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Chapter 1  

Introduction 

The application and development of electromagnetic field technology is the key to 

promote the rapid development of electronic information industry. In the design and 

development of electronic and electrical equipment, electromagnetic field simulation is 

widely used in performance optimization, EMC analysis, etc., and in the design and 

development of industrial products, a shorter design cycle will greatly reduce production 

costs, thus accelerating the development of electromagnetic fields simulation computing 

has been a research hotspot in recent years [1]-[4]. Because ordinary computers face large 

and complex calculation problems, such as topology optimization based on GA for the 

optimal design of electrical equipment, the calculation takes 1 to 2 days [5]-[20]. In the 

face of large and complex problems, high performance computing is one of the effective 

ways to improve computing efficiency. As one of the development results of high-

performance computing, supercomputers have the latest performance exceeding 

1000PFLOP/S, but they consume millions of energy and are huge in size, high in price 

and shared by multiple people. Therefore, as another possibility of high-performance 

computing, our laboratory has been committed to developing low power consumption, 

low cost and green dedicated computers [41]-[51]. 

In previous work, we developed a FDTD-specific computer for the dataflow 

architecture of 3D microwave simulations [47]-[50]. In this study we discuss the 

conceptual design of a dedicated computer for FIT dataflow based on the BiCG-Stab 
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solver for 2-D magneto-static field simulation [51], 3-D electrostatic field simulation and 

2-D eddy current field simulation. 

This thesis mainly consists of five chapters. Chapter 2 presents the background of high 

performance computing, and the dedicated computer for FDTD that we have proposed. 

The third chapter briefly summarizes the basic knowledge related to electromagnetic field 

theory. The fourth chapter introduces the design and simulation results of the dedicated 

computer used for electromagnetic field simulation calculation. Chapter 5 summarizes 

the conclusions of this study and future developments. 

 



 

3 

 

Chapter 2  

High-Performance Computing (HPC) 

In this Chapter, we will briefly introduce the research background and the history of 

HPC technology. Then, we will give an overview of dedicated computer. 

2.1 Research Background and Purpose 

In recent years, with the rapid development of the electronic information industry, there 

is a huge demand for electromagnetic simulation calculations in the electromagnetic field. 

The application of electromagnetic field technology in production design is in various 

products ranging from electric power equipment to small electronic equipment, 

semiconductor integrated circuits and electric vehicles [1]-[4]. On the other hand, 

electromagnetic fields are also widely used in the field of scientific research. For example, 

research on plasma heating by millimeter-wave vortex field, etc. However, for example, 

when optimizing the design of electrical equipment, based on GA topology or model 

optimization, it takes 1 to 2 days to complete the calculation of the entire optimization 

process by repeatedly simulating millions of different numerical models [5]-[20]. When 

studying the heating of the plasma by the millimeter-wave vortex field, in order to grasp 

the propagation characteristics of the millimeter-wave vortex field in the magnetized 

cooling plasma, the researchers used the FDTD method to perform a 3-dimensional 

simulation of the millimeter-wave vortex field. It also takes 1 to 2 days to change the 

parameters and re-calculate the simulation until the results are obtained [58]. Traditional 
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numerical analysis of electromagnetic fields is usually carried out on ordinary computers. 

Even though the current computer technology has developed significantly in terms of 

performance and storage capacity, it still takes hours to days to process large-scale 

numerical calculations of electromagnetic fields. Especially with the development of 

semiconductor products and small electronic devices to higher frequencies, the behavior 

of electromagnetic fields has become more and more complex, and the scale of 

calculations has also become larger. In product design for industrial applications, a shorter 

design cycle is critical to lower overall cost. Therefore, in the past ten years, many studies 

have focused on the development of high-performance computing technology [21]-[57]. 

Supercomputer is one of the development results of high-performance computing 

technology. A supercomputer based on a CPU system has huge data storage capacity and 

extremely fast data processing speed. The latest calculation peak value exceeds 1000 

PFlop/s. However, in the latest performance of global supercomputers, we can find from 

that the top five machines with the highest performance in the world all have a huge size, 

a computer system with more than millions of cores, and an energy consumption of more 

than one million. In addition, supercomputers are shared by many people at the same time, 

and usually the maximum performance of a supercomputer cannot be occupied by one 

user. Such expensive, bulky supercomputers are not suitable for product design in industry. 

Therefore, we consider another possibility to realize high-performance computing, that is 

dedicated computers. 

Dedicated computers are not von Neumann computers with strong versatility. The 

limitations of von Neumann computer hardware configuration are avoided and also 

eliminate versatility. And the dedicated computers only perform high-speed calculations 

for certain problems. In recent years, with the advancement of LSI (Large Scale 
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Integrated) technology, configurable LSIs and FPGAs have become popular, and even 

now FPGAs have up to one million LEs, making low-cost LSI development possible. 

Therefore, for developments of portable, low power consumption, low cost and high 

performance computing technologies to be effectively used in industry applications, our 

laboratory has been investigating a method of dedicated computers for electromagnetic 

fields simulations.  

2.2 The History and Summary of HPC Technology 

High-performance computing plays a non-negligible role in solving major challenging 

problems and promoting the development of modern society and economy. Therefore, 

high-performance computing has been one of the research hotspots in the field of 

computer science and engineering applications in the past few decades. High-

performance computing relies on efforts in multiple fields, including parallel algorithms, 

supercomputers, etc. The demand for supercomputers also promotes the advancement of 

computer architecture and core technology. The development of supercomputers can be 

roughly divided into four stages. The first stage is the birth of the first supercomputer, the 

second stage is the Cray era, the third stage is the cluster era, and the fourth stage is the 

GPU and hybrid era.  

The first supercomputer in the world was the CDC 6600 developed by the Control Data 

Corporation’s CDC in 1964, and the computations focused on the floating-point 

operations per second (FLPOS), then the first supercomputer could do calculation reach 

500 KFLOP/s up to 1 MFLOP/s. In the 1980s, the supercomputer consisting of vector 

processors such as cray-1 was a pioneering computer system that opened the era of 
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vector machines. For example, Cray X-MP and Cray-YP, they both have two or more 

vector processors, and shared memory for all processors. During this period, the speed of 

supercomputers was initially reached through two mechanisms of vector processors and 

shared memory multiprocessing. Vector processors are designed using a pipelined 

architecture that can quickly perform a single floating-point operation on large amounts 

of data [32]. Achieving high performance depends on the data arriving in an uninterrupted 

stream to the processing unit. Shared memory multithreading means that a small number 

(up to 8) processors can access the same memory space, and inter-process communication 

is performed through shared memory. In the 1990s, the era of truly efficient parallel 

computers had begun, but were limited by shared memory access. Memory contention is 

a major hurdle to speed up, as vector processors require high-speed access to memory, 

but multiple processors working simultaneously can contend for memory, and then 

slowing down access to memory. An alternative to shared memory is distributed memory, 

where each processor has a dedicated memory space, such as a cluster using efficient PCs 

 

Fig. 2.2.1 Hybrid parallel computer 
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and network hardware, as shown in Fig.2.2.1. In the 2000s, the trend of increasing 

processor speed was replaced by increasing the number of processor cores. This results 

in a mixed cluster with a large number of processors, each with a small number of cores 

sharing random-access memory (RAM) and some cache space. With the development of 

general-purpose accelerator hardware such as GPUs, modern top supercomputers are 

hybrid clusters with a large number of standard processor nodes, each node has a multi-

core processor with some individual caches, some shared caches and RAM shared by all 

cores, some GPU or other accelerators to offload specific types of computation from the 

CPU nodes, Computing speed is usually limited by the rate at which data is moved.  

The development of high-performance computing to the present has experienced the 

development from parallel processors, clusters, and multi-core CPU/GPU [34]. As 

another possibility of HPC, the development of dedicated computers has also attracted 

much attention. Dedicated computers can achieve high-speed computing and large-scale 

computing by configuring the memory and processor to specialize in specific computing 

algorithms. In addition, dedicated computer is a portable HPC that anyone can use by 

connecting it directly to a general-purpose PC. A representative example of a dedicated 

computer is GRAPE, which is for simulating gravitational many-body problems [52]. In 

a system such as a galaxy where a large number of particles exert gravitational force on 

each other, the calculation of universal gravitation requires a huge amount of calculation. 

The computer project dedicated to gravitational calculations started in April 1989, and 

GRAPE-1 was completed in September of the same year. GRAPE-1 and GRAPE-2 

completed in April 1990 are circuit board systems using about 100 commercial LSIs. For 

GRAPE-3, completed in 1991, researchers developed a custom LSI that integrated 

circuits equivalent to GRAPE-1 into a single chip, and 14.4 Giga FLOP/s was achieved 
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by running 48 units in parallel. With the development of LSI, the subsequent development 

of GRAPE has also realized Tera FLOP/s. In recent years, the trend of dedicated 

computers is not limited to gravitational many-body problems, but to develop dedicated 

computers employing various algorithms. For example, GRAPE-2A [53]-[54], a 

dedicated computer for molecular dynamics simulation of proteins with a similar 

architecture to GRAPE. And the ProGrape [55], a hardware platform that uses FPGA to 

automatically generate and implement arbitrary computing pipelines, the high-level 

language PGR [56] automatically generated by the pipeline. And GRAPE-DR [57], which 

specializes in SIMD operations. In addition, there are various fluid simulations using 

finite difference methods and dedicated computers dedicated to matrix calculations. 

