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A B S T R A C T   

By the end of 2021, the Omicron variant of coronavirus disease 2019 had become the dominant cause of a 
worldwide pandemic crisis. This demands a deeper analysis to support policy makers in creating interventions 
that not only protect people from the pandemic but also remedy its negative effects on the economy. Thus, this 
study investigated people’s mobility changes through the relationship between spatiotemporal population 
density and urban facilities. Results showed that places related to daily services, restaurants, commercial areas, 
and offices experienced decreased visits, with the highest decline belonging to commercial facilities. Visits to 
health care and production facilities were stable on weekdays but increased on holidays. Educational in-
stitutions’ visits decreased on weekdays but increased on holidays. People’s visits to residential housing and open 
spaces increased, with the rise in residential housing visits being more substantial. The results also confirmed 
that policy interventions (e.g., declaration of emergency and upgrade of restriction level) have a great impact on 
people’s mobility in the short term. The findings would seem to indicate that visit patterns at service and 
restaurant places decreased least during the pandemic. The analysis outcomes suggest that policy makers should 
pay more attention to risk perception enhancement as a long-term measure. Furthermore, the study clarified the 
population density of each facility type in a time series. Improving model performance would be promising for 
tracking and predicting the spread of future pandemics.   

Introduction 

Coronavirus disease 2019 (COVID-19) is seen as the most severe 
pandemic in the 21st century. As of February 18, 2022, over four hun-
dred million COVID-19 cases have been confirmed, including 
approximately-six million deaths (World Health Organization, 2022). In 
response to this new threat, certain measures have been implemented, 
including mobility restriction. As expected, early intervention reduced 
cases by 40 % (Chiba, 2021). However, these measures have also 
considerably distressed socioeconomic aspects in both the short and 
long terms. The relationship between risk effects and mobility patterns 
should be clarified to remedy the negative impacts of the pandemic and 
to enhance the policies’ effectiveness. 

In this context, researchers have been investigating the relationship 
between the COVID-19 pandemic and human mobility and build envi-
ronment factors. Most studies agreed the pandemic has heavily con-
strained people from commuting through the implemented measures 

and the rise of risk perception. For instance, a survey in Australia 
showed that the average weekly number of household trips was reduced 
by approximately 50 % in the early stage of implementation (Beck and 
Hensher, 2020a). Similarly, Politis et al. (2021) reported that the 
average daily trips per person in Greece decreased by 50 % during the 
lockdown. Zhang et al. (2021) declared that the Metro Transit Railway 
travel volume in Hong Kong declined dramatically during the pandemic, 
especially on Sundays. Although these studies were conducted in 
different places and at various times, they are consistent with Google 
Community Mobility Reports (Google, 2022), which indicated a 
shrinkage of people’s mobility during the COVID-19 pandemic. 

Besides illustrating common trends of travel demand, various studies 
have shown the impact of the pandemic on the declines in trips related to 
work, school, and other purposes. For example, Yang et al. (2021) 
confirmed dramatic reductions in the visits to three place groups (retail 
and recreation venues, parks, and transit stations) in tourism cities. 
According to Simons et al. (2021), Ohio citizens reduced not only their 
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work and shopping trips (by 11 %–19 %) but also their social visits and 
worship trips (by 49 %–61 %). During the transition of lockdown 
implementation, Pawar et al. (2021) stated that Indians decreased their 
work-related and nonwork-related trips during this period. Regarding 
outdoor activities and medical visits, Semple et al. (2021) found that the 
frequency of outdoor exercise trips dropped by up to 46.4 % in Scotland 
during the lockdown, whereas Kumagai (2021) reported a decline in 
physician visits in Japan because of the outbreak. Likewise, a substantial 
decrease in trip volume was found at amenities and grocery stores in the 
US (Sevtsuk et al., 2021; Wang et al., 2020). The above studies’ findings 
would be valuable for identifying the relationship between the outbreak, 
restriction policies, and mobility changes. 

Nevertheless, the connection between these two terms above is not a 
one-way relationship. Mobility and the build-up environment, in turn, 
also play a critical factor in driving epidemic transmission. Numerous 
studies declared human mobility, represented by population flows, the 
external and internal immigration, as the carrier that transmits the 
infection from place to place (J. Liu et al., 2021; López-Gay et al., 2022; 
Ramírez-Aldana et al., 2021). In more detail, the trip rate was identified 
as a substantial determinant of the number of newly infected cases in the 
USA and Italy (Badr et al., 2020; Cartenì et al., 2020). Also, studies 
pointed out that mobility reduction has significantly influenced the 
decrease in the incidence rate. On a global scale, Nouvellet et al. (2021) 
stated that the pandemic transmission considerably reduced when 
mobility declined initially in most analyzed countries. Likewise, a low 
incidence is associated with a reduction in mobility on the national, 
county, and city scales (Harris, 2022; Kephart et al., 2021; Tokey, 2021). 

Besides the general mobility pattern, researchers have also paid 
attention to the mobility at locations and the built environment char-
acteristics. For instance, Kan et al. (2021) and Kwok et al. (2021) found 
that the high risk is related to the high density of commercial land and 
high-rise buildings in Hongkong. Meanwhile, studies by Lee et al. (2021) 
and Tribby and Hartmann (2021) indicated green areas and parks 
negatively related to the low infected case in the U.S. and England. By 
contrast, Kato and Takizawa (2022) claimed that visits to parks were the 
determinant of the high risk. The authors also declared groceries and 
pharmacies were the sources of infection, but the transit station was not. 
Inconsistent with Kato and Takizawa (2022), Steiger et al. (2021) 
argued that the increase in mobility at groceries and pharmacies 
correlated to the low newly reported cases. Further, their study also 
reported mobility at retail and recreational areas or workplaces posi-
tively affected the rise of infection. The mentioned findings seem to 
strongly imply that the density at locations is a dominant factor influ-
encing pandemic spreading. 

From the literature review, we pinpoint that though mobility has 
been investigated on various scales, the variation of visits to facilities 
(building types), to our knowledge, has not been explored. Meanwhile, 
the examining scale significantly affects the analysis results, particularly 
in investigating the relationship between COVID-19 transmission and 
human factors and the built environment (Alidadi and Sharifi, 2022). 
Further, the population density alone would not fully explain the 
pandemic spreading, but the spatial distribution, socio-political situa-
tions, and mobility habits instead (Barak et al., 2021). Nonetheless, this 
density term was indistinct between urban and population, which might 
cause a misleading in interpreting the analysis’s outcomes (Alidadi and 
Sharifi, 2022). Thus, analyzing this aspect of facilities would be worth 
understanding the mobility patterns from a micro view. Last but not 
least, since mobility has characteristics of space and time, investigating 
its variation should be a spatiotemporal analysis. 

The spatiotemporal analysis is one element of the data mining field 
focusing on moving objects. The tasks in this topic may include object 
clustering, pattern detection, pattern predicting, and trajectory anno-
tation (Körner et al., 2012; M. Nanni et al., 2008). Since the present 
study focuses on mapping the mobility pattern, we limit the background 
to the second task and its applied methods. In this sub-topic, the 
prominent assignments are spatiotemporal hotspot detection, frequent 

movement patterns detection, and pattern occurrences detection 
(Körner et al., 2012). 

Regarding the first assignment, spatiotemporal hotspot detection, 
popular approaches are partitioning, hierarchical and density-based. For 
example, Cheng and Wicks (2014) and Li et al. (2018) detected spatio-
temporal events using space–time scan statistics (STSS) and an adaptive 
method, respectively. STSS, introduced by Kulldorff et al. (2005), was 
also a favorable method in investigating COVID-19 cluster and its de-
terminants by researchers (Andersen et al., 2021; Kan et al., 2021; M. Liu 
et al., 2021; Tyrovolas et al., 2021). For frequent movement pattern 
detection, the notably mentioned approaches should be trajectory-based 
and graph-based algorithms introduced by Hwang et al. (2005) and Lee 
et al. (2009), respectively. Besides, hierarchical trajectory clustering is 
also a promising method when it has the advantage of solving the hi-
erarchical reference spots and sequence considerations (Zhang et al., 
2018). Regarding the third task, practitioners may find useful solutions 
introduced by Taniar and Goh (2007) and Iwan and Safar (2010). Spe-
cifically, Taniar and Goh (2007) developed a framework to extract the 
list of sequences that mobile users commonly visit. Likewise, Iwan and 
Safar (2010) formulated two algorithms called location link and user 
link to discover patterns from indirect data sources. 

The above approaches, except for STSS, seem unattractive to the 
researchers in investigating the mobility pattern. Instead, we found 
several works that recently relate to this topic, including a population 
flow-based spatial–temporal eigenvector filtering model by Chen et al. 
(2022), space–time kernel density estimation by Kato (2021), and a 
fuzzy clustering algorithm by Aljeri (2022). Notably, we have also 
noticed numerous studies applied the geographically weighted regres-
sion model (GWR) and its modifications in analyzing spatiotemporal 
characteristics of COVID-19 (Hassaan et al., 2021; Lak et al., 2021; Maiti 
et al., 2021; Raymundo et al., 2021; etc.) This fact implies that a simple 
regression model can solve the spatiotemporal problem, especially in the 
case of spatial panel data, as noted by An and Crook (2017). 

Generally, the spatiotemporal analysis is not a simple task when it 
confronts the four challenges, including building the empirical objects, 
presenting and exploring the changes and moments, identifying and 
analyzing the evolution of relationships, and identifying the process 
underlying these changes (Mathian and Sanders, 2014). However, the 
common problem researchers encounter when implementing the anal-
ysis is building and collecting the data. A review of previous studies 
underscores the main issues that need to be solved, including the survey 
duration and observation size. For the first issue, since the outbreak 
began, researchers have been striving to explore the situation as quickly 
as possible. Thus, collected data in these works in only weeks or months. 
Given this short time, the results represent short-term changes, but long- 
term effects remain undisclosed or unpredictable. Moreover, because of 
the pandemic threat and policy implications, most research groups used 
indirect survey methods (e.g., web-based and telephone surveys) to 
collect data, which might have caused difficulties in validating the data 
and obtaining a large sample size. 

