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Abstract

We define θ-enveloids for one-parameter families of Legendre curves.
The θ-enveloid for a given one-parameter family of Legendre
curves is a plane curve that cuts each member of the family in
the same constant angle θ. As an application, we consider the
definition of involutoids of frontals from the view point of θ-
enveloids. Moreover, we consider the properties of normal envelopes.
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1 Introduction

Isogonal trajectory is a classical topic in mathematics. There are many applica-
tions of isogonal trajectories to differential geometry, differential equations and
algebra [5, 7, 13, 20, 21, 23]. An isogonal trajectory of a family of plane curves
is a plane curve that cuts each member of the family in the same constant
angle θ at some points. When θ equals 0 and π/2, the isogonal trajectories are
envelopes and orthogonal trajectories, respectively. Many geometric objects
can be explained from the perspective of isogonal trajectories. For instance,
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involutes and evolutes of curves are closely related to the π/2-isogonal trajec-
tories (orthogonal trajectories) and 0-isogonal trajectories (envelopes) of the
families of tangent lines and normal lines of the original curves [2–4, 6, 10–
12, 16–18, 20, 25]. Pedal curves, which have important applications in other
subjects, can also be described by using the language of isogonal trajectories
[4, 17, 25]. From the view point of slant geometry (cf. [2, 4, 12, 17, 18]), the
isogonal trajectories are the generalizations of envelopes and orthogonal tra-
jectories [5, 13, 19, 21, 23]. If the family of curves are regular, then the angle
between isogonal trajectories and the curves of the family at the intersections
is well-defined. But we can not define isogonal trajectories for singular curves.
In reality, however, singularities always exist on curves. In Takahashi [24],
envelopes for Legendre curves in the Euclidean plane are defined. They are the
generalizations of the classical envelopes for regular plane curves. In this paper,
we will define θ-enveloids for one-parameter families of Legendre curves, which
are the generalizations of the isogonal trajectories for regular plane curves.
The definition of enveloids is a generalization of the classical envelopes from
the view point of “angle”, such as “evolute” to “evolutoid”, “pedal” to “ped-
aloid” and “primitive” to “primitivoid”, see [12, 17, 18]. Although there is only
a difference in “angle” between envelopes and θ-enveloids (θ ̸= 0) in geometric
meaning, there is a great difference between the two, especially the θ-enveloids
are closely related to ordinary differential equations, see Theorems 5 and 6.

In section 2, we review the definitions of Legendre curves and one-
parameter families of Legendre curves. We also give a moving frame and a
Frenet type formula (cf. [22, 24]). In section 3, we define a θ-enveloid for a one-
parameter family of Legendre curves. We find that the θ-enveloid is a frontal.
As a main result, we give the θ-enveloid theorem, see Theorem 2. Moreover, we
also consider the existence and uniqueness of enveloids with initial values under
conditions, see Theorem 6. In section 4, from the view point of θ-enveloids, we
define involutoids of frontals (singular curves). The involutoids are not only
the generalizations of the classical tanvolutes for regular plane curves, but also
the opposite processes of the evolutoids (cf. [2, 4, 12, 17]). We can see the
involutoids of a front without inflection points are fronts, so we give the cur-
vature. We also give the relationships between involutoids and evolutoids. In
section 5, as a special case, we consider the properties of π/2-enveloids (normal
envelops). The basic results on the singularity theory see [3, 6, 14, 15].

All maps considered in this paper are differentiable of class C∞.

2 Legendre curves and one-parameter families
of Legendre curves

In this section, we introduce the definitions of Legendre curves and one-
parameter families of Legendre curves in the unit tangent bundle over R2. For
more details about Legendre curves and one-parameter families of Legendre
curves see [9, 22, 24].
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Let I and Λ be intervals in R.We say that (γ, ν) : I → R2×S1 is a Legendre
curve if γ′(t) ·ν(t) = 0 for all t ∈ I. Moreover, if (γ, ν) is an immersion, we call
(γ, ν) a Legendre immersion. We say that γ : I → R2 is a frontal (respectively,
a front) if there exists a smooth map ν : I → S1 such that (γ, ν) is a Legendre
curve (respectively, a Legendre immersion).

We denote J(x) = (−x2, x1) the anticlockwise rotation by π/2 of x =
(x1, x2). Then we define µ(t) = J(ν(t)), thus {ν(t), µ(t)} is a moving frame
along γ(t). The Frenet type formula of (γ, ν) is given by(

ν′(t)
µ′(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
,

γ′(t) = β(t)µ(t).

The pair (ℓ, β) is called the curvature of (γ, ν). In this paper, we call t0 an
inflection point of the Legendre curve (γ, ν) if ℓ(t0) = 0, see [10, 11].

Definition 1 (cf. [22, 24]) Let (γ, ν) : I × Λ → R2 × S1 be a smooth mapping. We
say that (γ, ν) is a one-parameter family of Legendre curves if γt(t, λ) · ν(t, λ) = 0
for all (t, λ) ∈ I × Λ.

By definition, (γ(·, λ), ν(·, λ)) : I → R2 × S1 is a Legendre curve for each
fixed λ ∈ Λ and γ : I × Λ → R2 is a one-parameter family of frontals.

We define µ(t, λ) = J(ν(t, λ)). Then {ν(t, λ), µ(t, λ)} is a moving frame
along γ(t, λ) and the Frenet type formula is given by(

νt(t, λ)
µt(t, λ)

)
=

(
0 ℓ(t, λ)

−ℓ(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
,(

νλ(t, λ)
µλ(t, λ)

)
=

(
0 m(t, λ)

−m(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
,

γt(t, λ) = β(t, λ)µ(t, λ),

γλ(t, λ) = A(t, λ)ν(t, λ) +B(t, λ)µ(t, λ),

where

ℓ(t, λ) = νt(t, λ) · µ(t, λ), m(t, λ) = νλ(t, λ) · µ(t, λ), β(t, λ) = γt(t, λ) · µ(t, λ),

A(t, λ) = γλ(t, λ) · ν(t, λ), B(t, λ) = γλ(t, λ) · µ(t, λ).
By the integrability condition γtλ(t, λ) = γλt(t, λ), νtλ(t, λ) = νλt(t, λ) and
µtλ(t, λ) = µλt(t, λ), ℓ(t, λ), m(t, λ), β(t, λ), A(t, λ) and B(t, λ) satisfy

ℓλ(t, λ) = mt(t, λ),

At(t, λ) = B(t, λ)ℓ(t, λ)− β(t, λ)m(t, λ),

Bt(t, λ) = βλ(t, λ)−A(t, λ)ℓ(t, λ)
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for all (t, λ) ∈ I × Λ. We call the tuple (ℓ,m, β,A,B) with the integreability
condition a curvature of the one-parameter family of Legendre curves (γ, ν).

Remark 1 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). Then (γ,−ν) is also a one-parameter family of
Legendre curves with curvature (ℓ,m,−β,−A,−B).

Example 1 Let (γ, ν) : R× R → R2 × S1 be given by

γ(t, λ) = (t2 − λ, t3 + λ), ν(t, λ) = (4 + 9t2)−1/2(−3t, 2).

Since
γt(t, λ) = (2t, 3t2), γλ(t, λ) = (−1, 1),

νt(t, λ) = 6(4 + 9t2)−3/2(−2,−3t), νλ(t, λ) = (0, 0)

and
µ(t, λ) = (4 + 9t2)−1/2(−2,−3t),

(γ, ν) is a one-parameter family of Legendre curves and the curvature is given by

(ℓ,m, β,A,B)(t, λ)

= (6(4 + 9t2)−1, 0,−t(4 + 9t2)1/2, (4 + 9t2)−1/2(3t+ 2), (4 + 9t2)−1/2(2− 3t)).

In [22, 24], the existence and uniqueness theorem for one-parameter families
of Legendre curves are given.