In the context of the strong demand for HPC techniques for microwave simulations, a 

lot of research has been done on dedicated computers for FDTD methods. The FDTD 

dedicated computer was first proposed by J. R. Marek in 1992 [21], the architecture 

proposed at that time was to add a dedicated LSI that only performs FDTD differential 

calculation on the existing PC architecture, and Mur's absorbing boundary condition is to 

use a general floating-point arithmetic LSI, known as a Floating-Point Application 

Specific Processor (FPASP), speeds up calculations by using dedicated hardware. The 

architecture was confirmed to work via VHDL simulations, which showed that it was 

overall 4.9 times faster than current workstations. However, due to the huge cost of 

creating LSI at that time, research on FDTD dedicated computers did not progress until 

2002. In 2000, FPGA became popular, and it became possible for individuals to develop 

dedicated LSI, which led to the re-study of FDTD dedicated computers. The realization 

of the first FDTD dedicated computer on FPGA was completed by R. N Schneider in 

2002 [22]-[23]. In this work, bit-serial pipelined arithmetic is introduced to reduce 
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arithmetic logic and increase parallelism. At the same time, Kawaguchi et al. proposed a 

hardware configuration and an overall control method for dealing with metal boundary 

conditions, and implemented a dedicated computer for FDTD by using TTL [26]. In the 

same year, L.Verducci developed a method using floating point arithmetic and VHDL 

simulation [24]-[25]. However, it is several times slower than a general PC due to lack of 

pipeline and cache memory. In 2003 Matsuoko realized a 2-D FDTD dataflow dedicated 

computer on FPGA, a fast architecture that can compute the entire field in parallel [28]. 

This architecture requires too large hardware scale and with current hardware technology, 

it is still difficult to realize the analysis domain required for practical computing. In 2004, 

Wang Chen implemented the two-dimensional FDTD method on FPGA, and equipped 

with a register suitable for the FDTD method [29]. In this approach, cache memory is 

used to speed up memory access and increase computation speed. And then, J. P. Durbano 

also introduced a similar caching method and implemented a three-dimensional FDTD 

method on FPGA [30]. In the same year, R. N. Schneider conducted research 

independently using software on a general-purpose PC together with a dedicated 

computer [31]. In this study, only simple FDTD differential calculations were performed 

on a dedicated computer, while complex processing such as PML absorbing boundary 

conditions and input wave sources were performed on a PC. In 2005, Suzuki from NTT 

introduced a method for partitioning the analysis domain into independent computations 

on a dedicated computer [32]. In 2007, J. P. Durbano carried out the FPGA development 

of a dedicated computer supporting various input wave sources [33]. In 2008, Kawaguchi 

et al. improved the dataflow architecture and developed an architecture with distributed 

memory to minimize bottlenecks due to memory access [34]-[35]. In 2009, Endo 

developed an architecture for parallel computing not only in space but also in time [39] 



 

10 

 

in 1-D FDTD methods. In addition, Sando developed a 2-D FDTD architecture [37] using 

multiple FPGAs. In the same year, Fujita realized a fully customized dedicated computer 

using FPGA and printed circuit board [36]. In 2010, Fujita used SDRAM exclusively for 

FDTD [42]-[44]. In 2011, Fujita developed a parallel computing system [45]-[46]. By 

using several dedicated computers with SDRAM, the communication bottleneck in the 

parallel computing of the FDTD method was hidden, and the introduction of Conformal 

Scheme was also studied to expand the scope of application. As mentioned above, 

previous research results showed that the calculation speed of the FDTD method can be 

faster than that of a general-purpose PC through the development of a dedicated computer, 

therefore in this study, we devote to the development of a dedicated computer for the FIT 

method based on dataflow architecture. 

2.3 The Dedicated Computer 

2.3.1 Dataflow Architecture  

Computer architecture is the properties of the computer as seen by the programmer, i.e. 

the logical structure and functional characteristics of the computer. There are many types 

of computers in use today, but their architecture is almost the same, that is the von-

Neumann architecture. The von Neumann architecture is the image of a computer 

conceived by von Neumann in the 1940s. In the von Neumann architecture, the program 

is treated as data, and the program is compiled into data, and then stored in the memory 

together with the data, so that the computer can call the program in the memory to process 

the data. This means that no matter what the program is, it will eventually be converted 

into data and stored in memory. To execute the corresponding program, it is only 



 

11 

 

necessary to sequentially fetch instructions from the memory and execute them. It should 

be known that in the early computer design, the data was stored in the memory, and the 

program was used as a part of the controller. Such a computer had low computational 

efficiency and poor flexibility. Then the von Neumann architecture eliminates the 

situation in the original computer system that can only rely on hardware to control the 

program, it stores the program code in the memory, realizes programmable computer 

functions, and realizes the separation of hardware design and program design. The 

flexibility to change a program for various purposes, and the operational clarity to fetch 

machine instructions one by one and perform simple processing. The core design ideas of 

the von Neumann architecture are as follows: 

1. The final forms of programs and data are binary codes. Programs and data are stored 

in memory in binary form, and binary codes are also the codes that computers can 

recognize and execute. 

2. Programs, data and instruction sequences are stored in the main memory in advance, 

so that the computer can accurately extract instructions from the memory and analyze and 

execute them when it is working. 

3. Determine the five basic components of the computer, the arithmetic unit, the controller, 

the memory, the input device, and the output device, as shown in the Fig.2.3.1 below. 

The main component of the arithmetic unit is the arithmetic logic unit (ALU), and the 

processing object is data. The main function is to complete arithmetic operations, logic 

operations and other operations under the action of control signals. The working process 

of the ALU is to read the data to be operated from the memory, and write the result 

processed by the arithmetic unit into the memory. The controller is the control unit, which 

is the command center of the computer. Under the control of the controller, the computer 
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automatically executes the program. The working process of the controller is to read 

instructions from the memory, perform translation and analysis, and then send control 

commands according to the instructions to control the relevant components to execute the 

operations contained in the instructions. The controller and the ALU together form the 

central processing unit (CPU). 

The main function of the memory is to store programs and various data, and it can 

automatically complete the storage of programs or data at high speed during the operation 

of the computer. Memory is divided into internal memory and external memory. The 

internal memory is used to store the program and data that to be executed. The CPU can 

directly use instructions to read and write the internal memory according to the address. 

“Read” is to read the content of a storage unit in the memory and send it to a register of 

the CPU. “Write” means that under the control of the controller, the contents of a certain 

register in the CPU are transferred to a certain storage unit. The external memory mainly 

stores programs and data that are not needed "temporarily", and it can exchange data with 

 

Fig.2.3.1 von Neumann architecture 
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the memory, which is usually hard disk, disk, etc. The mouse and keyboard are the input 

devices, and the monitor is the output device. 

Since it is based on reducing the cost of hardware, the solution to all the problems 

seems to be overly imposed on software. As the applications to deal with become more 

and more complex, the semantic gap between them and the nearly invariant machine 

instructions increases. Furthermore, there are no mechanisms incorporated into computer 

architectures to detect as many programming errors as possible, thus making it extremely 

difficult to develop large software. When we look at computers from this perspective, 

there are many problems with von Neumann architecture computers. Therefore, if we 

design a computer architecture that meets the software requirements and takes full 

advantage of the current advanced device technology, we should be able to achieve higher 

performance computers. As a new type of computer that breaks away from the traditional 

von Neumann computer framework, non-von Neumann computer is researched to meet 

this expectation. The immediate triggers for active research in this direction are the 

emergence of new machine models represented by dataflow machines [42], and the 

proposal of new programming styles represented by functional and logical types. 

The research on dataflow methods began in the 1960s. At that time, the research on 

parallel computers was actively underway, and how to extract parallelism from programs 

became a problem. In 1974, Dennis proposed a data flow model as a computing model 

that can easily describe parallel processing, and then proposed a computer architecture to 

realize the model, and generalized it as a dataflow machine. Although dataflow machines 

are based on data-driven principles, they have the potential to maximize program 

parallelism and possess the advantage of being easy to program. One of the problems with 

parallel computer research conducted in the 1960s is the complexity of programming 
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parallel computers. In contrast, a feature of dataflow machine research is that it arises 

from the research in parallel programming. Therefore, the programming and machines 

have been closely related since the beginning, which makes this research relevant. Several 

programming languages and some basic prototypes of dataflow machines were produced 

in the late 1970s. Then, as the research progressed, the problems with the initially simple 

data-driven approach became apparent. Therefore, further research refinements were 

carried out, such as incorporating request-driven approaches, introducing colored markers 

to deal with repetition and recursion, and providing storage for structured data. By the 

1980s, the prototypes of comprehensive dataflow machines were developed, including 

not only hardware simulators, but also the LSIs that processed signals using the dataflow 

method. Currently, dataflow machines are used in various fields ranging from numerical 

computation, such as the numerical solution of partial differential equations, to non-

numerical processing, such as list processing and inference processing, image processing, 

signal processing, communication exchange processing, etc. 

             

Fig.2.3.2 The dataflow graph 
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The most common way to express the principle of data flow action is a directed graph, 

which is called a dataflow graph, as shown in Fig.2.3.2 where the process of calculating 

  2   2    2   2  is illustrated. Firstly, the numbers   and   are entered from the 

above. Then, x and y are calculated to obtain z. However, subtraction can only be 

performed after both x and y are obtained. The final division can be performed after the 

results of addition and subtraction are obtained. Each operation can start when all its 

inputs are available, regardless of the order relationship with other operations, which 

allows many operations to be executed in parallel. In a data flow diagram,  ,  , x, and y 

are all the names given to the lines in the diagram, rather than the names of the variables. 

The data flowing on each line is called a token. Thus, the operation       begins 

when a token enters   and yields a token on x. The example presented in Fig.2.3.2 shows 

block structures in programming languages. As shown in Fig.2.3.3, this is represented by 

a switch node. The example used here is to set the value of x to      if    >    , 

otherwise to    . When the token reaches   and  , an operation is started to check 

     

Fig.2.3.3 The example of condition judgment 
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whether the value on the left is large or small, and the result of this judgment is sent to 

the switch node on the right. For example, in case of   >  , a token with a value of True 

is sent, but the switch node passes the incoming token from the top to the bottom left or 

bottom right according to T, F from the token on the left. The bottom represents an 

operation that merges the tokens from both directions into one, and then it runs down a 

line. The above describes how the dataflow works. 