Mobile phone data have supported researchers in overcoming this 
limitation. In recent decades, mobile phone data have become a useful 
tool for investigating travel behaviors because of their multidimensional 
information, namely, spatial, temporal, and demographic data (Servizi 
et al., 2021; Wang et al., 2018). Taking advantage of this aspect, re-
searchers have been mining travel behavior data amid the COVID-19 
pandemic with different mobile phone data sources. Several studies 
used Global Positioning System applications to examine the mobility 
patterns in Thailand, Switzerland, and the Netherlands (Haddawy et al., 
2021; Marra et al., 2022; Molloy et al., 2021; Olde Kalter et al., 2021). 
Notably, the numbers of participants in these studies are relatively 
small, varying from 48 to 1515 people. Therefore, although tracking 
applications offer advantages such as high accuracy and proficiency in 
revealing trip routes, they are insufficient tools with regard to sample 
size. This disadvantage may have prevented these researchers from 
covering the mobility patterns of their populations on a larger scale. 
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Another approach is to use location history data provided by Google 
(Google, 2022) because of its enormous number of users. Hakim et al. 
(2021) used these data to review mitigation policies in Australia, Japan, 
Hong Kong, and Singapore. Cot et al. (2021) and Wellenius et al. (2021) 
investigated the impact of the COVID-19 outbreak on mobility and the 
relationship between mobility reduction and the decreases of infection 
rates in Europe and the US. Nevertheless, Google data have some limi-
tations. First, the report expresses the movement trends across locations 
by comparing the average visit between the reported and baseline days. 
The lack of hour-visit variation would hinder researchers in interpreting 
the mobility changes at a specific time. Second, the data collected visit at 
a large scale (province, prefecture) and illustrated by percentage, not an 
absolute number. Thus, the change levels at locations are likely 
incomparable. In addition, it would be difficult to reveal the relationship 
between visiting changes in reported places. We also believe that the 
extension of surveyed location types and the distinction between 
weekdays and holidays would help us understand the mobility changes 
more comprehensively. 

Mobile phone network data can compensate for the limitations of the 
two abovementioned data types. Such data can be applied to model and 
predict the epidemic spread and to examine the mobility patterns during 
the pandemic. Regarding the former task, mobile phone network data 
were used to build COVID-19 spread models in Brazil and China (Jia 
et al., 2020; Peixoto et al., 2020). Regarding the latter topic, before the 
COVID-19 pandemic, Peak et al. (2018) used this type of data in map-
ping the mobility reduction caused by the Ebola epidemic in Sierra 
Leone. During the COVID-19 pandemic, various studies used mobile 
phone network data to investigate mobility changes in various countries 
and regions, such as France, China, Europe, and the US (Hu et al., 2021; 
Liu et al., 2021; Pullano et al., 2020; Santamaria et al., 2020). 

In Japan, owing to the spread of the pandemic, NTT Docomo Insight 
Marketing Inc. released mobile phone data called mobile spatial statis-
tics (MSS) to support researchers and policy makers in finding effective 
measures. The data were then used in numerous studies to examine 
Japanese mobility. Watanabe and Yabu (2021a, 2021b) used MSS to 
examine the self-restraint level during the pandemic at the national and 
prefecture scales. As stated by the authors, the declaration of emergency 
and the rise of infection cases influenced the increase in the number of 
Japanese individuals staying home. Furthermore, the extent of staying 
home was found to have a positive relationship with age. Mizuno et al. 
(2021) used data covering the first half of 2020 to visualize the stay- 
home rate in Japan’s prefectures. The results showed that the peak 
stay-home rate exceeded 60 % in Tokyo during the state-of-emergency 
period. Moreover, Hara and Yamaguchi (2021) used data from the 
same period to examine travel patterns and found the same trend of 

decline in people’s travel volume and number of trips made. 
On a small scale, Arimura et al. (2020) investigated the change in the 

population density of Sapporo City and found that its crowded areas 
experienced a 90 % decrease in population density during the second 
wave of the pandemic. Nakanishi et al. (2021) used MSS to analyze the 
relationship between the infection trend and the population variation in 
selected restaurant and bar areas in Tokyo. The authors concluded that 
the population in these areas increased when the number of cases 
decreased, thus possibly increasing the number of cases afterward. The 
above studies used data collected within 2020. Despite the relatively 
long data period, an extension of the survey duration would have been 
meaningful as the later wave of a pandemic usually has a stronger surge 
than the precedent. 

To fill the abovementioned gaps, the present study investigates the 
changes in mobility before and during the COVID-19 pandemic by 
revealing the relationship between the spatiotemporal population den-
sity and urban facilities. Specifically, we propose the use of MSS data 
from Sapporo City, Japan, to address the following research questions:  

(1) During the COVID-19 pandemic, which urban facilities were 
associated with the spatiotemporal population density?  

(2) Which facility had a larger influence on the spatiotemporal 
population density compared with other facilities?  

(3) To what extent did these facilities’ influence change during a day, 
from weekdays to weekends/holidays, and across different 
times? 

Our results contribute to the knowledge in this field in two ways. 
First, they help in the thorough understanding of the interaction be-
tween the pandemic spread and urban mobility. Second, they clarify the 
spatiotemporal relationship between urban facilities and population 
density. Overall, this study will support policy makers in evaluating and 
adjusting policy’s intervention to enhance effectiveness in the short and 
long terms. 

This paper has four remaining sections. Section 2 presents the dataset 
and the proposed method. It briefly explains the progress of the 
pandemic spread in the study area and the data characteristics. Section 3 
shows the primary results of the analysis of the three research questions. 
In Section 4, we discuss the results and related policy implications. 
Finally, Section 5 states the study’s limitations, future research in-
tentions, and conclusions. 

Fig. 1. COVID-19 pandemic progress in Sapporo City(Source: DATA-SMART City Sapporo https://ckan.pf-sapporo.jp/dataset/covid_19_patients).  
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Data and methodology 

Data collection 

Summary of COVID-19 pandemic and preventive measures in Sapporo City 
The first COVID-19 case in Japan was recorded on January 16, 2020, 

whereas Hokkaido reported its first case on February 6, 2020. However, 
Hokkaido was the first prefecture to announce a state of emergency in 
Japan, which began on February 28, 2020, and was lifted on March 19, 
2020 (Fig. 1). In the second wave of the pandemic, the prefecture pro-
actively enacted an emergency declaration (ED) on April 14, 2020, 
before the national ED (from April 16, 2020 to May 31, 2020). During 
these EDs, activity restrictions were imposed, including school closures 
(from elementary to high school), shortening of serving hours of res-
taurants, and event cancelations. People were advised to refrain from 
going out, businesses were requested to switch to teleworking, and all 

activities had to be conducted while avoiding the “triple C” (crowding, 
close contact, and closed spaces). Under these restrictions, the popula-
tion density in crowded areas in the city decreased by up to 90 % 
(Arimura et al., 2020). 

After the second wave of the pandemic, the Japanese government 
launched the Go To Travel campaign to address the heavy economic 
damage caused by the lockdowns. The campaign was planned to run 
from July 22, 2020 to December 31, 2020, but was stopped on December 
28, 2020, because of the adverse progress of the pandemic. The gov-
ernment of Hokkaido intensified its measures to level 2 on October 28, 
2020, and further increased them to level 3 on November 7, 2020, in 
light of the sharp increase in the number of infections. For Sapporo City, 
the measures were upgraded to level 4 because of the urgent situation of 
the medical system. Although this period was not under a state of 
emergency, the restrictions resembled those that were implemented 
during the ED. These actions strongly affected citizen travel behavior. 

MSS data 
In the present study, we used the MSS data provided by NTT Docomo 

Insight Marketing Inc. The data’s structure was the same as that used by 
Arimura et al. (2020) but had a longer survey time. The collected MSS 
covered the period of January 1, 2019 to March 31, 2021 (821 days) 
(Fig. 1). As an extension of the survey, the data encompassed the pop-
ulation spatial distribution under various conditions, namely, before the 
pandemic (February 14, 2020), the two EDs in Hokkaido, the Go To 
Travel campaign, and long holiday events. 

Unlike census data, MSS data have richer information that assists 
practitioners in mining mobility patterns. Fig. 2 illustrates the city 
population distribution at 0000 (midnight) and 1200 (noon) on 
Tuesday, April 9, 2019, in a 500 m square mesh. According to the graph, 
the city central business district (CBD) had the highest population 
density at midday, but the situation changed at midnight. The popula-
tion spread to the residential areas, and a high density appeared mainly 
in areas of night activities (Susukino District). This reveals the resident 
flow between the residences and other facilities at the studied times. 
Thus, this relationship should be examined to create policies controlling 
the pandemic spread. 

Explanatory variables 
As mentioned in the previous section, we propose the use of all 

building types to estimate the population in a specific area. The building 
characteristics were obtained from a site survey conducted by Zenrin 
Co., Ltd. Table 1 shows the categories of the explanatory variables, 

Fig. 2. Distribution of the city’s population at specific times.  

Table 1 
Explanatory variables.  

No Variable Type of facility Applicable buildings (Zenrin 
classification) 

1 X01. 
Hou 

Residential housing Private housing, condominiums, general 
stores, combined housing, houses with 
restaurants, houses with offices or 
workplaces, and flats in mixed 
commercial or office buildings 

2 X02.Ser Daily services Shops or stores selling daily needs, such 
as food, beverage, and clothes, and 
beauty salon services 

3 X03.Res Restaurants and 
entertainment 

Facilities serving food, beverage, and 
entertainment activities, such as 
restaurants and karaoke bars 

4 X04. 
Com 

Commercial 
buildings 

Facilities used for commercial purposes, 
such as shopping malls, mass retailers, 
and exhibition centers 

5 X05.Off Office buildings Facilities used for official purposes, such 
as administration and company offices 

6 X06.Hea Health care 
facilities 

Hospitals, clinics, medical centers, sports 
clubs, and social welfare facilities 

7 X07.Edu Education 
institutions 

Schools, colleges, universities, and 
research institutes 

8 X08.Pro Production 
facilities 

Factories, plants, and warehouses 

9 X09. 
OpS 

Open spaces Roads, walking and cycling routes, small 
parks, green areas, and the like (excluding 
large water and forest areas)  
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which were derived from the original dataset, which is shown in the 
Appendix (Table A). In addition to the eight building types, open spaces 
were deemed a dependent variable. We argued that such facilities are 
associated with intensive movement time (i.e., rush hour) and outdoor 
activities, especially on weekends and holidays. Thus, the addition of 
open spaces was necessary and might help the population is being pre-
dicted better. 