3 θ-enveloids for Legendre curves

Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre curves with
curvature (ℓ,m, β,A,B) and e : U → I × Λ, e(u) = (t(u), λ(u)) be a smooth
curve, where I, Λ, U are intervals in R. Denote E(u) = γ ◦ e(u).

Definition 2 We call E a θ-enveloid and e a pre-θ-enveloid (θ ∈ [0, π)) for the fam-
ily of Legendre curves (γ, ν), when the conditions (1) and (2) are satisfied.

(1) The map λ : U → Λ is surjective and non-constant on any non-trivial subinterval
of U (The variability condition).

(2) For all u ∈ U , E′(u) and cos θµ(t(u), λ(u)) + sin θν(t(u), λ(u)) are linearly
dependent (The θ-parallel condition).

If we clarify θ, then we denote e[θ] and E[θ] respectively. Actually, we can
prove that E[θ] is a frontal, see Proporsition 1. We remark that the θ-parallel
condition is equivalent to

E[θ]′(u) · (− cos θν(e[θ](u)) + sin θµ(e[θ](u))) = 0
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for all u ∈ U . When θ = 0, e[0] is a pre-envelope and E[0] is an envelope of
(γ, ν) respectively [24], when θ = π/2, we call e[π/2] a pre-normal envelope
and E[π/2] a normal envelope of (γ, ν), respectively. When γ is regular, we can
easily see that they are envelopes and orthogonal trajectories of one-parameter
families of regular curves [5, 13, 19, 22–24].

However, different from the classical envelopes, the θ-enveloids (θ ̸= 0) of a
one-parameter family of Legendre curves are closely related to the solutions of
ordinary differential equations, so the θ-enveloids often appear in the form of
a one-parameter family of curves, see Theorem 5 and Example 2. In this case,
we call them the one-parameter family of θ-enveloids for the one-parameter
family of Legendre curves.

Remark 2 By definition, E[θ] = E[θ + π]. Therefore, we only consider θ ∈ [0, π).

Remark 3 For a fixed u ∈ U , E[θ](u) = γ(t(u), λ(u)) is not only a point on the θ-
enveloid E[θ] but also a point on the frontal γ(·, λ(u)). Since λ : U → Λ is surjective,
E[θ] cuts each member of the family of frontals γ at some points.

Proposition 1 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). If e[θ] : U → I × Λ is a pre-θ-enveloid and

E[θ] = γ ◦ e[θ] : U → R2

is a θ-enveloid of (γ, ν), respectively. Then

(E[θ],− cos θν ◦ e[θ] + sin θµ ◦ e[θ]) : U → R2 × S1

is a Legendre curve with the curvature

ℓ[θ](u) = t′(u)ℓ(e[θ](u)) + λ′(u)m(e[θ](u)),

β[θ](u) = − cos θt′(u)β(e[θ](u))− sin θλ′(u)A(e[θ](u))− cos θλ′(u)B(e[θ](u)).

Proof Denote e[θ](u) = (t(u), λ(u)). Since e[θ] is a pre-θ-enveloid of (γ, ν), we have

E[θ]′(u) · (− cos θν ◦ e[θ](u) + sin θµ ◦ e[θ](u)) = 0

for all u ∈ U by the θ-parallel condition. Then

(E[θ],− cos θν ◦ e[θ] + sin θµ ◦ e[θ]) : U → R2 × S1

is a Legendre curve. The moving frame of (E[θ](u),− cos θν ◦e[θ](u)+sin θµ◦e[θ](u))
is given by

{− cos θν ◦ e[θ](u) + sin θµ ◦ e[θ](u),− cos θµ ◦ e[θ](u)− sin θν ◦ e[θ](u)}.
Therefore, we have the curvature

ℓ[θ](u) =
d

du
(sin θµ ◦ e[θ](u)− cos θν ◦ e[θ](u)) · (− cos θµ ◦ e[θ](u)− sin θν ◦ e[θ](u))

= (sin θµt(e[θ](u))t
′(u) + sin θµλ(e[θ](u))λ

′(u)− cos θνt(e[θ](u))t
′(u)

− cos θνλ(e[θ](u))λ
′(u)) · (− cos θµ ◦ e[θ](u)− sin θν ◦ e[θ](u))

= t′(u)ℓ(e[θ](u)) + λ′(u)m(e[θ](u)),

β[θ](u) = E[θ]
′
(u) · (− cos θµ ◦ e[θ](u)− sin θν ◦ e[θ](u))
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= (t′(u)γt(e[θ](u)) + λ′(u)γλ(e[θ](u))) · (− cos θµ ◦ e[θ](u)− sin θν ◦ e[θ](u))
= − cos θt′(u)β(e[θ](u))− sin θλ′(u)A(e[θ](u))− cos θλ′(u)B(e[θ](u)).

□

Now we give the θ-enveloid theorem for one-parameter families of Legendre
curves.

Theorem 2 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B) and e[θ] : U → I × Λ be a smooth curve which
satisfies the variability condition. Then e[θ] is a pre-θ-enveloid of (γ, ν) if and only if

sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0 (1)

for all u ∈ U .

Proof Let e[θ] be a pre-θ-enveloid and E[θ] = γ ◦ e[θ] be a θ-enveloid of (γ, ν),
respectively. By differentiate E[θ](u) = γ ◦ e[θ](u), we have

E[θ]′(u) = t′(u)γt(e[θ](u)) + λ′(u)γλ(e[θ](u)).

Since

γt(t, λ) = β(t, λ)µ(t, λ), γλ(t, λ) = A(t, λ)ν(t, λ) +B(t, λ)µ(t, λ),

we have

E[θ]′(u) = t′(u)β(e[θ](u))µ(e[θ](u))+λ′(u)(A(e[θ](u))ν(e[θ](u))+B(e[θ](u))µ(e[θ](u))).

By the θ-parallel condition

E[θ]′(u) · (− cos θν(e[θ](u)) + sin θµ(e[θ](u))) = 0,

we have

sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0

for all u ∈ U.
On the other hand, suppose that

sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0

for all u ∈ U. Since

E[θ]′(u) · (− cos θν(e[θ](u)) + sin θµ(e[θ](u)))

= sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0,

e[θ] satisfies the θ-parallel condition. Therefore e[θ] is a pre-θ-enveloid of (γ, ν). □

Remark 4 By Theorem 2, the pre-envelope e[0] satisfies A(e[0](u)) = 0 for all u ∈ U ,
see [24].

Proposition 3 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves. If e[θ] : U → I × Λ is a pre-θ-enveloid and E[θ] = γ ◦ e[θ] : U → R2 is a
θ-enveloid of (γ, ν), respectively. Then e[θ] and E[θ] are also a pre-θ-enveloid and a
θ-enveloid of (γ,−ν), respectively.
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Proof By Remark 1, (γ,−ν) is a one-parameter family of Legendre curves. By the
θ-enveloid theorem, we have the same pre-θ-enveloids and θ-enveloids of (γ, ν) and
(γ,−ν). □

Let Φ : Ĩ × Λ̃ → I × Λ,Φ(s, k) = (ϕ(s, k), φ(k)) be a one-parameter family
of parameter changes, that is, Φ is a diffeomorphism by the above form.

Proposition 4 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B), e[θ] : U → I × Λ be a pre-θ-enveloid and

E[θ] = γ ◦ e[θ] : U → R2 be a θ-enveloid of (γ, ν), respectively. If Φ : Ĩ × Λ̃ → I × Λ
is a one-parameter family of parameter changes, then

(γ̃, ν̃) = (γ ◦ Φ, ν ◦ Φ) : Ĩ × Λ̃ → R2 × S1

is also a one-parameter family of Legendre curves. Moreover, Φ−1 ◦ e[θ] : U → Ĩ × Λ̃
is a pre-θ-enveloid of (γ̃, ν̃) and E[θ] is also a θ-enveloid of (γ̃, ν̃).