2.3.2 3-D FDTD Dedicated Computer for Microwave Simulation 

Our laboratory has been working on the development of dataflow machine, and we 

have developed a 3-D FDTD dataflow machine for microwave simulations [19]-[23]. In 

this section, the design of 3-D FDTD dataflow machine is explained in detail [20].  

Fig.2.3.4 shows the circuit connection of 3-D FDTD dataflow machine. The digital 

circuit is configured to perform the calculation of the FDTD scheme. All the physical 

quantities of the electromagnetic fields are stored in registers, and these registers are 

directly connected through arithmetic circuits, so as to automatically execute the 

     

Fig.2.3.4 The circuit connection based on dataflow architecture 
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calculation of the FDTD scheme. In addition, a “Sliced 3-D grid circuit” is adopted to 

perform all 3-D grids circuit as shown in Fig.2.3.4. After the execution of circuit operation 

of the FDTD scheme in the middle layer of calculation grid layer located at the bottom of 

3-D grids structure, the registered data in all region are shifted down by one layer. To 

repeat this process for all the vertical layers in both electric and magnetic fields, one time 

step FDTD calculation for the entire grid space is executed by 4   clock cycles. The 

proposed 3-D FDTD dataflow machine for microwave simulations is designed by the 

VHDL and it has been confirmed that the logic simulation can be carried out correctly. 
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Chapter 3  

Fundamental Theories and Technologies 

In Chapter 2, it has been described that the high-performance computing of the 

electromagnetic field is essential for the design of dataflow machine. In this Chapter, 

briefly introduces some fundamental theories required for numerical simulations, such as 

Poisson’s equation, Finite Difference Methods (FDM), Finite Integration Technique (FIT), 

BiCG-Stab scheme and logic circuits. 

3.1 Electromagnetic Field 

Electromagnetic fields are the combination of invisible electric and magnetic forces. 

The electric field that changes over time generates a magnetic field, and the magnetic 

field that changes over time also generates an electric field. The two are interdependent 

of and transformed into each other to create an electromagnetic field. Caused by various 

natural phenomena such as the earth's magnetic field, they can also be artificially 

generated, such as mobile phones and computer screens which are the examples of 

devices that generate electromagnetic fields. Electromagnetic fields can be generated by 

the charged particles moving at varying speed, or by the currents of varying strength. No 

matter what the reason is, electromagnetic fields always propagate around at the speed of 

light to form electromagnetic waves. Electromagnetic waves are the electromagnetic 

fields that propagate in the form of waves, which allows them to penetrate substances and 

carry information. Therefore, they are widely used in various fields. 
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3.1.1 Electro-static Field 

A special form of matter exists around an electric charge called an electric field. An 

electric field is an aspect of a unified electromagnetic field that behaves as a forceful 

action on a static charge introduced into the field. The electric field caused by a charge 

that is stationary relative to the observer and whose charge does not change with time is 

called an electrostatic field. Electrostatic fields widely exist in daily life, such as 

electrostatic adsorption, charge accumulation and other phenomena are related to 

electrostatic fields. Electrostatic fields are also widely used in industry and scientific 

research, such as electron beam processing, plasma physics and other fields.  

The introduction of the electrostatic field is inseparable from the two most important 

field quantities, the electric field intensity E and the scalar electric potential ∅. Starting 

from Coulomb's law, on the basis of analyzing the electrostatic field in vacuum, the 

influence of conductors and dielectrics on the electric field is discussed separately, and a 

basic field quantity of the electrostatic field, electric field intensity E is introduced. Based 

on the application of vector analysis to clarify that the electrostatic field has irrotational 

properties, another important field quantity of the electrostatic field, the scalar electric 

potential ∅ is introduced. In addition, based on the study of the closed area integral of 

the electric field intensity vector, the electric flux density (also known as the electric 

displacement) D is introduced, and Gauss's law is derived. Together with the irrotational 

property of the electrostatic field, it constitutes the basic equation of the integral form of 

the electrostatic field. Finally, the basic equation of the differential form of the 

electrostatic field is applied to derive the Poisson’s equation that the scalar electric 

potential ∅ satisfies. In the case of electrostatic fields, Poisson's equation can be used to 

solve for the electric potential distribution and electric field intensity to better understand 
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and describe the nature and behavior of electrostatic fields.  

3.1.1.1 Coulomb’s Law  

Coulomb's law is to describe the interaction between charges, and it is one of the basic 

laws describing the electrostatic field. A French scholar named Coulomb concluded after 

doing a series of delicate electrostatic experiments: In an infinite vacuum, when the 

distance between two static small charged bodies is much larger than their own geometric 

size. We can consider the simple case described by figure 3.1.1. Let F denote the force 

acting on an electrically charged particle with charge 𝑞2 located at x, due to the presence 

of a charge q located at 𝐱𝟏. According to Coulomb’s law this force is, in vacuum, given 

by the expression:  

𝐅 =
𝑞1𝑞2

4𝜋𝜀0
∙

𝐱  𝐱𝟏

|𝐱  𝐱𝟏|3
  3.1.1  

where,  𝜀0 = 8.854  10−12(F/m), is the dielectric constant in vacuum. 

Coulomb's law gives the magnitude and direction of the force between two charges, 

and the force between charges is transmitted at a finite speed through a special substance 

in the surrounding space, that is the electric field. Any charge creates an electric field in 

the space around it. An important characteristic of the electric field is that it exerts a force 

on any other charge in it, so the physical quantity, electric field intensity E is introduced 

 

Fig. 3.1.1 Coulomb’s law for a distribution of individual charges 𝑞1. 

 

o

x
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to describe this important characteristic of the electric field. The static vector electric field 

E can be defined by limiting process: 

𝐄 =  im
𝑞0→0

𝐅

𝑞0
  3.1.2  

where, F is the electrostatic force, as defined in equation (3.1.1), 𝑞0 is test 

particle with positive. The electric field E is a vector function that varies with the position 

of a point in space, and is only related to the electric field at the point, but has nothing to 

do with the charge amount of the test charge. 

  According to the definition of electric field intensity and Coulomb's law, if the 

coordinate of point charge 𝑞1 is 𝐱1, the electric field intensity E(x) caused by it at x is: 

𝐄 𝐱 =
𝑞1

4𝜋𝜀0
∙

𝐱  𝐱𝟏

|𝐱  𝐱𝟏|3
  3.1.3  

3.1.1.2 Conservative Field and Electro-static Potential 

If there is a unit positive test charge q moves from point A to point B along a certain 

path l in the electrostatic field, as shown in the figure, the work done by the electric field 

force: 

  

Fig. 3.1.2 Charge q moves from              Fig. 3.1.3 Charge q moves  

point A to point B along path l                    along a closed path 

 

 

B

A
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𝑊 = ∫ 𝐄 ∙ 𝑑𝒍
𝐵

𝐴

  3.1.4  

If the test charge q moves from point A to point B and back to point A along the closed 

path l in the electrostatic field, the work done by the electric field force: 

𝑊 = ∫ 𝐄 ∙ 𝑑𝒍
𝐵

𝐴

=
𝑞0

4𝜋𝜀0
∫

1

𝑟2

𝑟𝐴

𝑟𝐴

𝑑𝑟 =
𝑞0

4𝜋𝜀0
(
1

𝑟2
 

1

𝑟2
) = 0  3.1.5  

That is, in an electrostatic field, moving charges along a closed path, the work done by 

the electric field force is zero. usually written as follows: 

∮𝐄 ∙ 𝑑𝒍 = 0  3.1.6  

this is an important property of the electrostatic field, known as the loop law. Applying 

Stokes' theorem to Equation (3.1.5), then 

∮𝐄 ∙ 𝑑𝒍 = ∮∇  𝐄 ∙ 𝑑𝐒 = 0  3.1.7  

and the differential form of the above equation can be written as: 

∇  𝐄 = 𝟎  3.1.8  

The above formula shows that the curl of the electric field E of the electrostatic field 

is 0 everywhere. According to the vector analysis, the electric field E of the electrostatic 

field can be expressed by the gradient of a scalar function ∅ as follows: 

𝐄 =  ∇∅  3.1.9  

this scalar function ∅ is called the scalar potential of the electrostatic field. It is another 

physical quantity that characterizes the characteristics of the electrostatic field. 

3.1.1.3 Gauss’s Law  

Gauss's law is a fundamental law describing the electric field. On any closed surface S 

in an infinite vacuum electrostatic field, the area integral of the electric field intensity E 

is equal to 
1

𝜀0
  times the total charge 𝑞 = ∫𝜌𝑑𝑉  inside the surface (V is the volume 
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limited by S), regardless of the charge outside the surface. It can be represented by the 

following formula: 

∮𝐄 ∙ 𝑑𝐒 =
𝑞

𝜀0
=

1

𝜀0
∫𝜌𝑑𝑉  3.1.10  

the above formula is call Gauss’s law for electrostatic field in vacuum.  

  When there is a dielectric, the electric field can be regarded as being caused by the 

free charge and the polarized charge in the vacuum, and the Gauss’s law of the 

electrostatic field in the vacuum still available, but the total charge includes not only the 

free charge q, but also the polarized charge 𝑞𝑝,  

∮𝐄 ∙ 𝑑𝐒 =
∫𝜌𝑑𝑉  𝑞𝑝

𝜀0
=

𝑞  𝑞𝑝

𝜀0
  3.1.11  

in the above formula, q and 𝑞𝑝 are the total free charges and total polarized charges in 

the closed surface S, respectively. And the polarize the charge 

𝑞𝑝 = ∫𝜌𝑝𝑑𝑉 = ∫ ∇ ∙ 𝑷𝑑𝑉 = ∮𝑷 ∙ 𝑑𝐒  3.1.12  

substituting into the Equation (3.1.11), we can obtain the follows: 

∮𝐄 ∙ 𝑑𝐒 =
1

𝜀0
∫𝜌𝑑𝑉  

1

𝜀0
∮𝑷 ∙ 𝑑𝐒  3.1.13  

and then, 

∮𝐄 ∙ 𝑑𝐒 =
1

𝜀0
∫𝜌𝑑𝑉  

1

𝜀0
∮𝑷 ∙ 𝑑𝐒  3.1.14  

To simplify the above formula, introduce a new physical quantity, electric flux density 

D, so as to obtain the general form of Gauss's law, as follows: 

∮𝐃 ∙ 𝑑𝐒 = ∫𝜌𝑑𝑉  3.1.15  

it points out that whether in a vacuum or in a dielectric, the area integral of the electric 

flux density D on any closed surface S is equal to the total free charges in the surface, 

regardless of all polarized charges and free charges outside the surface. 