After extracting the floor area of each building, we summarized the 
explanatory variables (Table 2). As indicated by the data, residential 
housing accounted for the largest proportion of the total floor area, 
followed by commercial buildings; they accounted for 69.76 % and 
11.89 %, respectively. Restaurants accounted for the smallest proportion 
of the total floor area (0.71 %). The floor areas of the other facilities 
occupied 3.41 %–6.04 % of the total. Regarding open spaces, the 
average area in each grid was approximately 52,000 m2, which was 
equal to about 20.81 % of the cell’s area. 

Fig. 3 illustrates the distribution of the two highest-value variables: 
residential housing and commercial buildings. As shown in Fig. 3a, the 
common grid’s residential housing floor area was 75,000–150,000 m2. 
High residential housing densities were found around Sapporo Station, 
in the CBD, and along the subway lines. Unlike residential housing, the 
commercial facilities were mainly concentrated in the CBD and close to 
the subway stations. We supposed that these areas would have large 
population variations between the day and night because of the differ-
ence in their facility functions. 

Analysis methodology 

To examine the relationship between population density and 

building facilities, we applied a multilinear regression (MLR) model as a 
predictive model. Although MLR is not an outstanding method, it is easy 
to implement and interpret, as discussed in a later section. Equation (1) 
expresses the form of the applied MLR model. 

As travel patterns change between normal days and holidays, we 
created two models to identify this difference. The first model was run 
on the weekdays dataset, whereas the holidays dataset was used for the 
second model. The term “holidays” refers to weekends, national holi-
days, and special holidays (e.g., Golden Week and Obon). When a na-
tional holiday falls on a Sunday, the next Monday becomes a holiday. 
Moreover, a day that falls between two national holidays also becomes a 
holiday. The two datasets were defined after checking the calendars of 
three years (2019–2021). 

yt,m = β1,tx1,m + β2,tx2,m +⋯+ βi,txi,m +⋯+ β9,tx9,m +Ct, (1)  

where 
yt,m: population in grid m at time t (person), 
xi,m: floor area of facility i in grid m (1,000 m2), 
βi,t: regression coefficient of facility i at time t, 
Ct: constant term (person), 
t: time of day (from 0000 to 2300), 
m: grid’s code, and 
i: type of facility (from 1 to 9; Tables 1 and 2). 
One of this study’s objectives is to reveal the degree of association 

between the predictors and population density. We used standardized 
coefficients as the variables’ influence indicators. The value of a stan-
dardized coefficient (or beta weight) is illustrated in Equation (2). This 
formulation is one of the six standardized approaches introduced by 
Menard (2004, 2011). The author stated that the given method yields a 

Table 2 
Summary of the dataset.  

No Variable Value (1.000 m2)  Percentage (*)   

Min Median Mean Max SD Total 

1 X01.Hou  0.00  80.73  87.36  377.55  62.39  111,738.50  69.76 % 
2 X02.Ser  0.00  1.34  3.20  99.63  6.14  4,088.43  2.55 % 
3 X03.Res  0.00  0.08  0.88  81.59  3.11  1,130.21  0.71 % 
4 X04.Com  0.00  3.54  14.89  1,306.79  58.30  19,039.88  11.89 % 
5 X05.Off  0.00  1.71  3.01  128.08  5.67  3,854.73  2.41 % 
6 X06.Hea  0.00  0.62  3.49  109.72  8.59  4,468.30  2.79 % 
7 X07.Edu  0.00  0.14  4.83  131.68  9.98  6,172.51  3.85 % 
8 X08.Pro  0.00  3.01  7.57  123.09  13.36  9,680.95  6.04 % 
9 X09.Ops  0.00  57.00  52.03  144.35  22.84  66,551.55  – 

SD: Standard deviation; (*): applied to building floor area only. 

Fig. 3. Residential housing and commercial floor area distribution.  
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partially standardized coefficient, and it would not change the pre-
dictors’ ranking order. In accordance with Nathans et al. (2012), a 
standardized coefficient is interpreted as follows: an increase of one 
standard deviation in a facility’s area (xi), with the other variables un-
changed, will increase or decrease the population in a given grid by β*

i 
standard deviation units. 

β*
i = βiSDi, (2)  

where βi, β*
i , and SDi are the estimated, standardized coefficient, and 

standard deviation, respectively, of the explanatory variable i. 
With the use of beta weights, the analysis outcomes offer two ad-

vantages. First, they show the influence level of a facility on population 
density compared with other facilities. That is, the beta weights account 
for the population visits to facilities at specific times, thereby addressing 
the first two research questions. Second, the variation of the beta 
weights represents the change in population visits over time, thus 
answering the third research question. 

Results 

Association between urban facilities and population density variation 

The main outputs of the models are summarized in the Appendix 
(Tables B and C for weekdays and holidays, respectively). We also 
visualized the p-values of the variables and the models’ adjusted R- 
squared values (Fig. 4). As the results demonstrated, the models per-
formed well when the adjusted R-squared values reached 0.9. This 
means that they could explain up to 90 % of the population variation in a 
mesh. Although model performance was excellent in the daytime (from 
0800 to 1900), the R-squared values declined gradually from 1900 to 
midnight. 

Model performance was slightly better in the daytime in 2019 
compared with that in 2020 and 2021. By contrast, at night, model 
performance was the best in 2021, with an adjusted R-squared value of 
approximately 0.8–0.84; these values were 0.69–0.83 in 2019 and 

Fig. 4. Adjusted R-squared and median p-values for each hour.  

Fig. 5. Variation of median standardized coefficients in a day.  
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0.76–0.83 in 2020. The results also indicated that the model perfor-
mance on weekdays was better than that on holidays. Specifically, the 
adjusted R-squared values on weekdays and holidays were 0.69–0.9 and 
0.69–0.87, respectively. 

In addition to showing the adjusted R-squared values, Fig. 4 depicts 
the significance levels of the variables by hour each year. We used the 
median to represent the relevant values. 

As shown in Fig. 4, X01.Hou and X06.Hea were significant at all 
times of the survey. X03.Res was significant on holidays but insignificant 
in the daytime on weekdays (from 0900 to 1700 in 2019 and from 1100 
to 1600 in 2020 and 2021). By contrast, X07.Edu was significant on 
weekdays and most of the time on holidays. Notably, in 2019, X07.Edu 
was insignificant from 1800 to 0100 only on holidays. 

X04.Com, commercial buildings, was significant almost the entire 
day. On weekdays, it was insignificant at some hours (from 0000 to 
0600). On holidays in 2021, X04.Com was only insignificant from 0200 
to 0600. 

The results also showed similar significance patterns for X02.Ser and 
X05.Off. They were significant most of the time, but X05.Off had a 
longer period of significance. Specifically, on weekdays, the period of 
significance of X02.Ser increased gradually from 16 h in 2019 to 18 h in 
2021. However, this period was 13 h on holidays in all three years. 
Furthermore, the period of significance of X05.Off decreased from 21 to 
17 h on weekdays and from 20 to 16 h on holidays. 

X08.Pro had notably different significance levels between holidays 
and weekdays. On weekdays, X08.Pro was significant from midnight to 
1900, except for 3 h (from 0800 to 1000). Its period of significance on 
holidays was reduced year by year. Specifically, in 2019, it was signif-
icant for 12 h (from 0500 to 1900). In 2021, the period of significance 
declined to 10 h (from 0600 to 1600). In 2021, X08.Pro was significant 
for only 9 h (from 0000 to 0800). 

As for the last variable, the significance of X09.OpS increased year by 
year, and it was stronger on holidays than on weekdays. On weekdays, 
the period of significance increased from 2 h in 2019 (at 1800 and 1900) 
to 8 h in 2020 and 9 h in 2021 (from 1700 to midnight). Similarly, on 

holidays, X09.OpS was significant for 4 h in 2019 (from 1600 to 1900). 
In 2020 and 2021, the hours of significance were extended to approxi-
mately 12 h (from 1300 to approximately 0100). 

Variation of facilities’ influence during a day 

This section explains the variation of the variables’ impact levels per 
hour per day. The influence level is represented via the median beta 
weight values shown in Fig. 5. The following paragraphs mention only 
the significant beta weights expressed in the previous section. Detailed 
information is available in Tables B and C in the Appendix. 

Overall, X01.Hou and X04.Com were the primary determinants of 
population density. X01.Hou was the strongest predictor at night; its 
beta weight values reached approximately 730 from 2200 to 0700. 
These values declined from 0800 and dropped to the lowest point at 
1500. Notably, although the nighttime values remained unchanged 
during the survey period, the daytime values were higher on holidays 
than on weekdays and increased year by year. For example, in 2019, the 
lowest weighted values of X01.Hou were approximately 319 and 377 on 
weekdays and holidays, respectively. In 2021, these values were 
approximately 381 and 478 (increased by 19 % and 27 %), respectively. 

X04.Com was the strongest explanatory variable in the daytime. Its 
beta weight value increased significantly from 0700 and peaked at 1400. 
On weekdays in 2019, 2020, and 2021, these peak values were 1284, 
1025, and 1020, respectively. The same trend was identified on holidays 
but with lower values. Specifically, in 2019, 2020, and 2021, the highest 
beta weight values were approximately 915, 624, and 620 (decreased by 
29 % to 60 %), respectively. These nighttime findings indicate that this 
variable had a very weak influence, especially in 2020 and 2021. 

Following X01.Hou and X04.Com were X02.Ser and X05.Off. X02.Ser 
highly affected the population density in the daytime (from 0800 to 
1700), but its influence level, which was three times higher on weekdays 
than on holidays, decreased during the pandemic. The peak value 
declined by 10 % (from 342 to 310) on weekdays and by 25 % (from 118 
to 89) on holidays. Likewise, the influence level of X05.Off was reduced 

Fig. 6. Standardized coefficients at 0000.  
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year by year, and its beta weight values were higher on weekdays than 
on holidays. Between 2021 and 2019, its beta weights decreased by 35 % 
(from 250 to 185) on holidays and by 25 % (from 195 to 155) on 
weekdays. 