Proof We denote

γ̃(s, k) = γ(Φ(s, k)), ν̃(s, k) = ν(Φ(s, k)), µ̃(s, k) = µ(Φ(s, k)).

Since
γ̃s(s, k) = ϕs(s, k)γt(Φ(s, k)), γt(t, λ) · ν(t, λ) = 0

for all (t, λ) ∈ I×Λ, we have γ̃s(s, k) · ν̃(s, k) = 0 for all (s, k) ∈ Ĩ× Λ̃. Then (γ̃, ν̃) is
a one-parameter family of Legendre curves with the moving frame {ν̃(s, k), µ̃(s, k)}.
Since Φ is a diffeomorphism and Φ(s, k) = (ϕ(s, k), φ(k)), Φ−1 : I × Λ → Ĩ × Λ̃ is
given by Φ−1(t, λ) = (ψ(t, λ), φ−1(λ)). We denote e[θ](u) = (t(u), λ(u)). It follows
that Φ−1 ◦ e[θ](u) = (ψ(t(u), λ(u)), φ′(λ(u))). Since λ : U → Λ is surjective and

φ−1 : Λ → Λ̃ is a diffeomorphism, φ−1 ◦ λ : U → Λ̃ is also surjective. Moreover,
d(φ−1(λ(u)))/du = (φ−1)′(λ(u))λ′(u), thus the variability condition still holds. The
curvature of (γ̃, ν̃) is given by

ℓ̃(s, k) = ν̃s(s, k) · µ̃(s, k) = ϕs(s, k)ℓ(Φ(s, k)),

m̃(s, k) = γ̃k(s, k) · µ̃(s, k) = ϕk(s, k)ℓ(Φ(s, k)) + φ′(k)m(Φ(s, k)),

β̃(s, k) = γ̃s(s, k) · µ̃(s, k) = ϕs(s, k)β(Φ(s, k)),

Ã(s, k) = γ̃k(s, k) · ν̃(s, k) = φ′(k)A(Φ(s, k)),

B̃(s, k) = γ̃k(s, k) · µ̃(s, k) = ϕk(s, k)β(Φ(s, k)) + φ′(k)B(Φ(s, k)).

By a direct calculation, we have

sin θ

(
d

du
(ψ(t, λ) ◦ e[θ](u))

)
β̃(Φ−1 ◦ e[θ](u))

− cos θ

(
d

du
(φ−1(λ) ◦ e[θ](u))

)
Ã(Φ−1 ◦ e[θ](u))

+ sin θ

(
d

du
(φ−1(λ) ◦ e[θ](u))

)
B̃(Φ−1 ◦ e[θ](u))

= sin θ(ψt(t, λ) ◦ e[θ](u)t′(u) + ψλ(t, λ) ◦ e[θ](u)λ′(u))ϕs(Φ−1 ◦ e[θ](u))β(e[θ](u))
− cos θ((φ−1)′(λ(u))λ′(u))φ′(φ−1(λ(u)))A(e[θ](u))

+ sin θ((φ−1)′(λ(u))λ′(u))(ϕk(Φ
−1 ◦ e[θ](u))β(e[θ](u)) + φ′(φ−1(λ(u)))B(e[θ](u)))
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= sinθt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)).

Since e[θ] is a pre-θ-enveloid of (γ, ν), by Theorem 2, we have

sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0

for all u ∈ U . Thus, Φ−1 ◦ e[θ] : U → Ĩ × Λ̃ is a pre-θ-enveloid of (γ̃, ν̃) and
E[θ] = γ ◦ e[θ] = γ ◦ Φ ◦ Φ−1 ◦ e[θ] is a θ-enveloid of (γ̃, ν̃). □

By Theorem 2, if θ ̸= 0, the pre-θ-enveloids are actually the solutions of
specific differential equations that are related to the curvature. Therefore, the
θ-enveloids often appear in the form of one-parameter families of curves, which
is different from the classical envelopes (cf. [24]). In this case, we call them the
one-parameter families of θ-enveloids for the one-parameter families of Leg-
endre curves. Moreover, we can also consider the existence and uniqueness of
θ-enveloids with initial values under conditions, see Theorem 6. In the follow-
ing theorem, we first give the relationships between the existence of θ-enveloids
and the existence of the solutions of ordinary differential equations related to
the curvature, and the theorem also gives a general method to find θ-enveloids.

Theorem 5 Let (γ, ν) : R × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). If θ ̸= 0, then there exists a pre-θ-enveloid e[θ] :
U → R× Λ, e[θ](u) = (t(u), λ(u)) of (γ, ν), where λ : U → Λ is a diffeomorphism, if
and only if the following ordinary differential equation

β(y, u)
dy

du
= cot θA(y, u)−B(y, u) (2)

has a solution y = y(u) on the whole interval Λ, where cot θ = 1/ tan θ = cos θ/ sin θ.

Proof By Theorem 2, if e[θ] : U → R × Λ, e[θ](u) = (t(u), λ(u)) is a pre-θ-enveloid
of (γ, ν), we have

sin θt′(u)β(e[θ](u))− cos θλ′(u)A(e[θ](u)) + sin θλ′(u)B(e[θ](u)) = 0,

that is, e[θ](u) = (t(u), λ(u)) satisfies (1). If t(u) = y and λ(u) = x, then we have an
ordinary differential equation (2). Since λ : U → Λ, λ(u) = x is a diffeomorphism,
we have the inverse mapping λ−1 : Λ → U, λ−1(x) = u. Then we have y = t(u) =
t(λ−1(x)), and we denote y = y(x) = t(λ−1(x)).

Next we will verify that y = y(x) is a solution of (2) on the whole interval Λ. By
y = y(x) = t(λ−1(x)), λ−1(x) = u, we have

dy

dx
= t′(λ−1(x))(λ−1)′(x) = t′(u)

1

λ′(u)
.

By (1), it is easy to obtain that y = y(x) satisfies (2), which means y = y(x) is a
solution of (2). Moreover, since λ : U → Λ is a diffeomorphism, we have y = y(x) is
a solution of (2) on the whole interval Λ.

Conversely, if (2) has a solution y = y(u) on the whole interval Λ, then we have

β(y(u), u)y′(u) = cot θA(y(u), u)−B(y(u), u).

Let e[θ] : Λ → R×Λ, e[θ](u) = (y(u), u), then e[θ] satisfies the variability condition.
Moreover, we have

sin θy′(u)β(y(u), u)− cos θA(y(u), u) + sin θB(y(u), u) = 0

for all u ∈ Λ. By Theorem 2, e[θ] is a pre-θ-enveloid of (γ, ν). □
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Remark 5 Sometimes for the sake of calculation, the pre-θ-enveloids might be of the
form (u, y(u)), see Example 2.

By Theorem 5, e[θ] : Λ → R× Λ, e[θ](u) = (y(u), u) is a pre-θ-enveloid of
(γ, ν) : R× Λ → R2 × S1 if y = y(u) is a solution of

β(y, u)
dy

du
= cot θA(y, u)−B(y, u)

on the whole interval Λ. Then we consider the standard form of the above
ordinary differential equation, that is

dy

du
=

cot θA(y, u)−B(y, u)

β(y, u)
.

We denote F (y, u) = (cot θA(y, u) − B(y, u))/β(y, u). Since we consider the
Legendre curves, β(y, u) may be equal to 0 at some points, which means F (y, u)
may not be well defined at some points. Therefore, we consider the condition
that F : R × Λ → R is a smooth function. In the following theorem, by the
Lipschitz condition of ordinary differential equations with initial values (cf.[1]),
we give the existence and uniqueness theorem of θ-enveloids with initial values.