 

24 

 

Applying the Gaussian divergence theorem to the above formula: 

∇ ∙ 𝐃 = 𝜌  3.1.16  

this is the differential form of Gauss' law. Gauss's law is very important in electrostatics 

and can be used to solve many electric field problems of charge distribution, such as 

spherical and planar symmetric charge distribution, etc. 

3.1.1.4 Poisson’s Equation  

 In the previous two sections, we have obtained the following two sets of basic 

equations: 

and 

there is a constituent equation: 

𝐃 = 𝜀0𝐄  3.1.21  

(3.1.17) and (3.1.18) are expressed in integral form, which is called the fundamental 

equation of electrostatic field in integral form. (3.1.19) and (3.1.20) are called the 

fundamental equations of the electrostatic field in differential form. 

 The integral form of Gauss's law  3.1.17  shows that the closed area integral of the 

electric flux density D is equal to the total free charges enclosed in the surface, which 

characterizes a basic property of the electrostatic field. The loop characteristic of the 

electrostatic field (3.1.18) shows that the integral of the loop line of the electric field 

intensity E is always equal to zero, that is, the electrostatic field is a conserved field. 

∮𝐃 ∙ 𝑑𝐒 = ∫𝜌𝑑𝑉  3.1.17  

∮𝐄 ∙ 𝑑𝒍 = 0  3.1.18  

∇ ∙ 𝐃 = 𝜌  3.1.19  

∇  𝐄 = 𝟎  3.1.20  
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Although (3.1.18) is derived from the electric field in vacuum, it still available when there 

is a dielectric. This is because when there is a medium, the additional effect can be 

considered with the polarized charge. As far as the electric field is generated, the polarized 

charge, same as the free charge, obeys Coulomb's inverse square law, and the resulting 

electrostatic field belongs to the conservation field. The differential form of Gauss's law 

(3.1.19) indicates that the electrostatic field has a discrete field. Equation (3.1.20) is the 

differential form of the loop characteristic of the electrostatic field, which shows that the 

electrostatic field is an irrotational field. From a physical concept, the integral form 

describes the overall situation of each loop and each closed surface field quantity. The 

differential form describes the field quantity of each point and its neighborhood, and also 

reflects the change of the field quantity from one point to another, so that a further 

understanding of the field distribution can be obtained. 

 In the Gauss’s law ∇  𝐃 = 𝜌, substitute 𝐃 = 𝜀𝐄 and 𝐄 =  ∇∅, then we can obtain: 

∇ ∙ 𝜀  ∇∅ = 𝜌  3.1.22  

for a homogeneous dielectric, 𝜀 is a constant, then we can obtain: 

∇2∅ =  𝜌  𝜀0  3.1.23  

this is Poisson’s equation for electric potential ∅ . In the region of free charge body 

density ρ = 0, the above formula can be written as: 

∇2∅ = 0  3.1.24  

this is Laplace’s equation for electric potential ∅. 

 Poisson's equation and Laplace's equation express the general relationship between the 

spatial variation of potential at each point in the field and the free charge density at that 

point, which is the differential equation that the potential function should satisfy. The 

solution of all electrostatic field problems can be attributed to the process of seeking the 
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solution of Poisson's equation or Laplace's equation under certain conditions. And then, 

the conversion relationship between the main theorems of electrostatic field is shown in 

the Fig.3.1.4. 

3.1.2 Magneto-static Field 

In the previous section we explained the electrostatic field, and in this section we 

explain the magneto-static field. Around the current, there is not only an electric field but 

also a magnetic field. The magnetic field is another aspect of the unified electromagnetic 

field, which manifests itself as a forceful action on the moving charges, which is 

introduced into the field, that is, the charged conductor is subjected to the force of the 

magnetic field in the field. Relative to the observer, the current generated by the electric 

charge that moves in a straight line or has a constant speed is called a constant current, 

and the magnetic field caused by the constant current is a magneto-static field. That is, a 

stationary charge causes an electrostatic field, and a constant current causes a magneto-

  

Fig. 3.1.4 The conversion of main theorems of electrostatic field 
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static field. The magneto-static field is a fundamental concept in many physics and 

engineering disciplines, including electrodynamics, magnetic resonance imaging, 

electromagnetic induction, etc. 

First, the most important field vector in the magneto-static field, the magnetic induction 

B, is introduced. On the basis of analyzing the magnetic field in vacuum, the performance 

of the magnetically permeable medium in the magneto-static field is discussed, and the 

additional effect of the magnetizing current after magnetization is considered, and then 

the magnetization vector M is introduced. On the basis of studying the loop integral of 

magnetic induction in vacuum and magnetically permeable medium, the magnetic field 

intensity vector H is introduced, and Ampere's loop law (∮𝐇 ∙ 𝑑𝒍 = 𝐼) is derived, together 

with the principle of continuity of magnetic flux (∮𝐁 ∙ 𝑑𝐒 = 0), it constitutes the basic 

equation (integral form) of the magneto-static field. According to the basic equation in 

integral form, we can obtain the basic equation in differential form ( ∇ ∙ 𝐁 =

0,  nd ∇  𝐇 = 𝑱), and introduce the magnetic vector potential A according to the basic 

equation in differential form, then derive Poisson's equation (∇2𝐀 =  𝜇𝑱). 

3.1.2.1 Biot-Savart Law 

There are two loops composed of thin wires in vacuum, 𝑙  and 𝑙′ . And then the 

constant currents I and 𝐼′are passed through these two thin wires respectively. In the two 

circuits, select the element current 𝐼′𝑑𝒍′ and 𝐼𝑑𝒍, the direction of current 𝑑𝒍′and 𝑑𝒍, 

corresponds to the direction of flow of 𝐼′ and 𝐼 respectively, as shown in the Fig.3.1.5.  

𝒓′  and r are the position vectors of the element current, and R= r-𝒓′  is their relative 

position vector. The force of the current loop 𝑙′ on the current loop 𝑙 is measured by 

experiments. 
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𝐅 =
𝜇0

4𝜋
∮ ∮

𝐼𝑑𝒍   𝐼′𝑑𝒍′  𝒆𝑅 

𝑅2
𝑙′𝑙

  3.1.25  

the above formula is Ampere's law in vacuum, which gives the force between two current 

loops. where 𝜇0 is the magnetic permeability in vacuum, and 𝜇0 = 4𝜋  10−7H 𝑚. 

The equation (3.1.25) can be rewritten as: 

𝐅 = ∮ 𝐼𝑑𝒍  (
𝜇0

4𝜋
∮

𝐼′𝑑𝒍′  𝒆𝑅

𝑅2
𝑙′

)
𝑙

  3.1.26  

from the point of view of the field, the amount in the parentheses of the above equation 

(3.1.26) represents the effect of the current 𝑙′at 𝐼𝑑𝒍, expressed by B: 

𝐁 =
𝜇0

4𝜋
∮

𝐼′𝑑𝒍′  𝒆𝑅

𝑅2
𝑙′

  3.1.27  

the above formula is called the Biot-Savart Law. B is called the magnetic induction 

intensity, which is the basic field quantity that characterizes the characteristics of the 

magnetic field, and its unit is T (Tesla). In addition, the direction of the magnetic field is 

always perpendicular to the line of element and position vector in a plane. It is given by 

the right-hand thumb rule where the thumb points is to the direction of conventional 

current and the other fingers show the direction of magnetic field, as shown in Fig.3.1.6. 

In addition to 𝐼𝑑𝒍, there are also JdV and KdS in the element current section.  

  

Fig. 3.1.5 The two currents loop 
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Correspondingly, the Biot-Savart Law can also be written as: 

𝐁  ,  ,   =
𝜇0

4𝜋
∮

𝑱  ′,  ′,  ′  𝒆𝑅

𝑅2
𝑉′

𝑑𝑉′  3.1.28  

and 

𝐁  ,  ,   =
𝜇0

4𝜋
∮

𝑲  ′,  ′,  ′  𝒆𝑅

𝑅2
𝑆′

𝑑𝑆′  3.1.29  

If there is a line current loop with current intensity I in the magnetic field, then the 

force of the magnetic field on the current loop can be written as: 

𝐅 = ∮ 𝐼𝑑𝒍  𝐁
𝑙

  3.1.30  

this is the general form of Ampere's law. If there is a charge q moving at a speed v in a 

magnetic field, then the force of the magnetic field on it is the force of the magnetic field 

acting on the moving charge, also known as the Lorentz force: 

𝐅 = 𝑞𝒗  𝐁  3.1.31  

It can be seen from the above formula that the static charge will not be subjected to the 

force of the magnetic field in the magnetic field, and the force on the moving charge is 

  

Fig. 3.1.6 The direction of the magnetic filed 
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always perpendicular to the speed of motion. It can only change the direction of the speed, 

but cannot change the magnitude of the speed. Therefore, there is a different with the 

Coulomb force, the Lorentz force does not work. 