X06.Hea and X07.Edu had similar patterns of beta weight variations, 
but X06.Hea was stronger than X07.Edu. On weekdays, their high- 
influence hours extended from 0800 to 1700. The peak values of X06. 
Hea varied from approximately 146 in 2019 and 136 in 2021 (decreased 

Fig. 7. Standardized coefficients at 0800.  

Fig. 8. Standardized coefficients at 1600.  
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Table 3 
Summary of median standardized coefficients at specific times.  

Period Time X01.Hou X02.Ser X03.Res X04.Com X05.Off X06.Hea X07.Edu X08.Pro X09.OpS 

Weekdays 
BP (baseline) 00:00 709.5***  5.45  63.75*** 124.46***  29.81 56.83*** 39.24***  23.32  22.29 

08:00 580***  188.4***  46.13*** 481.8***  104.19*** 111.82*** 94.58***  21.36*  − 16.46 
16:00 329.7***  305.3***  19.13 1236***  176.66*** 120.5*** 121.32***  − 60.4***  11.92 

1st ED 00:00 704.8*** (-1%)  6.33  57.2*** (-10 %) 39.18** (-69 %)  19.2 58.01*** (2 %) 34.95*** (-11 %)  24.7** (6 %)  33.44** (50 %)  
08:00 575.4*** (-1%)  185.1*** (-2%)  42.57*** (-8%) 412.3*** (-14 %)  69.63*** (–33 %) 114*** (2 %) 76.13*** (-20 %)  18.57  2.85  
16:00 376.7*** (14 %)  269.9*** (-12 %)  21.69 1034.1*** (-16 %)  141.1*** (-20 %) 114.6*** (-5%) 66.93*** (-45 %)  − 49.67*** (18 %)  33.6* (182 %) 

2nd ED 00:00 727.2*** (2 %)  16.31  54.04*** (-15 %) − 51.27*** (-141 %)  13.46 57.27*** (1 %) 41.93*** (7 %)  28.4*** (22 %)  30.07*** (35 %)  
08:00 610.2*** (5 %)  162.7*** (-14 %)  46.86*** (2 %) 270.1*** (-44 %)  51.92*** (-50 %) 113.6*** (2 %) 71.21*** (-25 %)  32.26*** (51 %)  5.04  
16:00 512.6*** (55 %)  221.2*** (-28 %)  35.03*** (83 %) 587.1*** (-53 %)  52.91*** (-70 %) 124.4*** (3 %) 67.15*** (-45 %)  4.63  23.38 

IP 00:00 718.9*** (1 %)  14.56  57.39*** (-10 %) 23.66* (-81 %)  20.58 59.23*** (4 %) 43.62*** (11 %)  25.18** (8 %)  27.88** (25 %)  
08:00 585.4*** (1 %)  190.3*** (1 %)  45.37*** (-2%) 392.5*** (-19 %)  83.07*** (-20 %) 114.48*** (2 %) 100.33*** (6 %)  21.16  − 8.97  
16:00 381.9*** (16 %)  276.2*** (-10 %)  24.92 982.3*** (-21 %)  161.3*** (-9%) 115.9*** (-4%) 108.17*** (-11 %)  − 45.79*** (24 %)  20.8 

Holidays 
BP (baseline) 00:00 693.7***  − 13.17  72.44*** 243.5***  35.9 50.72*** 27.56  16.78  27.43 

08:00 670.2***  63.75***  62.28*** 183.5***  71.25*** 71.89*** 52***  21.78*  − 1.84 
16:00 393***  95.06***  64.38*** 883.4***  251.71*** 51.22*** 38.11**  − 45.73***  35.96* 

1st ED 00:00 696.3*** (0 %)  − 4.06  62.72*** (-13 %) 95.94*** (-61 %)  19.01 56.44*** (11 %) 29.11** (6 %)  21.85  38.64** (41 %)  
08:00 678.1*** (1 %)  46.79*** (-27 %)  58.01*** (-7%) 96.02*** (-48 %)  50.1*** (-30 %) 73.01*** (2 %) 47.17*** (-9%)  28.28** (30 %)  14.39  
16:00 510.5*** (30 %)  61.06*** (-36 %)  57.59*** (-11 %) 521.8*** (-41 %)  163.7*** (-35 %) 60.03*** (17 %) 29.81*** (–22 %)  − 15.68  47.2*** (31 %) 

2nd ED 00:00 724.6*** (4 %)  12.69  54.84*** (-24 %) − 44.44*** (-118 %)  12.07 56.12*** (11 %) 38.45*** (40 %)  26.88*** (60 %)  32.56*** (19 %)  
08:00 682.2*** (2 %)  56.88*** (-11 %)  54.94*** (-12 %) 38.64** (-79 %)  32.21*** (-55 %) 77.21*** (7 %) 48.85*** (-6%)  25.27*** (16 %)  21.93  
16:00 620.7*** (58 %)  59.62*** (-37 %)  57.11*** (-11 %) 173.5*** (-80 %)  37.67*** (-85 %) 71.25*** (39 %) 38.87*** (2 %)  21.93** (148 %)  37.16*** (3 %) 

IP 00:00 703.2*** (1 %)  4.05  60.74*** (-16 %) 94.16*** (-61 %)  22.66 55.59*** (10 %) 37.43*** (36 %)  20.33  32.73** (19 %)  
08:00 672.9*** (0 %)  60.99*** (-4%)  58.54*** (-6%) 106.15*** (-42 %)  53.21*** (-25 %) 75.85*** (6 %) 56*** (8 %)  22.38** (3 %)  10.71  
16:00 472.8*** (20 %)  73.98*** (–22 %)  55.95*** (-13 %) 600.3*** (–32 %)  194.87*** (–23 %) 55.29*** (8 %) 39.96*** (5 %)  –22.03* (52 %)  42.42*** (18 %) 

BP: Before the pandemic; ED: emergency declaration; IP: during the pandemic; 
***, **, *: Significant at all hours, at approximately 70 %, and at approximately 50 % of a day, respectively; 
(): change in percentage compared with the BP period. 
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by 7 %). Those of X07.Edu were approximately 145 and 113 in 2019 and 
2021 (decreased by 28 %), respectively. On holidays, the influences of 
X06.Hea (approximately 50 %) and X07.Edu (65 %) were lower than 
those on weekdays. Off official hours, X06.Hea’s effect was stable on 
weekdays over the three years but increased by 10 % in 2020 and the 
first quarter of 2021. Likewise, X07.Edu became significant during the 
pandemic, with its beta weight value ranging from approximately 30 to 
45. 

The influence level of X03.Res on population density was stable. 
However, its beta weights still decreased during the pandemic. On 
weekdays, its peak beta weight value decreased by 13 % (from 70 to 62), 
whereas the decrease on holidays was 21 % (from 75 to 62). 

X08.Pro and X09.OpS were weak explanatory variables. Except for 
X08.Pro on weekdays in 2019, their beta weights were under 50. 
Remarkably, X08.Pro had a negative association with population den-
sity in some hours. On weekdays, in the afternoon, its beta weights were 
approximately − 60 in 2019 and − 47 in 2020 and 2021. On holidays, 
these values increased to approximately − 44 and − 23 in 2019 and 2020, 
respectively. This indicates a decrease in the influence level of X08.Pro. 
In addition, the correlation of X09.OpS with population density was 
higher on holidays than on weekdays; the period of influence was 
longer, and the beta weights increased from approximately 43 to 48. 

Variation of facilities’ influence in the periods of time 

In this section, we interpret the changes in the beta weights at spe-
cific times. Specifically, we compare the variables’ effect between the 
time before the pandemic (BP), before the detection of the first case in 
Sapporo City, the first and second EDs (1st ED and 2nd ED, respectively), 
and the time of the pandemic (IP). Note that IP excluded the 1st ED and 
2nd ED periods. Based on the results expressed in Section 3.2, we 
summarized the mobility variations in a day into three patterns 
regarding time-frames: nighttime, daytime, and rush hours. The first 
pattern, from about 2100 to 0700, suggested the immobility of residents 
(refer to Fig. 5). Likewise, in the daytime, from 1000 to 1800, mobility 
expressed daily activities. And the final pattern, 0700 to 1000 and 1800 
to 2100, described the significant movement at the start and end of of-
fice hours. Thus, we chose one hour in each time-frames to represent 
these three patterns. The results are shown in Figs. 6–8 and Table 3, 

Table A 
Facility statistics by Zenrin classification.  

No Category Class Variable Interpretation Total floor 
area (1.000 
m2) 

1 Housing 1001 X01. 
Hou 

Detached houses  51,669.19 

2  1002 X01. 
Hou 

Mansions  44,826.08 

3  1003 X01. 
Hou 

Apartments  4,864.64 

4  1004 X01. 
Hou 

Social housing 
(Danchi)  

3,669.13 

5  1005 X01. 
Hou 

Dormitory, company 
houses  

802.65 

6  1006 X01. 
Hou 

Mixed resident and 
office use  

507.46 

7  1008 X01. 
Hou 

Mixed resident, store, 
and/or office use  

2,071.61 

8 Business 2001 X03.Res Serving food and/or 
drink (food shop, 
restaurant, bar)  

465.86 

9  2002 X02.Ser Selling food, 
beverages, grocery  

253.12 

10  2003 X02.Ser Selling clothes, 
accessories  

126.04 

11  2004 X02.Ser Selling daily products 
(tobacco, cosmetics, 
offices goods, etc.)  

866.27 

12  2005 X02.Ser Rental services (Cars, 
CD, …)  

194.40 

13  2006 X02.Ser Ceremony services 
(Wedding, funeral, 
cemetery, …)  

111.75 

14  2007 X02.Ser Beauty services 
(barber, hair, salon, 
…)  

263.65 

15  2008 X02.Ser Automotive related 
services  

357.49 

16  2009 X02.Ser Animal services  27.19 
17  2010 X04. 