Theorem 6 Let (γ, ν) : R × Λ → R2 × S1 be a one-parameter family of Legen-
dre curves with curvature (ℓ,m, β,A,B). Suppose that γ(y0, u0) is an initial point
of the one-parameter family of frontals γ, where y0 ∈ R, u0 ∈ Λ. If F (y, u) =
(cot θA(y, u)−B(y, u))/β(y, u) satisfies the globally Lipschitz condition on the strip
area S = {(y, u) | y ∈ R, u ∈ Λ}, that is

| F (y1, u)− F (y2, u) |≤ K | y1 − y2 |

for some constant K > 0 and for all (y1, u), (y2, u) in S, then there exists a unique
solution y = y(u) of the initial value problem

dy

du
= F (y, u), y(u0) = y0,

on the whole interval Λ. Moreover, there exists a unique pre-θ-enveloid e[θ] : Λ →
R× Λ, e[θ](u) = (y(u), u) of (γ, ν) which satisfies y(u0) = y0.

Proof By the Lipschitz condition of ordinary differential equations with initial values,
see [1], we obtain the theorem. □

Example 2 Let (γ, ν) : R × R → R2 × S1 be a one-parameter family of Legendre
curves given by

γ(t, λ) = (t2 − λ, t3 + λ), ν(t, λ) = (4 + 9t2)−1/2(−3t, 2),

see Fig. 1. We consider θ = π/4. By Example 1, the curvature of (γ, ν) is

(ℓ,m, β,A,B)(t, λ)

= (6(4 + 9t2)−1, 0,−t(4 + 9t2)1/2, (4 + 9t2)−1/2(3t+ 2), (4 + 9t2)−1/2(2− 3t)).
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By Theorem 5, we have the following ordinary differential equation

− y
√

4 + 9y2
dy

du
=

6y√
4 + 9y2

. (3)

By a direct calculation, we have

dy

du
=

−6

4 + 9y2
. (4)

Let F (y, u) = −6/(4 + 9y2), we have

| F (y1, u)− F (y2, u) | =
| −54y22 + 54y21 |
(4 + 9y21)(4 + 9y22)

= 54 | y1 − y2 | | y1 + y2 |
(4 + 9y21)(4 + 9y22)

≤ 54 | y1 − y2 | | y1 | + | y2 |
(4 + 9y21)(4 + 9y22)

≤ 54 | y1 − y2 |
(

| y1 |
(4 + 9y21)

+
| y2 |

(4 + 9y22)

)
≤ 9 | y1 − y2 | .

Therefore, F (y, u) satisfies the Lipschitz condition, and there exists a unique pre-
θ-enveloid e[θ] : R → R × R, e[θ](u) = (y(u), u) if we choose an initial point by
Theorem 6.

However, the forms of the solutions of (4) are complicated. Hence we consider
the ordinary differential equation (5),

du

dy
= −2

3
− 3

2
y2. (5)

Then the general solution of (5) is given by

u = −2

3
y − 1

2
y3 + c,

where c is a constant. Therefore, the one-parameter family of pre-π/4-enveloids of
(γ, ν) is given by

ec[π/4] : R → R× R, ec[π/4](u) =
(
u,−2

3
u− 1

2
u3 + c

)
,

where c is a constant, see Remark 5. Note that y = 0 is also a solution of (3), then

e[π/4] : R → R× R, e[π/4](u) = (0, u)

is also a pre-π/4-enveloid of (γ, ν). Therefore, we have

Ec[π/4](u) = γ ◦ ec[π/4](u) =
(
2

3
u+ u2 +

1

2
u3 − c,−2

3
u+

1

2
u3 + c

)
,

E[π/4](u) = γ ◦ e[π/4](u) = (−u, u)
are π/4-enveloids of (γ, ν), see Figs. 2 and 3. Where Ec[π/4] is a one-parameter
family of π/4-enveloids of (γ, ν). Note that E[π/4] is passing through 3/2-cusps of
(γ, ν), see Fig. 4.
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Fig. 1 One-parameter family of frontals γ (the red curves).
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Fig. 2 The one-parameter family of π/4-enveloids Ec[π/4] (the blue
curves).
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Fig. 3 The π/4-enveloid E[π/4] (the green curve).
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Fig. 4 γ (the red curves), the one-parameter family of π/4-enveloids
Ec[π/4] (the blue curves) and the π/4-enveloid E[π/4] (the green

curve).
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4 Involutoids of frontals in the Euclidean plane
from the view point of θ-enveloids

In this section, we introduce involutoids of frontals in the Euclidean plane from
the view point of θ-enveloids. The notion of involutes and evolutes for regular
plane curves are familiar objects in differential geometry. The evolute of a reg-
ular plane curve can be described as an envelope of the family of normal lines of
the original curve, conversely, the original curve is the evolute of the involute.
In Giblin and Warder [12], for plane curves, the notion of evolutoid was intro-
duced. It is a generalization of the classical evolute. They consider the process
of when the envelope of the tangent lines changes to the normal lines of the
given curve. In Apostol and Mnatsakanian [2], the notion of tanvolutes for reg-
ular plane curves was introduced. The tanvolute of a regular plane curve is not
only the generalization of involute but also the opposite process of the evolu-
toid. In Izumiya and Takeuchi [17], the evolutoids of frontals (singular curves)
were introduced, the authors find some relationships between evolutoids and
pedaloids, they also find some relationships between primitivoids and inver-
sions of plane curves [18]. In Aydın Şekerci and Izumiya [4], the evolutoids and
pedaloids in the Minkowshi plane are also investigated.

However, for singular plane curves, the definition of tanvolutes is vague. We
will define involutoids of frontals (singular curves) in the Euclidean plane from
the view point of θ-enveloids. Actually, for regular plane curves, the involutoids
are the tanvolutes. Hence the involutoids are the generalizations of the classical
tanvolutes for regular plane curves. Firstly, we review the definitions of evolutes
and involutes of fronts without inflection points. Let (γ, ν) : I → R2 ×S1 be a
Legendre curve with curvature (ℓ, β). Suppose that ℓ(t) ̸= 0 for all t ∈ I. Then
(γ, ν) is a Legendre immersion.

In Fukunaga and Takahashi [10], the evolute of a front γ without inflection
points is defined by

Ev(γ)(t) = γ(t)− α(t)ν(t),

where α(t) = β(t)/ℓ(t). Moreover, Ev(γ) is also a front.
In Fukunaga and Takahashi [11], the involute of a front γ without inflection

points at t0 (t0 ∈ I) is defined by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

β(t)dt

)
µ(t).

Moreover, Inv(γ, t0) is also a front.

The definition of θ-evolutoid of a Legendre curve is as follows.

Definition 3 (cf. [17]) Let (γ, ν) : I → R2 ×S1 be a Legendre curve with curvature
(ℓ, β). Suppose that there exists α(t) such that β(t) = α(t)ℓ(t) for any t ∈ I. Then
the θ-evolutoid of γ is given by

Ev(γ)[θ](t) = γ(t)− α(t) sin θ(cos θµ(t) + sin θν(t)).
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By definition, we have

Ev(γ)[0](t) = γ(t), Ev(γ)[π/2](t) = Ev(γ)(t).

In Izumiya and Takeuchi [17], for a Legendre immersion (γ, ν) with-
out inflection points, the θ-evolutoid Ev(γ)[θ] is a front, more precisely,
(Ev(γ)[θ], νE [θ]) : I → R2×S1 is a Legendre immersion with the moving frame
{νE [θ], µE [θ]}, where

νE [θ](t) = − cos θν(t) + sin θµ(t), µE [θ](t) = − sin θν(t)− cos θµ(t),

and the curvature of (Ev(γ)[θ], νE [θ]) is given by

ℓE [θ](t) = ℓ(t), βE [θ](t) = α′(t) sin θ − β(t) cos θ.