Same as the E line in the electrostatic field, the B line can also be used in the magneto-

static field. The differential Equation for B: 

𝐁  𝑑𝒍 = 𝟎  3.1.32  

3.1.2.2 Ampere’s Law 

If the magnetic field is caused by an infinitely long straight wire carrying current I in 

the vacuum, and according to the previous section we explained, the magnetic induction 

intensity B = 𝜇0𝐼 2𝜋𝜌 at a distance from the wire 𝜌 is known. Take a closed loop l as 

the integration path in any plane perpendicular to the wire, as shown in Fig.3.1.7. The 

element length dl on the integral path, the distance to the wire is 𝜌, the angle to the axis 

is d∅, and the angle with B is α, then 𝜌d∅ = d𝒍co α. And then we can obtain: 

∮ 𝐁 ∙ 𝑑𝒍 = ∮
𝜇0𝐼

2𝜋𝜌
 ∅ ∙ 𝑑𝒍 = ∮

𝜇0𝐼

2𝜋𝜌
𝜌d∅ =

𝜇0𝐼

2𝜋
∫ d∅

2𝜋

0

= 𝜇0𝐼
𝑙𝑙𝑙

  3.1.33  

If the integral circuit is not interlinked with the current, as shown in Fig.3.1.8, then 

because of ∫ d∅
0

0
= 0, thus ∮ 𝐁 ∙ 𝑑𝒍

𝑙
= 0. 

If there is more than one current interlinked by the integration path, as shown in 

Fig.3.1.9, obviously there should be 

∮ 𝐁 ∙ 𝑑𝒍 = 𝜇0 𝐼1  𝐼2  𝐼3 
𝑙

  3.1.34  

To sum up, in the magnetic field of vacuum, any loop takes the line integral of B, and 

its value is equal to the algebraic sum of the magnetic permeability of the vacuum 

multiplied by the current passing through the surface limited by the loop. That is, 
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∮ 𝐁 ∙ 𝑑𝒍 = 𝜇0 ∑𝐼𝑘

𝑛

𝑘=1𝑙

  3.1.35  

The above formula is Ampere's loop law in vacuum. The positive or negative of the 

current 𝐼𝑘 in the formula depends on whether the direction of the current and the winding 

direction of the integral circuit conform to the right-handed spiral relationship, and it is 

positive when they match, otherwise it is negative 

For a symmetrical magnetic field distribution, the calculation of B can be made very 

simple by applying Ampere's loop law. At this time, the integration path should be 

properly selected so that the B and dl directions of each point on the integration path have 

the same angle, and the value of B is equal. 

  

Fig. 3.1.7 Integration path   Fig. 3.1.8 Integration path without current interlinked 

 

 

  

Fig. 3.1.9 Integration path with current interlinked 
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If in a magnetic field with a magnetically permeable medium, and Take a closed path l 

arbitrarily, then the line integral of the magnetic induction along this loop should be: 

∮ 𝐁 ∙ 𝑑𝒍 = 𝜇0 𝐼  𝐼𝑚 
𝑙

  3.1.36  

I in the above formula represents the free current, and 𝐼𝑚 is the magnetizing current. The 

above formula can be rewritten as: 

∮ 𝐁 ∙ 𝑑𝒍 = 𝜇0 𝐼  ∮ 𝐌 ∙ 𝑑𝒍
𝑙

 
𝑙

  3.1.37  

and then, 

∮  
𝐁

𝜇0
 𝐌 ∙ 𝑑𝒍 = 𝐼

𝑙

  3.1.38  

and set, 

𝐁

𝜇0
 𝐌 = 𝐇  3.1.39  

where, H is the magnetic field intensity, and the Equation (3.1.38) can be rewritten as: 

∮ 𝐇 ∙ 𝑑𝒍 = 𝐼
𝑙

  3.1.40  

It should be noted that the I on the right side of the equal sign in the above formula is 

the free current passing through the area enclosed by the loop l, not including the 

magnetizing current. 

If more than one free current passes through the area defined by the loop l, then 

∮ 𝐇 ∙ 𝑑𝒍 = ∑𝐼𝑘
𝑙

  3.1.41  

The Equation (3.1.38) and (3.1.41) is the general form of Ampere's Loop Law。 

It shows that in the magnetic field, the line integral of the magnetic field intensity H 

along any closed path is equal to the algebraic sum of the free currents (excluding the 

magnetizing current) passing through the area enclosed by the loop. If the direction of the 

current and the winding direction of the integral circuit conform to the right-hand spiral 
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relationship, the current in the Equation (3.1.38) and (3.1.41) is positive. The Equation 

(3.1.41) shows that the loop line integral of H is only related to the free current, and has 

nothing to do with the magnetizing current, that is, it has nothing to do with the 

distribution of the magnetic medium. However, it cannot be understood that the 

distribution of H has nothing to do with the distribution of the magnetic medium. 

For an isotropic linear medium, there is a proportional relationship between the 

magnetization and the magnetic field strength, that is 

M= 𝑚𝐇  3.1.42  

In the above formula,  𝑚 is called the magnetic susceptibility of the medium, which 

is a dimensionless pure number 

According to the Equation (3.1.39) and (3.1.42), we can obtain 

B=𝜇0 𝐇  𝐌 = 𝜇0 1   𝑚 𝐇 = 𝜇0𝜇𝑟𝐇  3.1.43  

or 

B=𝜇𝐇  3.1.44  

𝜇 in the Equation (3.1.44) is the medium permeability, and 𝜇𝑟 =
𝜇

𝜇0
 is called the relative 

permeability, which is a pure number. 

It is worth noting that the relationship shown in Equation (3.1.44) is only applicable to 

isotropic linear magnetically permeable media, while Equation (3.1.39) has no such 

limitation. 

If the current surrounding the magnetic field is infinitely filled with uniform and 

isotropic magnetically permeable medium, the direction of the magnetic induction 

intensity B at each point in the magnetic field will be consistent with that produced when 

the same current is placed at the same position in an infinite vacuum, and the value of B 

at each point is increased by the same multiple, that is, increased by 𝜇𝑟 times. Therefore, 
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for the calculation of the magnetic induction intensity in this special case, it is sufficient 

to replace 𝜇0 with the permeability 𝜇 of the magnetically permeable medium. 

3.1.2.3 Gauss’s Law and Magnetic Vector Potential  

A vector field is usually studied in two ways, namely by computing its flux through 

any closed surface and its line integral along any closed curve. In this section, we will 

obtain its basic equations by analyzing the flux and loop line integrals of a magneto-static 

field. 

In the magnetic field, the flux of B passing through any surface S is called magnetic 

flux ∅𝑚, as shown Fig3.1.10, therefore, 

∅𝑚 = ∮ 𝐁 ∙ 𝑑𝐒
𝑆

  3.1.45  

where the unit of magnetic flux is Wb. 

Experiments show that the line of magnetic induction is closed, with neither beginning 

nor end. This shows that there is no magnetic charge in nature for the E-line to emit or 

terminate like electric charges, so there is no source for the B-line to emit or terminate. 

  

Fig. 3.1.10 The magnetic flux 
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Thus, for any closed surface, there is, 

∮ 𝐁 ∙ 𝑑𝐒
𝑆

= 0  3.1.46  

The properties of the magnetic field represented by the above Equation (3.1.46) is also 

called the principle of magnetic flux continuity (integral form). 

By using the Gauss’s divergence theorem, we can obtain as follows: 

∮ 𝐁 ∙ 𝑑𝐒
𝑆

= ∮ ∇ ∙ 𝐁𝑑𝑉
𝑉

= 0  3.1.47  

and then, 

∇ ∙ 𝐁 = 𝟎  3.1.48  

This is the differential form of the flux continuity principle, which states that a 

magneto-static field is a divergence-free field. If the divergence of this field is equal to 

zero, it is probably a constant magnetic field. 

The principle of magnetic flux continuity and Ampere's Loop Law characterize the 

basic properties of the magneto-satic field. Regardless of the distribution of the magnetic 

medium, all magneto-static fields have these two characteristics. Relist their expressions 

here as follows: 

and call them as the fundamental equations of the magneto-static field (in integral form). 

Applying Stokes' theorem to the above Equation (3.1.50), and using the area integral 

of J to express the free current, we can obtain: 

∮𝐇 ∙ 𝑑𝒍 = ∮  ∇  𝐇 ∙ 𝑑𝐒
𝑆

= ∮ 𝑱 ∙ 𝑑𝐒
𝑆

  3.1.51  

the above Equation (3.1.51) is available for any area with l as the peripheral boundary, 

∮ 𝐁 ∙ 𝑑𝐒
𝑆

= 0  3.1.49  

∮𝐇 ∙ 𝑑𝒍 = 𝐼  3.1.50  
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and then, 

∇  𝑯 = 𝑱  3.1.52  

this is the differential form of Ampere's Loop Law, and it can be seen that the magnetic 

field has a curl field. 

Equations (3.1.48) and (3.1.52) together are called the differential form of the 

fundamental equation of the magneto-static field. It can be seen that the magneto-static 

field is a passive field with curl. 

For the two field quantities B and H, we can obtain: 

B = 𝜇0𝐇  𝜇0𝐌  3.1.53  

For an isotropic linear medium, then 

B = 𝜇𝐇  3.1.54  

In the electrostatic field, due to ∇  𝐄 = 0, the potential function was introduced to 

characterize the characteristics of the electrostatic field, thus simplifying the analysis and 

calculation of the electric field. Is it possible to obtain a potential function for a magneto-

static field. 

Due to non-curl, the electrostatic field can be described by introducing a potential 

function. However, due to the non-dispersive nature of the magnetic field, a vector 

function A can be introduced to make as follows: 

B = ∇  𝐀  3.1.55  

Obviously, the above Equation (3.1.55) always satisfies ∇ ∙ 𝐁 = ∇ ∙  ∇  𝐀 ≡ 0. This 

vector function A is called the magnetic vector potential of the magneto-static field, also 

known as the vector magnetic potential. Its unit is Wb. 