Com 
Mass retailers, 
shopping malls  

880.92 

18  2011 X05.Off Financial, insurance 
offices  

160.57 

19  2012 X05.Off Real estate offices  275.36 
20  2013 X05.Off Energy services (gas, 

fuel stations)  
266.17 

21  2014 X05.Off Professional offices 
(law, public offices, 
government offices, 
…)  

51.26 

22  2015 X06. 
Hea 

Sport facilities 
(fitness, sport clubs, 
…)  

307.38 

23  2016 X03.Res Entertainment and 
dining relations, 
recreations, 
amusement parks  

529.29 

24  2017 X01. 
Hou 

Hotel, ryokan  2,199.21 

25  2018 X06. 
Hea 

Hospitals and clinics, 
medial facilities  

4,030.47 

26  2019 X02.Ser Museums, library, 
police, fire 
department  

1,039.45 

27  2020 X07. 
Edu 

Education institutions 
(kindergarten, 
schools, universities, 
colleges)  

5,933.86 

28  2021 X05.Off Home delivery, 
moving, post offices  

233.15 

29  2022 X05.Off Transportation 
facilities  

214.81 

30  2023 X05.Off Comprehensive 
construction, building 
renovation, water  

205.81  

Table A (continued ) 

No Category Class Variable Interpretation Total floor 
area (1.000 
m2) 

supply, architecture 
design offices 

31  2024 X05.Off Car dealer, 
motorcycle sale  

208.21 

32  2025 X05.Off Business cooperative  6.54 
33  2026 X02.Ser Religion institutions  619.59 
34  2027 X08.Pro Other than 

2001–2026 (stores, 
warehouses)  

9,867.57 

35 Commercial 3001 X04. 
Com 

Buildings with mixed 
commercial offices 
and residential flats  

2,428.45 

36  3002 X04. 
Com 

Buildings with a high 
proportion of 
commercial rooms  

3,242.60 

37  3003 X04. 
Com 

Buildings with mixed 
offices and residential 
flats  

1,974.34 

38  3004 X04. 
Com 

Buildings with a high 
proportion of offices  

11,219.92 

39  9999 X05.Pro Buildings that other 
than the above 
(warehouse, factories, 
…)  

3,310.50  

Total     160,281.98  
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Table B 
Beta weights and adjusted R-squared values for weekdays.  

Year Time X01.Hou X02.Ser X03.Res X04.Com X05.Off X06.Hea X07.Edu X08.Pro X09.OpS AdjR2 

2019 0:00  710.97*  5.65  63.93*  128.84*  30.27  56.83*  39.24*  23.70  21.26  0.74  
1:00  722.34*  7.45  62.01*  83.42*  27.92  55.83*  40.62*  26.55*  17.50  0.77  
2:00  725.94*  13.42  60.63*  58.91*  29.14*  55.71*  42.32*  26.69*  15.24  0.79  
3:00  728.85*  18.65  59.05*  36.79*  25.74  56.05*  43.61*  28.13*  14.07  0.81  
4:00  731.91*  20.92  59.74*  23.36  27.80*  55.62*  44.17*  29.02*  11.68  0.81  
5:00  727.31*  29.42*  59.40*  23.56  27.30*  57.47*  45.54*  29.75*  11.17  0.82  
6:00  720.57*  34.18*  59.76*  26.64*  36.20*  57.45*  46.10*  33.00*  9.35  0.82  
7:00  687.92*  68.11*  58.99*  130.82*  68.91*  69.91*  56.62*  37.44*  − 0.79  0.83  
8:00  581.52*  188.42*  46.34*  481.96*  105.03*  111.79*  93.82*  22.22  − 17.11  0.87  
9:00  474.13*  301.50*  24.93  853.21*  99.59*  144.17*  126.71*  − 10.29  –22.76  0.87  
10:00  421.46*  324.89*  24.47  1022.28*  116.30*  146.10*  137.66*  − 28.22  − 19.63  0.88  
11:00  362.69*  342.28*  21.69  1176.00*  148.50*  145.12*  145.06*  − 44.83*  − 14.06  0.89  
12:00  335.99*  337.63*  19.91  1260.64*  173.68*  134.83*  144.40*  − 56.60*  − 9.92  0.90  
13:00  324.87*  334.09*  20.07  1275.12*  176.09*  129.23*  143.59*  − 58.84*  − 4.93  0.90  
14:00  319.44*  332.74*  19.04  1284.41*  174.59*  127.46*  147.68*  − 60.54*  − 1.02  0.90  
15:00  324.86*  315.45*  19.84  1247.71*  171.58*  123.07*  136.17*  − 57.92*  3.19  0.90  
16:00  332.10*  306.34*  19.11  1240.49*  175.52*  120.77*  121.32*  − 59.59*  11.26  0.90  
17:00  347.06*  271.85*  23.21  1224.36*  181.82*  105.51*  99.64*  − 62.73*  22.15  0.90  
18:00  390.84*  170.68*  40.36*  1118.87*  194.03*  75.21*  74.13*  − 66.59*  37.29*  0.90  
19:00  463.24*  90.55*  54.92*  915.09*  158.02*  61.24*  55.59*  − 48.74*  41.63*  0.86  
20:00  532.24*  40.15*  63.15*  730.66*  133.87*  53.25*  43.40*  − 30.74  37.60  0.79  
21:00  590.75*  12.57  69.45*  548.40*  99.89*  51.05*  34.23*  − 14.41  36.09  0.73  
22:00  643.02*  1.46  70.11*  382.58*  62.13*  51.64*  30.48  2.08  33.85  0.69  
23:00  676.28*  − 1.55  67.91*  255.65*  49.97*  51.49*  33.16*  12.31  29.15  0.69 

2020 0:00  716.22*  13.24  57.84*  35.99*  21.25  58.78*  42.91*  25.12*  29.2*  0.79  
1:00  724.53*  13.97  56.83*  9.43  20.44  57.56*  44.08*  26.71*  26.62  0.80  
2:00  726.66*  17.18  55.60*  − 3.68  20.28  57.28*  45.04*  27.03*  25.17  0.81  
3:00  728.92*  20.15  54.88*  − 17.47  19.25  57.61*  45.26*  27.78*  24.03  0.81  
4:00  729.18*  23.28*  55.34*  − 25.22*  19.73  57.17*  46.52*  28.58*  22.64  0.81  
5:00  725.87*  28.98*  55.18*  − 25.32*  19.40  58.21*  46.95*  29.45*  21.97  0.82  
6:00  716.01*  36.38*  56.20*  − 10.76  29.53*  59.82*  47.94*  32.63*  19.80  0.82  
7:00  677.67*  76.87*  55.87*  106.38*  60.29*  74.95*  60.34*  35.12*  8.87  0.83  
8:00  582.52*  189.98*  44.98*  402.53*  87.10*  115.17*  101.31*  20.75  − 8.65  0.86  
9:00  500.26*  283.68*  31.01*  694.59*  91.64*  143.66*  126.22*  − 5.42  − 14.34  0.87  
10:00  452.46*  308.16*  28.83*  850.86*  109.44*  146.13*  131.68*  − 21.36  − 10.74  0.88  
11:00  407.10*  316.53*  26.76  963.86*  133.77*  143.40*  137.11*  − 34.10*  − 6.35  0.88  
12:00  385.09*  306.19*  25.81  1015.15*  154.19*  132.75*  136.37*  − 41.52*  − 1.48  0.89  
13:00  375.78*  306.61*  25.56  1023.87*  158.35*  128.20*  130.47*  − 44.74*  4.07  0.89  
14:00  370.92*  303.76*  25.06  1025.92*  158.69*  126.19*  130.60*  − 46.61*  8.49  0.89  
15:00  370.27*  288.31*  24.21  990.06*  155.79*  122.05*  132.24*  − 43.91*  11.74  0.89  
16:00  375.65*  278.18*  24.66  988.60*  161.77*  118.35*  109.09*  − 46.45*  21.25  0.89  
17:00  396.40*  234.79*  30.09*  954.28*  166.72*  102.10*  85.09*  − 47.05*  31.87*  0.90  
18:00  454.49*  147.00*  43.04*  804.49*  163.73*  75.43*  67.47*  − 43.20*  41.40*  0.89  
19:00  530.47*  77.28*  53.37*  599.33*  131.91*  63.46*  51.84*  − 27.55*  42.87*  0.86  
20:00  593.04*  39.76*  59.26*  431.79*  99.67*  58.87*  43.35*  − 10.84  39.20*  0.81  
21:00  639.53*  22.82  62.49*  292.05*  64.03*  57.48*  40.80*  2.31  37.72*  0.78  
22:00  674.44*  13.95  61.90*  185.34*  40.37*  57.06*  39.05*  12.28  35.84*  0.76  
23:00  695.62*  9.99  60.44*  107.96*  31.14*  56.61*  40.68*  19.45  33.56*  0.77 