Now we give the definition of θ-involutoids of frontals.

Definition 4 Let (γ, ν) : I → R2 × S1 be a Legendre curve with curvature (ℓ, β). If
θ ̸= 0, then the θ-involutoid of γ at t0 ∈ I is defined by

Inv(γ, t0)[θ](t) = γ(t)−
(
e
−

∫ t
t0

cot θℓ(t)dt
∫ t

t0

β(t)e
∫ t
t0

cot θℓ(t)dt
dt

)
µ(t),

where cot θ = 1/ tan θ = cos θ/ sin θ. If θ = 0, Inv(γ, t0)[0](t) = γ(t).

When θ = π/2, the π/2-involutoid is the classical involute given by

Inv(γ, t0)[π/2](t) = γ(t)−
(∫ t

t0

β(t)dt

)
µ(t).

Let Λ be an interval of R and (γ, ν) : Λ → R2 × S1, λ 7→ (γ(λ), ν(λ)) be a
Legendre curve with curvature (ℓ, β). The family of tangent lines of γ at γ(λ)
is given by γ̃ : R × Λ → R2, γ̃(t, λ) = γ(λ) + tµ(λ). Since γ̃t(t, λ) = µ(λ), we
have γ̃t(t, λ)·ν(λ) = 0 for all (t, λ) ∈ R×Λ. Therefore, (γ̃, ν̃) : R×Λ → R2×S1

is a one-parameter family of Legendre curves, where ν̃(t, λ) = ν(λ). Moreover,
we define µ̃(t, λ) = J(ν̃(t, λ)) = µ(λ). We call (γ̃, ν̃) a one-parameter family of
Legendre tangent lines of (γ, ν) and the curvature of (γ̃, ν̃) is given by

ℓ̃(t, λ) = ν̃t(t, λ) · µ̃(t, λ) = 0,

m̃(t, λ) = ν̃λ(t, λ) · µ̃(t, λ) = m(λ),

β̃(t, λ) = γ̃t(t, λ) · µ̃(t, λ) = 1,

Ã(t, λ) = γ̃λ(t, λ) · ν̃(t, λ) = −tℓ(λ),

B̃(t, λ) = γ̃λ(t, λ) · µ̃(t, λ) = β(λ).

As an application of θ-enveloids, we consider θ-involutoids as the θ-enveloids
of the one-parameter family of Legendre tangent lines (γ̃, ν̃). Suppose that
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e[θ] : U → R × Λ, e[θ](u) = (t(u), λ(u)) is a pre-θ-enveloid of (γ̃, ν̃). When
θ = 0, we assume that (γ, ν) has no inflection points.

Proposition 7 Under the above notations, we have the following.
(1) If θ = 0, then γ̃ ◦ e[0](u) = γ(u) = Inv(γ, u0)[0](u), where e[0] : Λ → R× Λ,

e[0](u) = (0, u) is the pre-envelope of (γ̃, ν̃) and u0 ∈ Λ.
(2) If θ ̸= 0, then

γ̃ ◦ e[θ](u) = γ(u)−
(
e
−

∫ u
u0

cotθℓ(u)du
∫ u

u0

β(u)e
∫ u
u0

cot θℓ(u)du
du

)
µ(u)

= Inv(γ, u0)[θ](u),

where e[θ] : Λ → R× Λ,

e[θ](u) =

(
−e−

∫ u
u0

cot θℓ(u)du
∫ u

u0

β(u)e
∫ u
u0

cot θℓ(u)du
du, u

)
is the pre-θ-enveloid of (γ̃, ν̃) and u0 ∈ Λ.

Proof (1) Suppose that e[0] : U → R× Λ is a pre-envelope of (γ̃, ν̃). By Theorem 2,

e[0] satisfies Ã(e[0](u)) = 0 for all u ∈ U , thus −t(u)ℓ(λ(u)) = 0 for all u ∈ U . Since
(γ, ν) has no inflection points, we have t(u) = 0 for all u ∈ U . We take U = Λ and
let λ(u) = u which satisfies the variability condition. Then e[0] : Λ → R×Λ is given
by e[0](u) = (0, u). Moreover, γ̃ ◦ e[0](u) = γ(u) is an envelope of (γ̃, ν̃).

(2) Suppose that e[θ] : U → R × Λ is a pre-θ-enveloid of (γ̃, ν̃). By Theorem 2,
e[θ] satisfies

sin θβ̃(e[θ](u))t′(u)− cos θÃ(e[θ](u))λ′(u) + sin θB̃(e[θ](u))λ′(u) = 0

for all u ∈ U . By the curvature of (γ̃, ν̃), we have

sin θt′(u) + cos θt(u)ℓ(λ(u))λ′(u) + sin θβ(λ(u))λ′(u) = 0,

then we have
t′(u) = (− cot θt(u)ℓ(λ(u))− β(λ(u)))λ′(u)

for all u ∈ U . Let t(u) = y and λ(u) = x, we have

dy

dx
= − cot θyℓ(x)− β(x).

By solving the above ordinary differential equation with the initial value y(x0) = 0,
where x0 = λ(u0), u0 ∈ Λ, we have the solution

y = −e−
∫ x
x0

cot θℓ(x)dx
∫ x

x0

β(x)e
∫ x
x0

cot θℓ(x)dx
dx.

We take U = Λ and let λ(u) = u which satisfies the variability condition, then we
have

t(u) = −e−
∫ u
u0

cot θℓ(u)du
∫ u

u0

β(u)e
∫ u
u0

cot θℓ(u)du
du.

Thus e[θ] : Λ → R× Λ is given by

e[θ](u) =

(
−e−

∫ u
u0

cot θℓ(u)du
∫ u

u0

β(u)e
∫ u
u0

cot θℓ(u)du
du, u

)
.

Moreover,

γ̃ ◦ e[θ](u) = γ(u)−
(
e
−

∫ u
u0

cot θℓ(u)du
∫ u

u0

β(u)e
∫ u
u0

cot θℓ(u)du
du

)
µ(u)

is a θ-enveloids of (γ̃, ν̃). □
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Proposition 8 Let (γ, ν) : I → R2 × S1 be a Legendre immersion with curvature
(ℓ, β) and without inflection points. For any t0 ∈ I, the θ-involutoid Inv(γ, t0)[θ] :
I → R2 (θ ̸= 0) is a front. More precisely, (Inv(γ, t0)[θ], cos θν−sin θµ) : I → R2×S1

is a Legendre immersion with the curvature

ℓI [θ](t) = ℓ(t), βI [θ](t) =
ω[θ](t)

sin θ
ℓ(t),

where

ω[θ](t) = e
−

∫ t
t0

cot θℓ(t)dt
∫ t

t0

β(t)e
∫ t
t0

cot θℓ(t)dt
dt.

Proof By the Frenet formula of (γ, ν), we have

d

dt
Inv(γ, t0)[θ](t) = β(t)µ(t) + (cot θℓ(t)ω[θ](t)− β(t))µ(t) + ω[θ](t)ℓ(t)ν(t)

= ω[θ](t)ℓ(t)(cot θµ(t) + ν(t)).

Then we have (
d

dt
Inv(γ, t0)[θ](t)

)
· (cos θν(t)− sin θµ(t)) = 0,

thus (Inv(γ, t0)[θ], cos θν − sin θµ) is a Legendre curve. Moreover, we denote

νI [θ](t) = cos θν(t)− sin θµ(t),

then we define
µI [θ](t) = J(νI [θ](t)) = sin θν(t) + cos θµ(t).

Thus we have the curvature

ℓI [θ](t) =

(
d

dt
νI [θ](t)

)
· µI [θ](t)

= (ℓ(t)(cos θµ(t) + sin θν(t))) · µI [θ](t) = ℓ(t),

βI [θ](t) =

(
d

dt
Inv(γ, t0)[θ](t)

)
· µI [θ](t)

= (ω[θ](t)ℓ(t)(cot θµ(t) + ν(t))) · (cos θµ(t) + sin θν(t))

=
ω[θ](t)

sin θ
ℓ(t).