3.1.2.4 Vector Poisson’s Equation   
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By the differential form of Ampere's Loop Law as follows: 

∇  𝐇 = 𝑱  3.1.56  

at the same time, considering the B in the isotropic linear magnetic medium, so there is, 

∇  𝐁 = 𝜇𝑱  3.1.57  

substituting Equation (3.1.55) into the above Equation (3.1.57), we can obtain, 

∇  ∇  𝐀 = 𝜇𝑱  3.1.58  

applying vector identities 

∇  ∇  𝐀 = ∇ ∇ ∙ 𝐀  ∇2𝐀  3.1.59  

and then, 

∇ ∇ ∙ 𝐀  ∇2𝐀 = 𝜇𝑱  3.1.60  

In a vector field, to determine a vector, its divergence and curl must be known at the 

same time. The divergence of A must therefore now be specified. For simplicity, we make 

as follows: 

∇ ∙ 𝐀 = 0  3.1.61  

The above Equation (3.1.61) is called the Coulomb gauge condition. In this way, 

Equation (3.1.60) can be written as: 

∇2𝐀 =  𝜇𝑱  3.1.62  

It shows that the magnetic vector potential A satisfies Poisson's equation in vector form. 

The Equation (3.1.62) is equivalent to the Poisson’s Equation in three scalar forms as 

follows, 

∇2𝐴𝑥 =  𝜇𝐽𝑥  3.1.63  

∇2𝐴𝑦 =  𝜇𝐽𝑦  3.1.64  

∇2𝐴𝑧 =  𝜇𝐽𝑧  3.1.65  

The form of these three equations is exactly the same as Poisson's equation of 
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electrostatic field potential. Referring to the solution form of Poisson's equation in the 

electrostatic field, when the current is distributed in a limited space and the value of the 

magnetic vector potential at infinity is specified to be zero, the solutions of each of the 

equations in above 3 equations are 

𝐴𝑥 =
𝜇

4π
∮

𝐽𝑥𝑑𝑉
′

𝑅𝑉′

  3.1.66  

𝐴𝑦 =
𝜇

4π
∮

𝐽𝑦𝑑𝑉
′

𝑅𝑉′

  3.1.67  

𝐴𝑧 =
𝜇

4π
∮

𝐽𝑧𝑑𝑉
′

𝑅𝑉′

  3.1.68  

Combining the above three equations, we can obtain 

𝐀 =
𝜇

4π
∮

𝑱𝑑𝑉′

𝑅𝑉′

  3.1.69  

It was pointed out earlier that the elementary current section also has the form of Idl 

and KdS, so the magnetic vector potential caused by the entire current of these two current 

distributions should be 

  

Fig. 3.1.11 The conversion of main theorems of magneto-static field 
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𝐀 =
𝜇

4π
∮

𝐼𝑑𝑙′

𝑅𝑙′
  3.1.70  

𝐀 =
𝜇

4π
∮

𝑲𝑑𝑆′

𝑅𝑆′

  3.1.71  

From Equation (3.1.66), (3.1.67) and (3.1.68), it can be seen that the magnetic vector 

potential generated by each element current has the same direction as the element current. 

At the end of section, the conversion relationship between the main theorems of 

magneto-static field is shown in the Fig.3.1.11. 

3.1.3 Eddy Current Field 

There are bulky conductors in many electrical equipment (such as the core of 

generators and transformers, etc.). But when these bulk conductors are in a changing 

magnetic field, currents are induced inside them. The characteristic of these currents is 

that they form a closed loop inside the bulk conductor and flow in a vortex shape, so they 

are called eddy currents. For example, when the solenoid coil in the cylindrical conductor 

core has an alternating current, the induced current or eddy current appears in the 

cylindrical conductor core, as shown in the Fig.3.1.12. 

Eddy current is the current circulating in the conductor, just like the vortex flow in the 

  

Fig. 3.1.12 The eddy current 
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water flow. They are caused by magnetic field changes and flows in closed loops 

perpendicular to the plane of the magnetic field. They can be created when a conductor 

passes through a magnetic field, or when the magnetic field around a stationary conductor 

changes, i.e. anything that causes a conductor to change in the intensity or direction of 

the magnetic field can create eddy currents. The size of the eddy current is directly 

proportional to the size of the magnetic field, the area of the coil and the rate of change 

of the magnetic flux, and inversely proportional to the resistivity of the conductor. 

Like any current flowing through a conductor, an eddy current generates its own 

magnetic field. Lenz's law states that the direction of a magnetically induced current, like 

an eddy current, causes the resulting magnetic field to change in opposition to the field 

that generated it. This resistance created by opposing magnetic fields is exploited in eddy 

current braking, which is commonly used as a method of stopping spinning power tools 

and roller coasters. 

When the eddy current flows in the conductor, it will generate loss and cause the 

conductor to heat up, so it has a thermal effect. Likewise, eddy currents, like other electric 

currents, generate magnetic fields. This magnetic field is a change that weakens the 

external magnetic field, that is, the eddy current has a demagnetization effect. These two 

effects of eddy currents are both beneficial and detrimental. In industry, the thermal effect 

of eddy current is used to heat and smelt metals, and the demagnetization effect of eddy 

current is used to make electromagnetic brakes. However, in some cases, it is necessary 

to try to reduce the eddy current, so the study of the eddy current problem has practical 

significance. 

Various electromagnetic phenomena can be described by Maxwell's equations under 

certain conditions, 
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∇  𝐇 = 𝑱  3.1.72  

∇  𝐄 =  
𝜕𝐁

𝜕 
  3.1.73  

∇ ∙ 𝐃 = 𝜌  3.1.74  

∇ ∙ 𝐁 = 0  3.1.75  

If the curl is taken on both sides of Equation (3.1.72), and the left side is expanded 

using Equation ∇  ∇  𝐅 = ∇ ∇ ∙ 𝐅  ∇2𝐅, we can obtain, 

∇  ∇  𝐇 = ∇ ∇ ∙ 𝐇  ∇2𝐇 = ∇  𝑱  3.1.76  

then use 𝑱 = σ𝐄, 𝐁 = 𝜇𝐇 and Equation (3.1.73) to eliminate 𝑱, we can obtain, 

∇2𝐇 = 𝜇σ
𝜕𝐇

𝜕 
  3.1.77  

and in the same way, 

∇2𝐄 = 𝜇σ
𝜕𝐄

𝜕 
  3.1.78  

This is the differential equation satisfied by the electric field E and the magnetic field 

H at any point in the conductor. 

Multiplying both sides of Equation (3.1.78) by the conductivity σ, and taking 𝑱 = σ𝐄 

into account, gives 

∇2𝑱 = 𝜇σ
𝜕𝑱

𝜕 
  3.1.79  

this is the differential equation that the current density 𝑱 satisfies. 

The electric field intensity E, magnetic field intensity H and current density 𝑱 in the 

eddy current problem will obey the Equation (3.1.77), (3.1.78) and (3.1.79). These 

equations are usually called eddy current equations, and they are the basis for studying 

eddy current problems 

3.1.4 Electromagnetic Wave 
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Starting from the basic equations of the electromagnetic field, this section derives the 

wave equation satisfied by the electric field E and magnetic field H of electromagnetic 

waves, and then discusses the solution of the wave equation under the condition of 

unbounded homogeneous media, that is uniform plane electromagnetic waves. 

The basic equations of the electromagnetic field show that there is a coupling between 

the changing electric field and the changing magnetic field, and this coupling exists in 

space in the form of wave, that is, there is electromagnetic wave propagation in space. 

The propagation of changing electromagnetic field in space is called electromagnetic 

wave, which is radiated by the field source. A charged particle will form an electric field, 

which covers the entire universe. Once the position of this particle (that is, the field) 

changes, the electric field intensity at any point in space will change, and the information 

of this change will be transmitted at the speed of light. There are so many particles in the 

space, what they produce will superposition each other, and the field change information 

they produce will interfere with each other, some will strengthen and some will cancel, 

then a path with the smallest phase difference will be left in the end, this path has the 

characteristics of a wave, we call this wave an electromagnetic wave. Electromagnetic 

  

Fig. 3.1.13 Electromagnetic wave classification 
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waves do not need to rely on media to propagate, and their propagation speed in vacuum 

is the speed of light. Electromagnetic waves can be classified by frequency, from low 

frequency to high frequency, mainly including radio waves, megahertz radiation, 

microwaves, infrared rays, visible light, ultraviolet rays, x-rays and γ-rays as shown in 

the Fig.3.1.13. 

In the passive space, both conduction current and free charge are zero, that is, J = 0, 

𝜌 = 0. And then if the medium in the passive space is isotropic, linear and uniform, 𝐃 =

𝜀𝐄, 𝐁 = 𝜇𝐇, 𝑱 = 𝜎𝐄, according to the basic equations of the electromagnetic field, we 

can obtain, 

∇  𝐇 = 𝛾𝐄  𝜀
𝜕𝐄

𝜕 
  3.1.80  

∇  𝐄 =  𝜇
𝜕𝐇

𝜕 
  3.1.81  

∇ ∙ 𝐇 = 0  3.1.82  

∇ ∙ 𝐄 = 0  3.1.83  

taking the curl of Equation (3.1.80) and using Equation (3.1.81), we can obtain, 

∇  ∇  𝐇 =  𝜎𝜇
𝜕𝐇

𝜕 
 𝜇𝜀

𝜕2𝐇

𝜕 2
  3.1.84  

and then using the vector equation ∇  ∇  𝐇 = ∇ ∇ ∙ 𝐇  ∇2𝐇  and considering 

Equation (3.1.82), the above equation becomes, 

∇2𝐇  𝜎𝜇
𝜕𝐇

𝜕 
 𝜇𝜀

𝜕2𝐇

𝜕 2
= 0  3.1.85  

and then, 

∇2𝐄  𝜎𝜇
𝜕𝐄

𝜕 
 𝜇𝜀

𝜕2𝐄

𝜕 2
= 0  3.1.86  

Equation (3.1.85) and (3.1.86) are the equations satisfied by E and H in the passive 

space, called the electromagnetic wave equation. They are the basis for the study of 



 

44 

 

electromagnetic wave problems. 

3.1.5 Maxwell’s Equations  

Maxwell’s equations are a set of 4 partial differential equations that describe the world 

of electromagnetics. These equations describe how electric fields and magnetic fields are 

generated by charges and electric currents, and how they will propagate, interact with 

each other, and be influenced by other objects. The following 4 equations are the classical 

forms of Maxwell's Equations. 