2021 0:00  720.19*  15.80  55.58*  7.22  17.94  58.67*  41.43*  25.44*  27.30*  0.81  
1:00  724.22*  15.92  55.20*  − 10.00  17.46  57.12*  40.97*  26.07*  25.91*  0.81  
2:00  726.60*  17.92  54.75*  − 18.80  17.73  57.15*  41.68*  26.24*  25.43  0.81  
3:00  728.70*  20.58  53.94*  − 25.74*  16.62  57.29*  42.44*  27.25*  24.07  0.81  
4:00  727.48*  23.82*  54.38*  − 31.78*  17.36  57.02*  43.29*  27.87*  23.25  0.82  
5:00  724.12*  29.18*  53.92*  − 29.40*  17.05  58.14*  43.81*  29.24*  23.37  0.82  
6:00  714.97*  36.99*  54.84*  − 12.81  26.18*  60.00*  45.45*  31.75*  20.81  0.82  
7:00  678.34*  78.55*  54.98*  98.30*  55.68*  73.68*  57.59*  34.42*  10.02  0.83  
8:00  589.85*  186.53*  44.60*  380.00*  76.39*  108.99*  90.20*  20.76  − 5.35  0.86  
9:00  510.58*  277.69*  30.57*  667.91*  77.02*  134.50*  109.66*  − 5.83  − 9.38  0.87  
10:00  464.92*  301.70*  28.24*  822.63*  95.48*  136.73*  111.41*  − 21.21  − 6.94  0.88  
11:00  423.83*  309.27*  27.56  936.69*  121.59*  133.16*  113.59*  –33.41*  − 2.79  0.88  
12:00  399.36*  299.44*  25.77  990.94*  142.54*  123.07*  112.99*  − 41.92*  2.66  0.89  
13:00  388.91*  298.51*  25.54  1015.49*  155.00*  118.57*  108.32*  − 45.41*  7.31  0.89  
14:00  381.88*  294.88*  25.26  1019.09*  156.99*  115.80*  103.73*  − 47.23*  10.52  0.89  
15:00  384.42*  282.97*  25.03  990.71*  151.99*  113.01*  104.65*  − 46.07*  15.63  0.89  
16:00  392.93*  270.52*  25.02  975.72*  152.33*  110.06*  88.58*  − 47.00*  23.53  0.90  
17:00  415.59*  229.68*  30.12*  932.97*  155.07*  97.00*  70.13*  − 47.36*  32.64*  0.90  
18:00  468.81*  150.62*  40.56*  791.34*  148.40*  72.79*  55.43*  − 45.46*  42.11*  0.90  
19:00  538.90*  83.17*  50.48*  587.45*  122.42*  62.24*  43.59*  − 27.58*  42.54*  0.87  
20:00  601.82*  43.56*  55.70*  409.16*  93.07*  58.41*  38.65*  − 9.92  37.30*  0.84  
21:00  649.03*  26.69*  57.85*  267.98*  57.26*  57.78*  36.46*  3.69  36.12*  0.81  
22:00  683.35*  18.57  58.38*  157.72*  33.44*  57.46*  36.39*  13.95  33.77*  0.79  
23:00  703.47*  13.97  56.97*  80.91*  24.48  57.50*  37.75*  20.42  30.43*  0.80 

* – significant variables. 
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Table C 
Beta weights and adjusted R-squared values for holidays.  

Year Time X01.Hou X02.Ser X03.Res X04.Com X05.Off X06.Hea X07.Edu X08.Pro X09.OpS AdjR2 

2019 0:00  695.39*  − 12.94  72.82*  251.97*  36.61  50.74*  27.64  16.82  25.96  0.63  
1:00  711.44*  − 10.27  69.28*  183.59*  31.89  51.12*  31.04  21.46  21.00  0.67  
2:00  718.78*  − 0.96  65.66*  145.57*  32.72  51.09*  34.00*  22.55  17.01  0.73  
3:00  726.52*  4.93  63.21*  103.38*  29.25  52.51*  36.68*  24.44  14.52  0.77  
4:00  729.95*  10.16  62.10*  87.19*  28.87*  52.77*  37.99*  24.84*  11.72  0.79  
5:00  729.26*  16.53  60.75*  74.71*  29.91*  53.48*  40.02*  25.70*  10.17  0.80  
6:00  721.84*  19.88  60.43*  73.05*  37.59*  53.90*  41.78*  25.92*  9.33  0.82  
7:00  705.52*  38.13*  60.54*  104.74*  54.93*  59.29*  44.94*  27.69*  4.13  0.83  
8:00  671.94*  65.65*  62.82*  184.88*  71.93*  72.48*  52.52*  22.80*  − 2.60  0.84  
9:00  615.62*  88.33*  68.69*  331.68*  93.49*  77.17*  58.66*  13.37  − 3.43  0.86  
10:00  542.92*  103.79*  75.32*  505.36*  136.01*  70.47*  55.24*  − 0.30  2.37  0.87  
11:00  469.46*  110.95*  73.06*  681.74*  185.93*  65.38*  53.74*  − 16.46  8.85  0.87  
12:00  426.95*  115.31*  71.98*  798.12*  215.73*  59.66*  51.50*  − 30.98*  13.30  0.87  
13:00  403.69*  118.56*  71.95*  859.05*  230.98*  55.39*  46.83*  − 39.22*  19.16  0.87  
14:00  381.82*  113.45*  72.43*  903.73*  244.05*  53.82*  43.40*  − 42.45*  24.73  0.87  
15:00  377.05*  105.80*  72.84*  915.49*  251.20*  51.39*  42.06*  − 44.28*  28.39  0.87  
16:00  389.29*  95.44*  64.39*  888.74*  251.30*  51.19*  38.13*  − 44.79*  35.11*  0.87  
17:00  420.65*  79.13*  55.75*  849.57*  235.15*  48.59*  31.76*  − 45.29*  40.04*  0.86  
18:00  461.06*  51.69*  62.12*  810.37*  213.97*  40.94*  25.73  − 44.94*  44.69*  0.84  
19:00  507.56*  21.60  69.00*  714.94*  176.55*  38.95*  22.18  –33.70  44.43*  0.78  
20:00  554.76*  − 3.62  71.41*  622.94*  150.11*  39.23*  21.57  − 21.93  40.44  0.73  
21:00  597.97*  − 14.67  74.96*  495.15*  108.05*  42.09*  20.22  − 8.83  38.22  0.68  
22:00  644.08*  − 14.89  73.56*  383.13*  69.96*  45.33*  21.51  3.00  34.70  0.66  
23:00  676.03*  − 13.23  70.06*  286.56*  53.34*  47.52*  25.16  9.91  29.30  0.68 

2020 0:00  701.51*  0.34  62.19*  105.88*  23.87  54.87*  36.80*  20.05  33.66*  0.73  
1:00  713.65*  2.53  60.28*  67.98*  22.66  54.09*  37.87*  22.60  30.61  0.76  
2:00  720.43*  7.80  58.62*  46.10*  22.14  53.93*  39.01*  23.44  28.18  0.78  
3:00  725.77*  12.07  56.98*  24.33*  20.70  54.48*  40.88*  24.67*  25.61  0.80  
4:00  727.00*  15.47  56.91*  11.11*  20.60  54.64*  41.77*  25.78*  23.64  0.81  
5:00  725.85*  18.98  56.16*  3.53  21.38  55.20*  42.89*  26.07*  22.89  0.81  
6:00  717.80*  24.53*  56.14*  7.32*  27.39*  56.61*  44.32*  26.65*  21.50  0.82  
7:00  702.83*  40.38*  56.87*  38.6*  40.03*  62.16*  48.06*  27.20*  16.41  0.83  
8:00  672.41*  58.86*  58.63*  113.12*  54.39*  75.34*  54.33*  23.26*  11.58  0.84  
9:00  631.91*  77.06*  60.30*  234.56*  72.49*  82.25*  57.55*  16.17  11.96  0.85  
10:00  574.52*  83.81*  62.17*  371.59*  103.38*  74.14*  54.20*  7.46  16.71  0.85  
11:00  520.39*  90.60*  60.93*  493.85*  141.40*  70.81*  53.03*  − 3.85  21.58  0.86  
12:00  489.49*  93.70*  60.37*  556.68*  170.38*  64.70*  51.92*  − 15.21  26.73  0.86  
13:00  468.76*  91.48*  59.40*  597.69*  187.21*  59.20*  46.63*  − 20.70  32.47*  0.86  
14:00  453.51*  86.80*  57.73*  624.28*  197.25*  56.67*  43.41*  –22.87*  36.03*  0.85  
15:00  454.48*  78.18*  56.65*  617.55*  200.28*  55.90*  41.70*  –22.40*  38.86*  0.85  
16:00  465.31*  70.26*  56.56*  601.70*  197.60*  55.73*  39.86*  –23.36*  42.47*  0.85  
17:00  492.66*  57.22*  57.11*  573.72*  182.65*  52.87*  36.04*  –23.40*  47.25*  0.85  
18:00  528.64*  37.39*  60.16*  514.26*  159.01*  47.79*  32.65*  − 19.72  48.20*  0.83  
19:00  574.69*  19.03  62.23*  418.69*  134.81*  47.84*  31.54*  − 12.21  46.80*  0.81  
20:00  618.35*  5.43  63.79*  314.42*  100.84*  49.67*  32.23*  − 0.46  41.84*  0.79  
21:00  655.91*  3.72  64.40*  219.31*  64.48*  52.09*  32.97*  8.34  39.69*  0.77  
22:00  683.31*  4.91  62.65*  146.70*  43.01*  52.89*  34.74*  14.25  36.43*  0.77  
23:00  701.04*  6.28  59.66*  91.12*  31.78*  53.56*  36.59*  19.21  33.76*  0.78 

2021 0:00  715.16*  7.50  58.37*  47.03*  19.00  56.04*  37.17*  23.52*  29.89*  0.79  
1:00  722.38*  8.19  57.05*  24.89*  18.27  55.37*  37.34*  24.53*  28.11  0.79  
2:00  724.81*  10.49  56.31*  10.46  18.36  55.39*  38.36*  24.65*  26.73*  0.80  
3:00  727.75*  13.23  55.75*  − 2.75  17.90  55.08*  39.57*  25.41*  25.30  0.81  
4:00  728.09*  15.24  54.67*  − 10.30  17.68  56.17*  39.85*  25.98*  24.43  0.81  
5:00  726.78*  19.27  54.55*  − 14.68  17.98  56.57*  40.52*  25.7*  24.02  0.82  
6:00  720.00*  23.08*  54.16*  − 9.25  22.86  57.18*  41.66*  26.10*  22.19  0.82  
7:00  706.14*  35.66*  55.21*  23.36*  35.59*  61.69*  45.61*  27.48*  18.25  0.83  
8:00  674.97*  56.87*  57.51*  98.03*  49.10*  71.99*  50.45*  22.81*  14.48  0.84  
9:00  636.30*  71.86*  60.32*  217.23*  63.65*  73.95*  53.26*  14.60  13.60  0.85  
10:00  589.27*  84.00*  62.94*  354.50*  95.11*  69.11*  52.43*  6.42  17.12  0.86  
11:00  539.23*  86.76*  62.36*  475.54*  127.61*  62.87*  51.69*  − 4.11  20.95  0.86  
12:00  509.72*  89.03*  61.11*  551.72*  153.79*  59.30*  51.45*  − 13.72  25.70  0.86  
13:00  493.49*  88.55*  61.09*  596.43*  171.54*  56.20*  43.00*  − 18.59  31.23*  0.86  
14:00  478.78*  83.52*  58.99*  619.84*  184.56*  56.14*  41.41*  − 20.18  34.91*  0.86  
15:00  480.51*  75.56*  56.73*  613.33*  182.39*  54.92*  39.12*  − 18.96  37.80*  0.86  
16:00  491.00*  69.09*  56.15*  591.70*  178.79*  55.93*  37.20*  − 20.37  42.01*  0.86  
17:00  512.79*  57.32*  56.80*  543.41*  164.08*  53.72*  33.72*  − 20.07  44.42*  0.85  
18:00  547.27*  41.24*  59.00*  455.81*  139.13*  48.05*  29.04*  − 17.60  44.81*  0.84  
19:00  589.71*  24.41  60.72*  351.88*  118.34*  48.58*  29.32*  − 8.97  42.99*  0.82  
20:00  632.23*  9.24  60.23*  247.05*  90.43*  50.29*  31.38*  2.09  38.03*  0.81  
21:00  667.50*  6.66  60.40*  153.95*  55.47*  53.26*  33.48*  11.11  35.84*  0.81  
22:00  693.90*  9.34  57.98*  87.27*  34.45*  54.22*  34.68*  16.65  33.16*  0.80  
23:00  709.29*  10.12  57.10*  41.81*  25.19  56.58*  36.94*  21.03  30.43*  0.81 

* – significant variables. 
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where 0000, 0800, and 1600 denote the changes at midnight, in the 
early morning, and during office hours, respectively. 

