition in Proposition 6.12

TABLE 4 -types of e (resp. )-codimension ≤ 2 (resp. 4) appearing in maps of plane line congruences. See [25] for the
definition ofe-codimension.

where A3, L1 ≠ 0. Then f is-equivalent to
• (u, uv2 + v4 + v5) if and only if −10L2A3 + 3L1A4 ≠ 0;
• (u, uv2 + v4 + v7) if and only if −10L2A3 + 3L1A4 = 0, Q ≠ 0

where
Q ∶= −7(10L32 + 10L1L2L3 − 3L

2
1L4)A3 + 21L

2
1L2A5 − 3L

3
1A6.

Especially, f is not equivalent to (u, uv2 + v4 + v5) if the 2nd index of L is more than 2 (that is, L2 = 0) and that of A is more
than 4 (that is, A4 = 0).
Proof. As in the proof of Proposition 6.10, the claim also follows from direct calculations using criteria of-types in [19]. By
routine coordinate changes, f is-equivalent to the form

(x, xy2 + y4 +
∑

7≥i+j≥5
cijx

iyj + ℎ.o.t)

where cij are polynomials consisting of Li as variables. Especially,

c23 = 0, c05 =
−10L2A3 + 3L1A4

15A3L1
, c15 =

5L32 − 10L1L2L3 + 3L
2
1L4

180L31
,

c07 =
−35L32A3 + 105L1L

2
2A4 − 63L

2
1L2A5 + 9L

3
1A6

1890A3L31
.

From criteria (2) of Proposition 3.5 in [19], we see that if c05 ≠ 0, then f is of type gulls; and if c05 = 0 and c07−2c15+4c23 ≠ 0,
then f is-equivalent to (x, xy2 + y4 + y7). □

Remark 6.13. The remark on index types of A,L in Proposition 6.12 can be stated also as follows: f is not equivalent to
(u, uv2 + v4 + v5) if L is(1,l2)-equivalent to ±x ± xl2 for l2 ≥ 3 and A is(3,l2)

-equivalent to ±x3 ± xl2 for l2 ≥ 5.

6.4.3 Summary
Summing up the above results including parts of propositions in §5.1, we have the following characterizations of singular germs
of -codimension up to 4 appearing in the maps of normal line congruences. Examples of the figures for those -types are
seen in §7.2 and §7.3.
Theorem 6.14. The following table shows all -types and characterizations of germs (ℝ2, 0) → (ℝ2, 0) with -codimension
≤ 4 appearing in the maps of normal line congruences (A0 = 0 is always assumed). Especially, the-types of lips: (u, u2v+v3)
(-codimension = 3), goose: (u, v3 + u3v) (-codimension = 4) or of corank 2 never appear.
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Proof. The absences of lips and goose types follow from Proposition 5.15. The absences of germs of corank 2 immediately
follow from the form of the map of a plane line congruence. □

Remark 6.15. The absences of lips and goose types can be explained also in terms of the Jacobian �. In [19, 26], it is shown that
a map germ is-equivalent to lips, then the Jacobian is-equivalent to A+1 ∶ x2 + y2; or to an-type of the form (x, y3 +xky)
for k ≥ 3 (the germ is goose when k = 3), then the Jacobian is -equivalent to Ak ∶ x2 ± yk. With the above facts, since the
Jacobian � for the map of a plane line congruence satisfies �uu = 0 as seen in Remark 5.3, the map is never-equivalent to lips
or an -type of the form (x, y3 + xky) for k ≥ 3. Note also that, according to Proposition 3.4, the absent germs of corank 1 in
normal line congruences can be realized by one-parameter families of Legendre curves.

7 EXAMPLES OF NORMAL LINE CONGRUENCES WITH FIGURES

In this section, we show several figures of normal line congruences as examples.

7.1 Inflective regular base curves
We deal with normal line congruences of types in §5.1.1. The Figures 4 - 7 show the figures of normal line congruences to base
curves of the form (a,b)(v) = (v + va+2, 2vb+3) for pairs of non-negative integers (a, b). A(0) ≠ 0 and L(0) = 0 hold for the
curvatures (A,L) to the normal line congruences f(a,b)(u, v) = (a,b)(v)+ue(v), where e is the normal vector of (a,b) constructed
as in §5. The blue curve expresses (a,b), which has an inflection point at v = 0. The red curve expresses the set

f(a,b)(�−1(�(0, 0))) − {the normal line of (a,b) at (a,b)(0)}.
In Figures 4 - 5, the red curves never go through the origin, that is, the JC curves at f(a,b)(0, 0) (defined in §6.2) never exist; while
the red curves in Figures 6 - 7 are the JC curves at f(a,b)(0, 0). Note that all figures are drawn as the image of the domain with
−0.9 ≤ u ≤ 0.9 and −0.5 ≤ v ≤ 0.5 in the (u, v)-plane, and the straight lines parametrized by u are plotted par 1∕30 intervals to
the domain of v.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIGURE 4 The normal line congruence to
(0,0)(v) = (v + v2, 2v3) . The -type of A (resp.
L) at v = 0 is A0 (resp. A0).