□

We can see t1 ∈ I is a singular point of the θ-involutoid Inv(γ, t0)[θ] if
ω[θ](t1) = 0.

Next we give the relationships between evolutoids and involutoids.

Proposition 9 Let t0 ∈ I and (γ, ν) : I → R2 × S1 be a Legendre immersion with
curvature (ℓ, β) and without inflection points. If θ ̸= 0, we have

(1) Ev(Inv(γ, t0)[π − θ])[θ](t) = γ(t),
(2) Inv(Ev(γ)[θ], t0)[π − θ](t) = γ(t) + (δ(t) − (β(t)/ℓ(t)) sin θ)(cos θµ(t) +

sin θν(t)),
where

δ(t) = e
∫ t
t0

cot θℓE [θ](t)dt
∫ t

t0

βE [θ](t)e
−

∫ t
t0

cot θℓE [θ](t)dtdt.
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Proof (1) Since ω[θ](t) = e
−

∫ t
t0

cot θℓ(t)dt ∫ t
t0
β(t)e

∫ t
t0

cot θℓ(t)dt
dt, we have

ω[π − θ](t) = e
∫ t
t0

cot θℓ(t)dt
∫ t

t0

β(t)e
−

∫ t
t0

cot θℓ(t)dt
dt.

By Proposition 8, we have

Ev[θ](Inv(γ, t0)[π − θ])(t)

= Inv(γ, t0)[π − θ](t)−
(
βI [π − θ](t)

ℓI [π − θ](t)

)
sin θ(cos θµI [π − θ](t) + sin θνI [π − θ](t))

= γ(t)− ω[π − θ](t)µ(t) +
ω[π − θ](t)ℓ(t)

ℓ(t)
(cos2 θµ(t)− cos θ sin θν(t)

+ cos θ sin θν(t) + sin2 θµ(t))

= γ(t).

(2) By the definition of θ-involutoids and the curvature of θ-evolutoids, we have

Inv(Ev(γ)[θ], t0)[π − θ](t)

= Ev(γ)[θ](t)− δ(t)µE [θ](t)

= γ(t)− β(t)

ℓ(t)
sin θ(cos θµ(t) + sin θν(t))− δ(t)(− cos θµ(t)− sin θν(t))

= γ(t) +

(
δ(t)− β(t)

ℓ(t)
sin θ

)
(cos θµ(t) + sin θν(t)).

□

For the special case when δ(t) − (β(t)/ℓ(t)) sin θ = 0, we have
Inv(Ev(γ)[θ], t0)[π − θ](t) = γ(t).

Remark 6 When θ = 0, Ev(γ)[0](t) = γ(t) and Inv(γ, t0)[π](t) = γ(t). Therefore, we
have

(1) Ev(Inv(γ, t0)[π])[0](t) = γ(t),
(2) Inv(Ev(γ)[0], t0)[π](t) = γ(t).

Remark 7 When θ = π/2, Ev(γ)[π/2](t) = Ev(γ)(t) and Inv(γ, t0)[π/2](t) =
Inv(γ, t0)(t). Therefore, we have

(1) Ev(Inv(γ, t0))(t) = γ(t),
(2) Inv(Ev(γ), t0)(t) = γ(t)− (β(t0)/ℓ(t0))ν(t),

see [11].

5 Normal envelopes

Normal envelopes (π/2-enveloids) are the special cases of θ-enveloids. As the
corollaries of Proposition 1 and Theorem 2, we give the basic properties of
normal envelopes.
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Corollary 1 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). If n : U → I × Λ, n(u) = (t(u), λ(u)) is a pre-
normal envelope and Nγ = γ◦n : U → R2 is a normal envelope of (γ, ν), respectively.
Then (Nγ , µ ◦ n) : U → R2 × S1 is a Legendre curve with the curvature

ℓN (u) = t′(u)ℓ(n(u)) + λ′(u)m(n(u)),

βN (u) = −λ′(u)A(n(u)).

Corollary 2 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre curves
with curvature (ℓ,m, β,A,B) and n : U → I × Λ, n(u) = (t(u), λ(u)) be a smooth
curve which satisfies the variability condition. Then n is a pre-normal envelope of
(γ, ν) if and only if

t′(u)β(n(u)) + λ′(u)B(n(u)) = 0

for all u ∈ U .

Then we give the relationships between envelopes and normal envelopes
of one-parameter families of Legendre curves by using pre-envelopes and pre-
normal envelopes.

Proposition 10 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). Suppose that e : U → I × Λ is a pre-envelope
and n : U → I×Λ is a pre-normal envelope of (γ, ν), respectively. If e and n intersect
at a point u0 ∈ U , then u0 is a singular point of the normal envelope N = γ ◦ n.

Proof Let e(u) = (t1(u), λ1(u)) and n(u) = (t2(u), λ2(u)). Suppose that e and n
intersect at u0, we have

e(u0) = (t1(u0), λ1(u0)) = (t2(u0), λ2(u0)) = n(u0).

By Theorem 2, we have A(e(u0)) = 0. Then by Corollary 1, we have

βN (u0) = −λ′2(u0)A(n(u0)) = 0.

Thus u0 is a singular point of the normal envelope N. □

Example 3 Let (γ, ν) : [0, 2π)×R → R2×S1 be a one-parameter family of Legendre
curves given by

γ(t, λ) = (cos t+ λ, sin t), ν(t, λ) = (cos t, sin t).

The curvature of (γ, ν) is given by

(ℓ,m, β,A,B)(t, λ) = (1, 0, 1, cos t,− sin t).

Since A(t, λ) = cos t, it follows that e : R → [0, 2π) × R, e(u) = (π/2, u), (3π/2, u)
are pre-envelopes of (γ, ν) respectively. Therefore, the envelopes E = γ ◦ e : R → R2

of (γ, ν) are given by E(u) = γ ◦ e(u) = (u, 1), (u,−1) respectively. Moreover, let
nc : R → [0, 2π) × R, nc(u) = (2 arctan exp(cu), u), where c is a constant. Then nc

satisfies the variability condition and

t′(u)β(nc(u)) + λ′(u)B(nc(u)) = 2
exp(cu)

1 + exp(2cu)
− sin(2 arctan exp(cu)).
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Let α = arctan exp(cu), then tanα = exp(cu) and

sin(2 arctan exp(cu)) = sin 2α =
2 tanα

1 + tan2 α
= 2

exp(cu)

1 + exp(2cu)
.

Thus t′(u)β(nc(u)) + λ′(u)B(nc(u)) = 0 for all u ∈ U. By Corollary 2, nc is a one-
parameter family of pre-normal envelopes of (γ, ν) and the one-parameter family of
normal envelopes Nc = γ ◦ nc : R → R2 of (γ, ν) is given by

Nc(u) = γ ◦ nc(u) = (cos(2 arctan exp(cu)) + u, sin(2 arctan exp(cu))).

For the pre-envelope e(u) = (π/2, u) and the pre-normal envelope n1(u) =
(2 arctan exp(u), u), we have e and n1 intersect at u = 0, see Fig. 5. By Proposition
10, u = 0 is a singular point of N1, see Fig. 6.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

Fig. 5 The pre-envelope e (the red curve) and the pre-normal envelope
n1 (the blue curve).
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Fig. 6 γ (the blue curves), the envelope E (the green curve) and the
normal envelope N1 (the red curve).

Proposition 11 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves. Suppose that e : U → I × Λ is a pre-envelope and n : U → I × Λ is a pre-
normal envelope of (γ, ν), respectively. If e and n are regular and tangent to each
other at u0 ∈ U . Then u0 is a singular point of the envelope E = γ ◦ e.