As shown by the results, the influences of the facilities appeared to 
change in January 2020, even before the first detected case in Japan. 
However, these changes were small and mainly concerned commercial 
facilities. Significant changes occurred in the 1st ED period and became 
more obvious in the 2nd ED period. In the two ED periods, we found 
dramatic decreases in the beta weights of X04.Com, X05.Off, and X02. 
Ser, whereas the influence of X01.Hou increased significantly. After the 
2nd ED period, these facilities tended to recover to their approximate 
impact levels from the 1st ED period. During the Go To Travel campaign, 
the changes were similar to those in the ED periods, when the prefecture 
upgraded the level of its measures. However, the amplitudes were lower. 
Among the three timestamps, significant changes were found at 1600; at 
0000 and 0800, considerable changes were found for X04.Com. These 
changes are discussed in the paragraphs below. 

At 1600 in the 2nd ED period, the effect of X01.Hou increased by 55 
% on weekdays and by 58 % on holidays. Specifically, its beta weights 
rose from approximately 330 to 513 and from 393 to 621 on weekdays 
and holidays, respectively. By contrast, the beta weights of X04.Com 
declined from 1236 to 587 (53 %) and from 883 to 173 (80 %) on 
weekdays and holidays, respectively. The decrease in the percentage of 
X04.Com was high at 0000 but lower than that at 1600. In the IP period, 
the influence of X01.Hou increased by 16 % on weekdays and by 20 % 
on holidays. On the contrary, the effect of X04.Com decreased by 21 % 
on weekdays and 32 % on holidays. 

At 1600, the beta weights of X02.Ser decreased by approximately 28 
% (from 305 to 221) on weekdays and by 37 % (from 95 to 60) on 
holidays in the 2nd ED period. The decreases in the 1st ED and IP periods 
were 12 % and 10 % on weekdays and 36 % and 22 % on holidays, 
respectively. Moreover, in the 2nd ED period, the effect of X05.Off 
dropped by nearly 70 % (from 177 to 53) on weekdays and by 85 % 
(from 252 to 38) on holidays. Likewise, these decreases in the IP period 
were 9 % and 23 % on weekdays and holidays, respectively. 

The results indicated a slight increase in the influence of X06.Hea on 
holidays. For instance, at 1600, the beta weights of X06.Hea rose by 18 
%, 39 %, and 8 % in the 1st ED, 2nd ED, and IP periods, respectively. 
Contrary to the effect of X06.Hea, that of X07.Edu decreased signifi-
cantly on weekdays but increased on holidays. Specifically, at 1600 on 
weekdays, the beta weights reduced by 45 % in the two ED periods. At 
0000 on holidays, they increased by 40 % and 36 % in the 2nd ED and IP 
periods, respectively. 

The effect of X03.Res decreased over the studied periods, except at 
1600 in the 2nd ED period. For example, at 0000 in the 2nd ED period, 
the beta weights lost approximately 10 units (15 %) on weekdays and 18 
units (24 %) on holidays. This figure reached seven units (10 %) on 
weekdays in the 1st ED and IP periods. At 0800 and 1600, the decrease 
of the beta weights was 10 % in the three periods on holidays. 

The influence of X08.Pro changed differently between the 2nd ED 
and other periods. For example, at 1600 on weekdays, the beta weights 
rose by 18 % and 24 % in the 1st ED and IP periods, respectively. In the 
2nd ED period, the beta weights increased by 22 % (0000) and 51 % 
(0800). On holidays, the effect of X08.Pro appeared mainly in the 2nd 
ED period, with increases of 60 % and 148 % at 0000 and 1600, 
respectively. 

Regarding the last variable, X09.OpS, the results showed that its 
effect rose mainly at 0000 and 1600 on both weekdays and holidays 
during the pandemic. For instance, on weekdays, the beta weights 
increased by 50 %, 35 %, and 25 % in the 1st ED, 2nd ED, and IP periods, 
respectively, at 0000. These figures were reduced to approximately 33 % 
to 39 % on holidays. At 1600 on holidays, the beta weight values rose by 
31 % and 18 % in the 1st ED and IP periods, respectively. 

Discussions 

Spatiotemporal population density determinants 

Regarding the first and second research questions, the results indi-
cated that all facilities were associated with spatiotemporal population 
density. In particular, housing and commercial buildings were major 
determinants. These findings are consistent with our hypothesis that 
population flowed between residential and commercial areas in a day. 
At nighttime, people were more likely to be staying home, which made 
housing the strongest variable in the evening. At daytime, people would 
leave the home to perform various activities, thus decreasing the density 
in residential areas but increasing the densities at other locations (e.g., 
workplaces, schools, and shopping malls). A similar situation was re-
ported by Mizuno et al. (2021), who indicated that the ratio of the 
daytime population to the nighttime population in Tokyo was approxi-
mately 0.8. According to the authors, commercial and office areas have 
higher populations in the daytime than in the nighttime. Supporting this 
statement, Arimura et al. (2020) stated that the population in Sapporo’s 
CBD at night is lower by 75 % compared with that during daytime. 

X02.Ser, X04.Com, X05.Off, X06.Hea, and X07.Edu had strong in-
fluences at daytime (the office hours in Japan are from 0900 to 1700). 
Nevertheless, the effects of X04.Com and X05.Off remained highly sig-
nificant until 2000, even on holidays. This might suggest the extra 
working hours in the Japanese working style. Recent studies report that 
approximately 30 % of services workers and 80 % of manufacturing 
workers work over the standard working hours per week (Ishimaru and 
Fujino, 2021; Okazaki et al., 2019). 

Regarding the X02.Ser and X03.Res facilities, the results appeared to 
reflect the common habits of the Japanese. Specifically, they are more 
likely to do daily goods shopping trips during daytime and on weekdays. 
They also prefer to visit restaurants and leisure places at night and on 
holidays than on weekdays. 

Aside from workplaces, X06.Hea and X07.Edu facilities were asso-
ciated with people’s visits at both nighttime and daytime. As for X06. 
Hea, the high impact at daytime implies outpatient visits, whereas the 
nighttime impact might reflect inpatient stays. Likewise, the relation-
ship between X07.Edu and people’s visits at nighttime and on holidays 
would likely represent boarding school students, especially those in 
higher educational institutions, such as universities, colleges, and 
vocational schools. 

The positive influence of X08.Pro at nighttime might implies the 
activities in some areas related to logistics or industries that operate 
mainly at night. For example, among the country’s 11 industrial zones, 
the Oyachi Logistics hub occupies the largest area, which is on the east 
side of the city. The negative influence of X08.Pro at daytime suggests 
that these areas are less likely to attract people’s visits. Nonetheless, 
these facilities were found to play a role in explaining the population 
density. 

As expected, X09.OpS was not associated with population density 
during office hours and on weekdays, but its influence was significant 
during the afternoon rush hour and on holidays. The results also implied 
a change in these facilities’ influence over time, which is discussed in the 
next section. 

Eventually, the models’ performance improved and stabilized in the 
IP period. We suggest that the change in travel patterns was the major 
factor that caused this issue. During the spread of the pandemic, inter-
prefecture and intercity trips were reduced by 50 % because of the policy 
implications stated by Hara and Yamaguchi (2021). This change caused 
the city population to become purer, which might have affected the 
models’ accuracy. Moreover, the models may have assumed that users 
turn off their mobile phones at night. This may have led to an under-
counting of the MSS data, thus compromising the model’s performance 
during the nighttime. Nonetheless, the applied model may be sufficient 
for predicting population densities in facilities in a time series. This 
outcome would be worthwhile to establish the measures against 
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pandemic spreading, as claimed by Hay et al. (2005). 

Changes in mobility during the COVID-19 pandemic 

Regarding the third research question, the results showed variations 
in the facilities’ influences, indicating significant changes in people’s 
mobility since the beginning of the spread of the pandemic. Specifically, 
the growth of X01.Hou’s beta weights represented an increase in the 
stay-home rate, whereas the decreases of X04.Com and X05.Off 
expressed the decline of workplace visits. These trends support our hy-
pothesis regarding the two major facilities in the city. Furthermore, they 
are consistent with the findings of other studies. For example, Mizuno 
et al. (2021) claimed that the stay-home rates in Hokkaido and Tokyo 
increased by 40 % and 60 %, respectively, during the ED periods. Ac-
cording to Watanabe and Yabu (2021b), the stay-home rate in Tokyo 
peaked at 55 % at the same time. The difference between these cases is as 
follows. For Tokyo, Watanabe and Yabu used weekday data only, 
whereas Mizuno et al. included holidays in their analysis. Hence, these 
two studies’ outputs nearly fit our results. Regarding the preventive 
measures set, the Japanese government called for a change of the work 
model to teleworking. This might have been a strong influence that 
decreased the workplace visits. Moreover, the beta weight variation in 
our study is similar to the visit pattern at the places in the study of Marra 
et al. (2022). In their study, the authors claimed that the decrease in 
workplace visit represented the impact of working from home and the 
closure of temporary working places. The same situation has been found 
in various countries, such as Australia, Brazil, Greece, and Argentina, 
where there have been common increases of teleworking, teleconfer-
encing, or the number of working-from-home days (Balbontin et al., 
2021; Bracarense and Oliveira, 2021; Jain et al., 2022). 