Gauss’s law of electric fields can be expressed as:  

∇ ∙ 𝐃 = 𝜌  3.1.87  

Gauss’s law of magnetism can be expressed as:  

∇ ∙ 𝐁 = 0  3.1.88  

Ampère's circuital law can be expressed as:  

∇  𝐇 = 𝐉  
𝜕𝐃

𝜕 
  3.1.89  

Faraday's law of induction can be expressed as:  

∇  𝐄 =  
𝜕𝐁

𝜕 
  3.1.90  

Two supplementary expressions of Maxwell's equation, the electric flux 

and the magnetic flux, which are concerned with the areal density of the 

dielectric constant or and permeability, can be expressed as the following: 

and, the current density and the electric field are connected to the conductivity 

σ of the conductor by Ohm's law, which is expressed as the following 

equation: 

𝐃 = 𝜀𝐄  3.1.91  

𝐁 = 𝜇𝐇  3.1.92  
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As the foundation of classical electromagnetism, classical optics, and 

electric circuits, most of the electromagnetic properties that are required for 

microwave engineering can be deduced from Maxwell's equations. 

3.2 Numerical Simulation Scheme for EM Field 

3.2.1 Overview of Numerical Scheme for Partial Differential Equations 

The application of electromagnetic field theory has spread to almost all fields of 

technical science, such as, life science and medicine, material science, information 

science and earth science. The research content of computational electromagnetism 

involves a wide range of fields. It penetrates into various fields of electromagnetism, and 

is interrelated and interdependent with electromagnetic field engineering and 

electromagnetic field theory. For electromagnetic field engineering, computational 

electromagnetics is to solve the problems of modeling, simulation and optimal design of 

more and more complex electromagnetic field problems in actual electromagnetic field 

engineering. And electromagnetic field engineering also provides experimental results for 

it to verify the correctness of its calculation results. For electromagnetic field theory, 

computational electromagnetics research can provide methods and calculation results for 

complex numerical and analytical operations. The research of electromagnetic field 

theory also provides electromagnetic laws and mathematical equations for computational 

electromagnetics research, and then verifies its calculation results. 

The methods for solving electromagnetic field problems can be summarized into two 

categories, each of which contains several methods, the first category is analytical method, 

𝐉 = 𝜎𝐄  3.1.93  
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the second category is numerical method. 

Analytical methods include setting up and solving partial differential equations (PDE) 

or integrals equation. The classic method for solving partial differential equations is the 

method of separation of variables. The method of solving integral equations is mainly 

transformation mathematics. The advantage of the analytical method is as follows, 

(1) The solution can be expressed as the explicit of a known function, so that precise 

numerical results can be calculated. 

(2) It can be used as a test standard for approximate solutions and numerical solutions. 

(3) In the analysis process and in the explicit solution, the internal connection of the 

problem and the effect of each parameter on the numerical result can be observed. 

Traditionally, most electromagnetic field problems are solved based on analytical 

models. Starting from Maxwell's equations and adding specific boundary conditions, a 

system of differential or integral equations can be obtained, as shown in Fig.3.2.1. 

  

Fig. 3.2.1 Traditional solution process of Electromagnetic field problems 
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Compared with the analytical method, the numerical method has stronger applicability. 

The emergence of numerical methods makes the analysis and research of electromagnetic 

field problems enter from analytical classical methods to numerical analysis methods of 

discrete systems, so that many complex electromagnetic field problems that are difficult 

to solve by analytical methods may be obtained through computer-aided analysis of 

electromagnetic fields. High-precision discrete solutions (numerical solutions) can 

greatly promote the development of various numerical calculation methods for 

electromagnetic fields. However, the disadvantage of the numerical method is that the 

amount of data input is large, the amount of calculation is large, and it is greatly limited 

by hardware conditions. In principle, numerical methods can solve geomagnetic field 

engineering problems with any complex geometry and complex materials. However, in 

engineering applications, due to the limitations of computer storage capacity, execution 

time and numerical error of the solution, numerical methods are difficult to complete the 

task. 

There are two main types of methods currently used in computational electromagnetics, 

one is numerical methods based on integral equations of electromagnetic field problems, 

such as the method of moments series. The other is based on differential equations of 

electromagnetic field problems Numerical methods, such as the family of finite difference 

methods. The finite element method based on the variational principle can be classified 

as a differential equation method, and can also be described in the language of the method 

of moments. It should be pointed out that because the integral equation description and 

the differential equation description of the electromagnetic field problem can be 

converted to each other, for the same electromagnetic problem, the above two types of 

methods are equivalent to each other. Moreover, combining the integral equation method 
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and the differential equation method to solve the same electromagnetic problem can play 

to their respective advantages. 

3.2.2 Finite Difference Methods (FDM)  

In the calculation method of numerical analysis of electromagnetic field, the finite 

difference method (FDM) is the earliest application method. The finite difference method 

(FDM) (referred to as the difference method) is a numerical method based on the 

difference principle. It essentially transforms the problem of the continuous domain of 

the electromagnetic field into a discrete system problem, that is, approaches the real 

solution of the continuous field through the numerical solution of each discrete point on 

the grid discretization model. The finite difference method has a wide range of 

applications. It can not only solve the potential field in the uniform or inhomogeneous 

linear medium, but also solve the field in the nonlinear medium. It can not only solve the 

constant field or quasi-steady field, but also solve the time-varying field. Among the 

numerical methods of boundary value problems, this method is quite simple. If the 

computer storage capacity allows, it is possible to use a finer grid, so that the 

discretization model can approach the real problem more accurately, and obtain sufficient 

numerical solution to precision. 

In this section, we take the solution of the electrostatic field boundary value problem 

as an example to introduce the finite difference method (FDM). The basic idea of finite 

difference method is as follows, 

(1) Divide the field with a grid 

(2) Replace the Laplace equation with the potential at each grid node as the difference 

equation of the unknown 
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(3) Change the problem of finding the solution of the Laplace equation into the problem 

of finding the solution of the system of simultaneous difference equations. 

According to the previous section, the basic equation of the electrostatic field is as 

follows, 

𝐄 =  ∇∅  3.2.1  

∇ ∙ 𝐃 = 𝜌  3.2.2  

and considering 𝐃 = 𝜀𝐄, the above Equation (3.2.2) can be rewritten as, 

∇2∅ =  
𝜌

𝜀
  3.2.3  

that is Poisson’s Equation. 

As shown in the Fig.3.2.2, in the two-dimensional region D, the electric potential 

function ∅ satisfies the Laplace equation (𝜌 = 0), 

𝜕

𝜕 
= 0  3.2.4  

and then, 

 

Fig. 3.2.2 Finite difference meshing 

 



 

50 

 

𝜕2∅  ,   

𝜕 2
 

𝜕2∅  ,   

𝜕 2
= 0  3.2.5  

To apply the finite difference method, the distribution mode of the grid nodes must be 

determined first. As shown in the Fig.3.2.2, use two sets of straight lines (grid lines) 

parallel to the x and y axes to divide the field D into enough square grids. The intersection 

points of the grid lines are called nodes, and the distance between two adjacent parallel 

grids lines is ∆𝑙. 

After dividing the grid, it is necessary to discretize the Laplace equation, 

𝜕∅

𝜕 
=

∅𝑖+1,𝑗  ∅𝑖,𝑗

∆𝑙
  3.2.6  

this is forward difference, and the backward difference as follows, 

𝜕∅

𝜕 
=

∅𝑖,𝑗  ∅𝑖−1,𝑗

∆𝑙
  3.2.7  

Here ∆𝑙 is small enough. So for the second order partial differential equation, we have 

the follows, 

𝜕2∅

𝜕 2
=

𝜕

𝜕 

𝜕∅

𝜕 
=

∅𝑖+1,𝑗  ∅𝑖,𝑗

∆𝑙
 

∅𝑖,𝑗  ∅𝑖−1,𝑗

∆𝑙
∆𝑙

 
 3.2.8  

We substitute the above Equation (3.2.8) into the Laplace’s equation (3.2.5), then the 

discretization of the Laplace’s equation is completed, 

∅𝑖+1,𝑗  ∅𝑖,𝑗

∆𝑙
 

∅𝑖,𝑗  ∅𝑖−1,𝑗

∆𝑙
∆𝑙

 

∅𝑖,𝑗+1  ∅𝑖,𝑗

∆𝑙
 

∅𝑖,𝑗  ∅𝑖,𝑗−1

∆𝑙
∆𝑙

= 0 
 3.2.9  

after rearranging the above equation, we can obtain, 

∅𝑖+1,𝑗  ∅𝑖−1,𝑗  ∅𝑖,𝑗+1  ∅𝑖,𝑗−1  4∅𝑖,𝑗 = 0  3.2.10  

the above equation is called the difference form of the Laplace’s equation, or the 

difference equation. 
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It can be seen from the above that each node in the field D has a differential equation, 

through which the electric potentials of each internal node and the node electric potential 

on the boundary are connected. As long as the solution of the simultaneous equations is 

  

Fig. 3.2.3 The equations for FDM 
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Fig. 3.2.4 Iterative program 

 

start

given boundary value

given initial value

iterations N:=0 

N:=N+1

iterations process

convergence 

condition is satisfied ?

no

yes

end 



 

52 

 

shown in the Fig.3.2.3, the electric potential value of each node can be obtained. When 

solving practical problems, due to the large number of nodes, the number of simultaneous 

difference equations can often reach hundreds or even thousands. The usual direct 

methods for solving simultaneous equations (such as determinant method, elimination 

method, etc.) are no longer applicable. Therefore, for the solution of large sparse matrices, 

we usually consider iterative methods, which will be explained in detail in later chapters. 

When calculating with the aid of a computer, its program block diagram is as shown 

Fig.3.2.4. 