Proof Let e(u) = (t1(u), λ1(u)) and n(u) = (t2(u), λ2(u)). Suppose that e tangent
to n at u0, we have a constant k such that

(t′1(u0), λ
′
1(u0)) = k(t′2(u0), λ

′
2(u0)), (t1(u0), λ1(u0)) = (t2(u0), λ2(u0)).

By Proposition 10, we have N ′(u0) = (0, 0). Moreover,

E′(u0) = t′1(u0)γt(t1(u0), λ1(u0)) + λ′1(u0)γλ(t1(u0), λ1(u0)) = kN ′(u0).

Therefore, we have E′(u0) = (0, 0). □

Example 4 Let (γ, ν) : R × R → R2 × S1 be a one-parameter family of Legendre
curves given by

γ(t, λ) =

(
λ3

3
− tλ√

1 + λ2
,
λ4

4
+

t√
1 + λ2

)
,
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ν(t, λ) =

(
− 1√

1 + λ2
,− λ√

1 + λ2

)
.

The curvature of (γ, ν) is given by

(ℓ,m, β,A,B)(t, λ) =

(
0,

1

1 + λ2
,−1,−λ2

√
1 + λ2 + t

1

1 + λ2
, 0

)
.

Since A(t, λ) = −λ2
√
1 + λ2 + t(1 + λ2)−1, we have e : R → R× R, e(u) = (u2(1 +

u2)3/2, u) is a pre-envelope of (γ, ν). Therefore, the envelope E = γ ◦ e : R → R2 of
(γ, ν) is given by

E(u) = γ ◦ e(u) =
(
u3

3
− u3(1 + u2),

u4

4
+ u2(1 + u2)

)
.

Moreover, let nc : R → R×R, nc(u) = (c, u), where c is a constant. Then nc satisfies
the variability condition and

t′(u)β(nc(u)) + λ′(u)B(nc(u)) = 0

for all u ∈ R. By Corollary 2, nc is a one-parameter family of pre-normal envelopes
of (γ, ν) and the one-parameter family of normal envelopes Nc = γ ◦ nc : R → R2 of
(γ, ν) is given by

Nc(u) = γ ◦ nc(u) =
(
u3

3
− cu√

1 + u2
,
u4

4
+

c√
1 + u2

)
.

We take the pre-envelope e(u) = (u2(1 + u2)3/2, u) and the pre-normal envelope
n0(u) = (0, u) as an example. By a direct calculation,

e′(u) = (2u(1 + u2)3/2 + 3u3
√

1 + u2, 1), n0
′
(u) = (0, 1),

e′(0) = (0, 1), n0
′
(0) = (0, 1),

and
e(0) = (0, 0), n0(0) = (0, 0).

Thus e and n0 are regular and tangent to each other at u = 0, see Fig. 7. By
Proposition 11, u = 0 is a singular point of E, see Fig. 8.

-4 -2 2 4

-4

-2

2

Fig. 7 The pre-envelope e (the blue curve) and the pre-normal envelope
n0 (the red curve).
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Fig. 8 γ (the red curves), the envelope E (the blue curve) and the
normal envelope N0 (the green curve).

Proposition 12 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). Suppose that e : U → I × Λ is a pre-envelope
and n : U → I × Λ is a pre-normal envelope of (γ, ν), respectively. We assume that
e and n are regular. If γt(e(u0)) and γλ(e(u0)) are linearly independent, e and n
intersect with each other but do not tangent to each other at u0 ∈ U , then u0 is a
regular point of the envelope E = γ ◦ e.

Proof Let e(u) = (t1(u), λ1(u)) and n(u) = (t2(u), λ2(u)). Suppose that e and n
intersect with each other at u0, we have (t1(u0), λ1(u0)) = (t2(u0), λ2(u0)). Since
e and n do not tangent to each other at u0, we have that (t′1(u0), λ

′
1(u0)) and

(t′2(u0), λ
′
2(u0)) are linearly independent. If u0 is a singular point of E, by Proposition

1, we have

t′1(u0)β(t1(u0), λ1(u0)) + λ′1(u0)B(t1(u0), λ1(u0)) = 0.

By Corollary 2, we have

t′2(u0)β(t2(u0), λ2(u0)) + λ′2(u0)B(t2(u0), λ2(u0)) = 0.

Since (t′1(u0), λ
′
1(u0)) and (t′2(u0), λ

′
2(u0)) are linearly independent, we have

β(t1(u0), λ1(u0)) = γt(t1(u0), λ1(u0)) · µ(t1(u0), λ1(u0)) = 0,

B(t1(u0), λ1(u0)) = γλ(t1(u0), λ1(u0)) · µ(t1(u0), λ1(u0)) = 0.

It means that γt(t1(u0), λ1(u0)) and γλ(t1(u0), λ1(u0)) are linearly dependent, which
is contrary to the assumption. □

We give two examples of normal envelopes and envelopes of one-parameter
families of Legendre curves that constructed by two Legendre curves.

Example 5 (cf. [24]) Let (γ, ν) : [0, 2π)× [0, 2π) → R2×S1 be a one-parameter family
of Legendre curves given by

γ(t, λ) =

(
cosλ
sinλ

)
+

(
cosλ − sinλ
sinλ cosλ

)(
cos3 t− 1

sin3 t

)
,

ν(t, λ) =

(
cosλ − sinλ
sinλ cosλ

)(
sin t
cos t

)
,
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see Fig. 9. The curvature of (γ, ν) is given by

(ℓ,m, β,A,B)(t, λ) = (−1, 1, 3 sin t cos t, 2 cos2 t− 1, sin t cos t).

Let nk : [0, 2π) → [0, 2π) × [0, 2π), nk(u) = (kπ/2, u) (k = 0, 1, 2, 3). By Corollary
2, nk is a family of pre-normal envelopes of (γ, ν). Therefore, the normal envelopes
Nk = γ ◦ nk : [0, 2π) → R2 of (γ, ν) are given by

(cosu, sinu), (− sinu, cosu), (− cosu, sinu), (sinu,− cosu),

respectively. Actually, the normal envelopes Nk are orthogonal to each curve of the
family at singular points, see Fig. 10. Moreover, let ek : [0, 2π) → [0, 2π) × [0, 2π),
ek(u) = ((2kπ+π)/4, u) (k = 0, 1, 2, 3). By Theorem 2, ek is a family of pre-envelopes
of (γ, ν). Therefore the envelopes Ek = γ ◦ ek : [0, 2π) → R2 of (γ, ν) are given by

Ek(u) =

(
1

2
cos

(
u+

2kπ + π

4

)
,
1

2
sin

(
u+

2kπ + π

4

))
,

where k = 0, 1, 2, 3, see Fig. 10.
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Fig. 9 One-parameter family of astroids γ (the red curves), see [24].
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Fig. 10 γ (the red curves), the envelopes (the blue curves) and the
normal envelopes (the green curves).

Example 6 Let (γ, ν) : [0, 2π) × [0, 2π) → R2 × S1 be a one-parameter family of
Legendre curves given by

γ(t, λ) =

(
cosλ
sinλ

)
+

(
cosλ − sinλ
sinλ cosλ

)(
1− cos3 t

sin3 t

)
,

ν(t, λ) =

(
cosλ − sinλ
sinλ cosλ

)(
− sin t
cos t

)
,

see Fig. 11. The curvature of (γ, ν) is given by

(ℓ,m, β,A,B)(t, λ) = (1, 1,−3 sin t cos t, 1− 2 cos2 t+ 2 cos t,−2 sin t+ sin t cos t).
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Since A(t, λ) = 1−2 cos2 t+2 cos t, it follows that e : [0, 2π) → [0, 2π)×[0, 2π), e(u) =
(arccos((1 −

√
3)/2), u) is a pre-envelope of (γ, ν) and the envelope E = γ ◦ e :

[0, 2π) → R2 of (γ, ν) is given by

E(u) = γ ◦ e(u) =
(
cosu
sinu

)
+

(
cosu − sinu
sinu cosu

)(
1− ( 1−

√
3

2 )3

(
√
3
2 )3/2

)
.