Compared with that of commercial facilities, the decline of office 
visits was softer in the IP period. This gap might represent the difference 
in flexibility between the public and private sectors. The office term in 
our study included many public services that need to be maintained to 
serve the residences’ needs. Thus, the encouragement of shifting to 
teleworking might not affect the public sector. Nevertheless, this situa-
tion is predicted to change soon, especially in the private sector. As 
stated in a recent report of the Japan Productivity Center (JPC), 
although the telework intention of staff increased, the telework impli-
cation decreased, mainly at medium and large companies in Japan (JPC, 
2022). The explanation for the worker’s intention is that they might 
have adapted to the new working style because their working environ-
ments have improved. Moreover, fear of health problems would likely 
motivate people to work from home. To our knowledge, although the 
Japanese working style is directly met, the reason for reducing the 
telework implication is still unknown. Thus, it is necessary to investigate 
the pressures and difficulties that the companies are confronting. 

For health care facilities, our results expressed a slight decrease in 
population density in the daytime but a medium increase at nighttime. 
For this phenomenon, we would assume two trends that existed simul-
taneously during the pandemic. The first trend was the decline in 
outpatient visits because of the activity restrictions and the fear of 
epidemic infection, which are reported in the studies of Chatterji and Li 
(2021), Kumagai (2021), and Tsai and Yang (2021). The second trend 
might be from an increase in inpatient number related to COVID-19, 
which caused a high ratio of occupied beds. These inverse changes 
seemed likely to lead to the balance of the health care facility’s popu-
lation. Furthermore, on holidays, various medical facilities close, which 
may cause differences in visit numbers between weekdays and holidays 
at these places. 

Behind the patient visit trend, a new health care model was devel-
oped and advanced during the pandemic: virtual or telehealth visits 
(Baum et al., 2021; Pendrith et al., 2022; Qian et al., 2021). This new 
model was designed to be a substitute for in-person visits. Although this 
measure seems suitable for the outbreak period, its application would 
likely remain limited. The cost-effectiveness, accessibility, and quality of 

this new model should be assessed to promote its advantages and to 
control its disadvantages. 

Our analysis highlighted that visit frequency at daily service and 
restaurant facilities declined to a certain extent during the pandemic. 
This situation is in line with the findings of Kawasaki et al. (2022) and 
Yabe et al. (2021). Besides reporting declines in visiting volumes, these 
studies revealed changes in shopping styles (from direct shopping to e- 
shopping) and restaurants’ enhanced takeout and home delivery ser-
vices. As the results showed, the decrease in service facility visits was 
high in the 2nd ED period only. This may suggests that some services are 
essential for living and need to remain, as declared by Parady et al. 
(2020). Furthermore, even though e-shopping has advantages such as 
convenience and avoidance of close contact, it still may not prevail over 
direct shopping. People might engage in e-shopping for enjoyment 
purposes only (Irawan et al., 2021). Thus, in addition to promoting 
online shopping, businesses should implement measures such as 
extending store opening hours to flatten the daytime density. 

Facilities related to dining and entertainment were significant during 
the pandemic, even in the ED periods. This would seem to be highly 
related to policy enforcement and compliance. Interventions in Japan 
appear to be voluntary lockdowns, and they are not as strict or as legally 
binding as interventions or curfews in other countries (Watanabe and 
Yabu, 2021b). During the EDs, the Japanese government called for the 
service sector’s cooperation by asking them to reduce their business 
hours. Under this agreement, restaurants would receive subsidy, which 
might not compensate the financial loss. Restaurants are claimed as poor 
ventilation places, and shortening their hours has a better effect than 
teleworking interventions (Chiba, 2021). Thus, these businesses should 
give more attention to policy compliance. Supplemental policies should 
support these businesses not only during the outbreak but also after the 
pandemic to recover. 

Regarding educational facilities, the decline in their visits matches 
the implemented policies. Schools also employed online learning to 
avoid interruption of the school year. This would explain the soft 
decrease in schools’ visits after the restrictions were lifted. However, 
online learning reportedly hindered students from achieving direct 
communication, thereby causing difficulties in digesting lessons because 
of lack of skills or access to facilities (e.g., Internet connection and 
computer). Consequently, students might encounter health problems 
and downgraded achievements (Aurini and Davies, 2021). As school 
attendance is one factor that causes COVID-19 incidence, policies should 
balance the two abovementioned issues. Also, the change from insig-
nificant to significant school visits at nighttime on holidays seems 
abnormal. We suggest a further investigation into these facilities, risk 
perception and countermeasures at different education levels, for 
instance, would help to understand this variation. 

There was an interesting result showing that open spaces were likely 
to become more attractive on holidays during the pandemic. This sug-
gests that the demand for outdoor activities remained high and even 
increased during the outbreak. This is consistent with the study of Yang 
et al. (2021), who reported that visit frequencies to parks in Osaka and 
Tokyo were stable in the early stages of the pandemic spread compared 
with those to foreign metropolitans. Moreover, as risk awareness 
increased, people became likely to change their behavior in choosing 
their exercise types and venues. For example, Seoul citizens changed 
their leisure preferences from crowded areas to disinfected, natural, 
socially distanced places (Bayrsaikhan et al., 2021). Likewise, Swedish 
became more likely to switch their activities from indoor to outdoor 
endeavors, such as walking, hiking, and trips to forests, parks, and 
beaches (Bohman et al., 2021). 

The results further indicated that the city’s mobility is less likely to 
recover to its pre-pandemic level. This pattern is contrary to that of the 
US (Kim and Kwan, 2021) but consistent with those in several other 
nations, such as Australia, Sweden, and Bangladesh (Beck and Hensher, 
2020b; Bohman et al., 2021; Bracarense and Oliveira, 2021). We suggest 
that the failure to fully recover is associated with impact sources, policy 
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implications, and risk awareness. Specifically, restrictive measures 
would seem to be the principal cause of mobility decline in the ED pe-
riods. By contrast, in the IP period, the pandemic threat was more likely 
to play a crucial role in decreasing mobility. For instance, before an 
infection was detected in Hokkaido, people in Sapporo City had reduced 
their mobility (Figs. 6–8). Then, in the IP period, the heightened risk 
awareness would motivated people to refrain from engaging in close 
contact or going to high-risk places. Hence, policy implications might 
have a great impact in the short run, but changes in awareness seem to 
influence mobility for a long time. 

Although the EDs seemed to have obvious efficiencies in controlling 
the pandemic (e.g., slowing down of transmission, alleviation of medical 
system burden, and reduction of fatalities), they might negatively affect 
certain socioeconomic aspects. The EDs could cause an economic 
downturn and stagnancy, income reduction, increase in the unemploy-
ment rate, and physical and mental health problems, among others. 
Thus, a possible conclusion would be that an ED should not be applied 
frequently or for a long time. Furthermore, risk awareness and percep-
tion appeared to exhibit long-term effectiveness in flattening the infec-
tion curve. However, despite rising quickly right after a disaster occurs, 
risk awareness and perception are likely to decrease gradually over time. 
Therefore, we believe that programs that enhance public awareness are 
necessary. 

Limitations, future works, and conclusions 

The limitations of the present study are as follows. First, the data 
used here lacked important variables, such as demographic and socio-
economic factors. Because travel behaviors have an intrinsic relation-
ship with personal characteristics, the addition of this missing 
information will help in further elucidating the effects of the pandemic 
on different groups of people, especially the vulnerable ones (e.g., 
disabled and elderly). Thus, in the future, we will examine the effect of 
the pandemic on the mobility of different groups, such as the elderly, 
students, and women. Second, although the proposed method is easy to 
interpret, it is sensitive to outliers and multicollinearity. The bypassing 
of model accuracy validation might also be a weakness. In addition to 
our proposed solutions, these issues can be solved with more advanced 
techniques, such as the machine learning or complex models introduced 
by Kubíček et al. (2019) and Bachir et al. (2018). 

The present study investigated mobility changes during the COVID- 
19 pandemic using MSS data covering three years (from 2019 to 2021) 
in the city of Sapporo, Japan. Results showed that Sapporo’s citizens 
were more likely to stay home and less likely to visit their workplaces. 
Specifically, places related to daily services, restaurants, commercial 
ventures, and offices exhibited decreased visits, with the highest decline 
identified for commercial facilities. Visits to health care and production 
facilities were stable on weekdays but increased on holidays. Educa-
tional institutions’ visits decreased on weekdays but increased on holi-
days. Visits to residential housing and open spaces increased, with the 
rise in residential housing visit being more substantial. Eventually, the 
results would seem to indicate that visit patterns at service and restau-
rant places were significant during the pandemic, even in states of 
emergency. 

Solving the spatiotemporal problem is problematic due to the com-
plex and high dimension data. However, the application of the MLR 
model in the present study ascertains two things. First, though the 
spatiotemporal task is complicated, the applied method is not necessary 
to be advanced. The determinants are the data structure and the study’s 
objectives. Second, even if the data do not contain a high dimension, we 
are able to capture the mobility pattern with the supplement data, such 
as the facilities information. We suppose this outcome would serve as a 
good alternative for researchers in spatiotemporal data mining. 

From the analysis outcomes, two suggestions for policy making are 
presented. First, measures for target facilities should be based on their 
functions and the habits of people in using these facilities. This would 

help not only in remedying the negative effects of the pandemic but also 
in increasing compliance. Second, public awareness should be enhanced 
and integrated into policies as it appears to produce longer-term effec-
tiveness compared with intensive measures (e.g., lockdowns and EDs). 
Overall, this study might serve as a primary step in estimating dynamic 
population densities by facility type. Our results can be improved to 
achieve a high resolution of population distribution that supports policy 
makers not only in identifying risk clusters but also in establishing 
suitable interventions on time. 
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