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIGURE 5 The normal line congruence to
(0,1)(v) = (v + v2, 2v4) . The -type of A (resp.
L) at v = 0 is A0 (resp. A1).

7.2 Singular mappings and base curves
We deal with normal line congruences of types in §5.1.2. The Figures 8 - 11 show the figures of normal line congruences to
base curves of the form a(v) = (va+2, va+3 + va+4) for non-negative integers a. A(0) = 0 and L(0) ≠ 0 hold for the curvatures
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-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIGURE 6 The normal line congruence to
(1,0)(v) = (v + v3, 2v3) . The -type of A (resp.
L) at v = 0 is A1 (resp. A0).

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIGURE 7 The normal line congruence to
(2,0)(v) = (v + v4, 2v3) . The -type of A (resp.
L) at v = 0 is A2 (resp. A0).

(A,L) to the normal line congruences fa(u, v) = a(v) + ue(v), where e is the normal vector of a constructed as in §5. The
blue curve expresses a. Note that all figures are drawn as the image of the domain with −0.05 ≤ u ≤ 0.05 and −0.5 ≤ v ≤ 0.5
in the (u, v)-plane, and the straight lines parametrized by u are plotted par 1∕30 intervals to the domain of v.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

FIGURE 8 The normal line congruence to
0(v) = (v2, v3 + v4) . The -type of A (resp. L)
at v = 0 is A0 (resp. A0). The -equivalent type
of the map of the normal line congruence is fold.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-0.05

0.00

0.05

0.10

FIGURE 9 The normal line congruence to
1(v) = (v3, v4 + v5) . The -type of A (resp. L)
at v = 0 is A1 (resp. A0). The -equivalent type
of the map of the normal line congruence is cusp.

7.3 Singular mappings, base curves and direction curves
We deal with normal line congruences of types in 5.1.3. The Figures 12 - 14 show the figures of normal line congruences to base
curves of the form a(v) = (va+2,−2va+4 + va+5) for non-negative integers a, and the Figure 15 shows the figure of a normal
line congruence to a base curve of the form ̃(v) = (v4 + v6,−2v6 + v9). A(0) = L(0) = 0 hold for the curvatures (A,L) to the
normal line congruences. The blue curve expresses a or ̃. The red curve expresses the JC curve of the normal line congruence
at the origin (see (2) of Proposition 5.13 or case (ii) of §6.2). Remark also that the map of the normal line congruence to 2 is
-equivalent to the germ of type (u, uv2 + v4 + v5), which is called gulls, at (u, v) = (0, 0); while that to ̃ is -equivalent to
the germ of type (u, uv2 + v4 + v7) at (u, v) = (0, 0) (see §6.4.2). Note that all figures are drawn as the image of the domain with
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-0.02 0.00 0.02 0.04 0.06 0.08 0.10

-0.05

0.00

0.05

FIGURE 10 The normal line congruence to
2(v) = (v4, v5 + v6) . The -type of A (resp.
L) at v = 0 is A2 (resp. A0). The -equivalent
type of the map of the normal line congruence is
swallowtail.

-0.04 -0.02 0.00 0.02 0.04 0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

FIGURE 11 The normal line congruence to
3(v) = (v5, v6+v7) . The-type ofA (resp.L) at
v = 0 is A3 (resp. A0). The -equivalent type of
the map of the normal line congruence is butterfly.

−0.5 ≤ u ≤ 0.5 and −0.6 ≤ v ≤ 0.6 in the (u, v)-plane, and the straight lines parametrized by u are plotted par 1∕30 intervals to
the domain of v.

-0.2 0.0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

FIGURE 12 The normal line congruence to
0(v) = (v2,−2v4 + v5) . The -type of A (resp.
L) at v = 0 is A0 (resp. A0). The -equivalent
type of the map of the normal line congruence is
fold. Here the JC curve at the origin does not exist.

-0.6 -0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

FIGURE 13 The normal line congruence to
1(v) = (v3,−2v5 + v6) . The -type of A (resp.
L) at v = 0 is A1 (resp. A0). The -equivalent
type of the map of the normal line congruence is
beaks.
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-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

FIGURE 14 The normal line congruence to
2(v) = (v4,−2v6+v7) . The-type ofA (resp.L)
at v = 0 is A2 (resp. A0). The -equivalent type
of the map of the normal line congruence is gulls.
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-0.2

0.0

0.2

0.4

FIGURE 15 The normal line congruence to
d(v) = (v4+v6,−2v6+v9) . The-types ofA and
L are the same with those to 2(v) = (v4,−2v6 +
v7), however the-type of the map of the normal
line congruence to d is different from that to 2.
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