Moreover, let ni : [0, 2π) → [0, 2π) × [0, 2π), n1(u) = (0, u), n2(u) = (π, u) respec-
tively. By Corollary 2, n1 and n2 are pre-normal envelopes of (γ, ν) and the normal
envelopes of (γ, ν) are given by N1(u) = γ ◦ n1(u) = (cosu, sinu) and N2(u) =
γ ◦ n2(u) = (3 cosu, 3 sinu), respectively. Note that N1 and N2 are orthogonal to
each curve of the family at singular points, see Fig. 12.
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Fig. 11 One-parameter family of frontals γ (the red curves).
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Fig. 12 γ (the red curves), the envelope E (the green curve) and the
normal envelopes N1 and N2 (the green curves).

Evolutes and involutes of curves have been studied comprehensively both
in regular condition and in singular condition [6, 8, 10, 11, 16, 25, 26]. Now
we give the definitions of evolute and involute of a one-parameter family of
Legendre curves.

Definition 5 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). Suppose that ℓ(t, λ) ̸= 0 for all (t, λ) ∈ I × Λ,
then the evolute of (γ, ν) is given by

Ev(γ)(t, λ) = γ(t, λ)− β(t, λ)

ℓ(t, λ)
ν(t, λ).

By a direct calculation, (Ev(γ), µ) : I × Λ → R2 × S1 is a one-parameter
family of Legendre curves with curvature (ℓE ,mE , βE , AE , BE), where
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ℓE(t, λ) = ℓ(t, λ), mE(t, λ) = m(t, λ), βE(t, λ) =
βtℓ− βℓt

ℓ2
(t, λ),

AE(t, λ) = B(t, λ)− βm

ℓ
(t, λ), BE(t, λ) = −A(t, λ) +

βλℓ− βℓλ
ℓ2

(t, λ).

Definition 6 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). Then the involute of (γ, ν) at t0 ∈ I is given by

Inv(γ, t0)(t, λ) = γ(t, λ)−
(∫ t

t0

β(t, λ)dt

)
µ(t, λ).

By a direct calculation, (Inv(γ, t0), µ) : I×Λ → R2×S1 is a one-parameter
family of Legendre curves with curvature (ℓI ,mI , βI , AI , BI), where

ℓI(t, λ) = ℓ(t, λ), mI(t, λ) = m(t, λ), βI(t, λ) = −ℓ(t, λ)

∫ t

t0

β(t, λ)dt,

AI(t, λ) = B(t, λ)−
∫ t

t0

βλ(t, λ)dt, BI(t, λ) = −A(t, λ)−m(t, λ)

∫ t

t0

β(t, λ)dt.

Proposition 13 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). We assume that ℓ(t, λ) ̸= 0 for all (t, λ) ∈ I×Λ.
If n : U → I ×Λ, n(u) = (t(u), λ(u)) is a pre-normal envelope, Nγ = γ ◦n : U → R2

is a normal envelope of (γ, ν) respectively and

t′(u)

(
βtℓ− βℓt

ℓ2

)
◦ n(u)− λ′(u)A(n(u)) + λ′(u)

(
βλℓ− βℓλ

ℓ2

)
◦ n(u) = 0

for all u ∈ U , then n is also a pre-normal envelope of (Ev(γ), µ). Moreover,
NEv(γ)(u) = Inv(Nγ , u0)(u) for all u ∈ U , where NEv(γ) is the normal envelope of
(Ev(γ), µ), Inv(Nγ , u0) is the involute of Nγ at u0 ∈ U and u0 satisfies β(n(u0)) = 0.

Proof Since

t′(u)

(
βtℓ− βℓt

ℓ2

)
◦ n(u)− λ′(u)A(n(u)) + λ′(u)

(
βλℓ− βℓλ

ℓ2

)
◦ n(u) = 0

for all u ∈ U , we have

t′(u)βE (n(u)) + λ′(u)BE (n(u)) = 0.

By Corollary 2, n is a pre-normal envelope of (Ev(γ), µ). The normal envelope of
(Ev(γ), µ) is given by

NEv(γ)(u) = Ev(γ) ◦ n(u) = γ(n(u))− β(n(u))

ℓ(n(u))
ν(n(u)).

On the other hand, the involute of Nγ at u0 is given by

Inv(Nγ , u0)(u) = γ(n(u))−
(∫ u

u0

λ′(u)A(n(u))du

)
ν(n(u)).
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Since

t′(u)

(
βtℓ− βℓt

ℓ2

)
◦ n(u)− λ′(u)A(n(u)) + λ′(u)

(
βλℓ− βℓλ

ℓ2

)
◦ n(u) = 0,

we have

λ′(u)A(n(u)) = t′(u)

(
βtℓ− βℓt

ℓ2

)
◦ n(u) + λ′(u)

(
βλℓ− βℓλ

ℓ2

)
◦ n(u)

for all u ∈ U . By β(n(u0)) = 0, we have∫ u

u0

λ′(u)A(n(u))du =
β(n(u))

ℓ(n(u))

for all u ∈ U . Therefore, we have NEv(γ)(u) = Inv(Nγ , u0)(u) for all u ∈ U . □

Proposition 14 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre
curves with curvature (ℓ,m, β,A,B). If n : U → I × Λ, n(u) = (t(u), λ(u)) is a
pre-normal envelope of (γ, ν), Nγ = γ ◦ n : U → R2 is a normal envelope without
inflection points and

(t′(u)ℓ(n(u)) + λ′(u)m(n(u)))

(∫ t

t0

βdt

)
◦ n(u) + λ′(u)A(n(u)) = 0

for all u ∈ U , then n is also a pre-normal envelope of (Inv(γ, t0), µ). Moreover,
NInv(γ,t0)(u) = Ev(Nγ)(u) for all u ∈ U , where NInv(γ,t0) is the normal envelope of
(Inv(γ, t0), µ) and Ev(Nγ) is the evolute of Nγ .

Proof Since

(t′(u)ℓ(n(u)) + λ′(u)m(n(u)))

(∫ t

t0

βdt

)
◦ n(u) + λ′(u)A(n(u)) = 0

for all u ∈ U , we have

t′(u)βI(n(u)) + λ′(u)BI(n(u)) = 0.

By Corollary 2, n is a pre-normal envelope of (Inv(γ, t0), µ). The normal envelope
of (Inv(γ, t0), µ) is given by

NInv(γ,t0)(u) = Inv(γ, t0) ◦ n(u) = γ(n(u))−
(∫ t

t0

βdt

)
◦ n(u)µ(n(u)).

Since Nγ has no inflection points, by Corollary 1, we have

t′(u)ℓ(n(u)) + λ′(u)m(n(u)) ̸= 0

for all u ∈ U. Then the evolute of Nγ is given by

Ev(Nγ)(u) = γ(n(u))− −λ′(u)A(n(u))
t′(u)ℓ(n(u)) + λ′(u)m(n(u))

µ(n(u)).

Since

(t′(u)ℓ(n(u)) + λ′(u)m(n(u)))

(∫ t

t0

βdt

)
◦ n(u) + λ′(u)A(n(u)) = 0,

we have
−λ′(u)A(n(u))

t′(u)ℓ(n(u)) + λ′(u)m(n(u))
=

(∫ t

t0

βdt

)
◦ n(u)

for all u ∈ U . Therefore, we have NInv(γ,t0)(u) = Ev(Nγ)(u) for all u ∈ U . □
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