3.2.3 Finite-Difference Time-Domain Method (FDTD)  

The finite-difference time-domain (FDTD) method is a numerical method for the 

analysis of electromagnetic field, and its basic algorithm was proposed by K. S. Yee in 

1966. In the time domain, Maxwell's curl equation is changed to a discrete difference 

form, and the continuous space is divided into finite grids for calculation. The larger the 

number of grids, the more accurate the calculation result, and the corresponding large 

increase in the calculation amount. In this section, we take 3D microwave simulation as 

an example to introduce the FDTD method in detail. 

The Maxwell’s equation is as follows, 

∇  𝐄 =  𝜇
𝜕𝐇

𝜕 
  3.2.11  

∇  𝐇 = ε
𝜕𝐄

𝜕 
  3.2.12  

∇ ∙ 𝐄 = 0  3.2.13  

∇ ∙ 𝐇 = 0  3.2.14  

and the differential equation of Equation (3.2.11) is as follows, 
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𝜕𝐸𝑧

𝜕 
 

𝜕𝐸𝑦

𝜕 
=  𝜇

𝜕𝐻𝑥

𝜕 
  3.2.15  

𝜕𝐸𝑥

𝜕 
 

𝜕𝐸𝑧

𝜕 
=  𝜇

𝜕𝐻𝑦

𝜕 
  3.2.16  

𝜕𝐸𝑦

𝜕 
 

𝜕𝐸𝑥

𝜕 
=  𝜇

𝜕𝐻𝑧

𝜕 
  3.2.17  

and the differential equation of Equation (3.2.12) is as follows, 

𝜕𝐻𝑧

𝜕 
 

𝜕𝐻𝑦

𝜕 
= ε

𝜕𝐸𝑥

𝜕 
  3.2.18  

𝜕𝐻𝑥

𝜕 
 

𝜕𝐻𝑧

𝜕 
= ε

𝜕𝐸𝑦

𝜕 
  3.2.19  

𝜕𝐻𝑦

𝜕 
 

𝜕𝐻𝑥

𝜕 
= ε

𝜕𝐸𝑧

𝜕 
  3.2.20  

Then considering the Yee algorithm of 3D Maxwell’s equation. The Yee algorithm is 

used to assign each component of the electromagnetic field to each cell. First, the space 

is divided into cubes as shown in Fig.3.2.5. The six components of the electromagnetic 

field are placed on the edge of the cube and the center point of the surface at the sampling 

points of the space. The electric field and magnetic field components are in the Always 

differ by half a grid step in any direction. 

  

Fig. 3.2.5 The Yee cell 

 

x

y

z
(i, j, k)
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Each component of the electromagnetic field is staggered in space. Arranged as follows, 

𝐸𝑥  ,  ,  ,   = 𝐸𝑥 ({  
1

2
} ∆ , 𝑗∆ , 𝑘∆ ,  ∆ ) ≡ 𝐸𝑥

𝑛   
1

2
, 𝑗, 𝑘   3.2.21  

𝐸𝑦  ,  ,  ,   = 𝐸𝑦 ( ∆ , {𝑗  
1

2
} ∆ , 𝑘∆ ,  ∆ ) ≡ 𝐸𝑦

𝑛  , 𝑗  
1

2
, 𝑘   3.2.22  

𝐸𝑧  ,  ,  ,   = 𝐸𝑧 ( ∆ , 𝑗∆ , {𝑘  
1

2
} ∆ ,  ∆ ) ≡ 𝐸𝑧

𝑛  , 𝑗, 𝑘  
1

2
   3.2.23  

𝐻𝑥  ,  ,  ,   = 𝐻𝑥 ({  
1

2
} ∆ , 𝑗∆ , 𝑘∆ ,  ∆ ) ≡ 𝐻𝑥

𝑛+
1
2  , 𝑗  

1

2
, 𝑘  

1

2
   3.2.24  

𝐻𝑦  ,  ,  ,   = 𝐻𝑦 ( ∆ , {𝑗  
1

2
} ∆ , 𝑘∆ ,  ∆ ) ≡ 𝐻𝑦

𝑛+
1
2   

1

2
, 𝑗, 𝑘  

1

2
   3.2.25  

𝐻𝑧  ,  ,  ,   = 𝐻𝑧 ( ∆ , 𝑗∆ , {𝑘  
1

2
} ∆ ,  ∆ ) ≡ 𝐻𝑧

𝑛+
1
2   

1

2
, 𝑗  

1

2
, 𝑘   3.2.26  

In terms of time, Yee samples the electric field component and the magnetic field 

component by half a step, as shown in Fig.3.2.6. 

Differentialize Maxwell's equations so that each component of the electromagnetic 

field can be placed in the space-time of the Yee algorithm. We here take 
𝜕𝐸𝑧

𝜕𝑦
 

𝜕𝐸𝑦

𝜕𝑧
=

 𝜇
𝜕𝐻𝑥

𝜕𝑡
 as an example to explain, 

1

∆ 
{𝐸𝑧

𝑛 ( , 𝑗  1, 𝑘  
1

2
)  𝐸𝑧

𝑛  , 𝑗, 𝑘  
1

2
 }

 
1

∆ 
{𝐸𝑦

𝑛 ( , 𝑗  
1

2
, 𝑘  

1

2
)  𝐸𝑦

𝑛 ( , 𝑗  
1

2
, 𝑘)}

=  
𝜇

∆ 
{𝐻𝑥

𝑛+
1
2 ( , 𝑗  

1

2
, 𝑘  

1

2
)  𝐻𝑥

𝑛−
1
2  , 𝑗  

1

2
, 𝑘  

1

2
 } 

 3.2.27  

and then the above equation can be rewritten as, 

𝐻𝑥

𝑛+
1
2 ( , 𝑗  

1

2
, 𝑘  

1

2
) = 

𝐻𝑥

𝑛−
1
2 ( , 𝑗  

1

2
, 𝑘  

1

2
)  

∆ 

𝜇∆ 
{𝐸𝑧

𝑛 ( , 𝑗  1, 𝑘  
1

2
)  𝐸𝑧

𝑛 ( , 𝑗, 𝑘  
1

2
)}

 
∆ 

𝜇∆ 
{𝐸𝑦

𝑛 ( , 𝑗  
1

2
, 𝑘  1)  𝐸𝑦

𝑛 ( , 𝑗  
1

2
, 𝑘)} 

 3.2.28  
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  Equation (3.2.15) ~ (3.2.20) can be differentiated by the Yee algorithm, which is similar 

to the differential process of above equation. 

3.3 Numerical Scheme for Matrix Solver 

In the previous section, we introduced the numerical analysis method of 

electromagnetic field simulation, and then introduced the method of solving simultaneous 

equations, such as LU decomposition, simple iterative method, and iterative method for 

solving large sparse matrices. 

3.3.1 LU Decomposition 

LU decomposition is a type of matrix factorization, which aims to represent a certain 

matrix A as a product of two or more matrices. As the name shows, LU decomposition is 

to represent the matrix A as A=LU, where L matrix represents Lower Triangular matrix, 

and the U matrix represents Upper Triangular matrix. 

  

Fig. 3.2.6 The Yee cell in the terms of time 

 

x
0

t=0

t=0.5

t=

t=1.5

t=2
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First, we consider a system of equations in three variables, and it can be written in the 

form of Ax=b as follows, 

[

 11  12  13

 21  22  23

 31  32  33

] [
 1

 2
 3

]=[

 1

 2

 3

]  3.3.1  

here, 

𝐴 = [

 11  12  13

 21  22  23

 31  32  33

] ,  = [
 1

 2
 3

] ,  = [

 1

 2

 3

]  3.3.2  

  And then we consider to generate matrix as A=LU, 

𝐿 = [
1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

]  3.3.3  

and, 

𝑈 = [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

]  3.3.4  

that means, 

[
1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

] [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] = [

 11  12  13

 21  22  23

 31  32  33

]  3.3.5  

by expanding the left side matrices of the above equation, we can obtain, 

[

𝑢11 𝑢12 𝑢13

𝑙21𝑢11 𝑙21𝑢12  𝑢22 𝑙21𝑢13  𝑢23

𝑙31𝑢11 𝑙31𝑢12  𝑙32𝑢22 𝑙31𝑢13  𝑙32𝑢23  𝑢33

] = [

 11  12  13

 21  22  23

 31  32  33

]  3.3.6  

therefore, by equating the corresponding elements on both sides of above equation, we 

can obtain as follows, 

𝑢11 =  11, 𝑢12 =  12, 𝑢13 =  13, 

𝑙21𝑢11 =  21, 𝑙21𝑢12  𝑢22 =  22, 𝑙21𝑢13  𝑢23 =  23 

𝑙31𝑢11 =  31, 𝑙31𝑢12  𝑙32𝑢22 =  32, 𝑙31𝑢13  𝑙32𝑢23  𝑢33 =  33 

 3.3.7  
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by solving the above equation, we can obtain, 

𝑢11 =  11, 𝑢12 =  12, 𝑢13 =  13, 

𝑙21 =
 21

 11
, 𝑢22 =  22  

 21 12

 11
, 𝑢23 =  23  

 21 13

 11
 

𝑙31 =
 31

 11
, 𝑙32 =

 32  
 31 12

 11

 22  
 21 12

 11

, 

 𝑢33 =  33  
 31 13

 11
  

 32  
 31 12

 11

 22  
 21 12

 11

  23  
 21 13

 11
 

 3.3.8  

  Now, we can write LUX=b, and then we assume UX=Y, where, 

Y = [
𝑌1
𝑌2
𝑌3

]  3.3.9  

so we can rewrite LY=b, and next we consider to solve this equation, 

[
 
 
 
 
1 0 0

𝑎21

𝑎11
1 0

𝑎31

𝑎11

𝑎32−
𝑎31𝑎12

𝑎11

𝑎22−
𝑎21𝑎12

𝑎11

1
]
 
 
 
 

[
𝑌1
𝑌2
𝑌3

]=[

 1

 2

 3

]  3.3.10  

thus, we can get, 

𝑌1 =  1, 

 21

 11
 𝑌1  𝑌2 =  2 

 31

 11
 𝑌1  

 32  
 31 12

 11

 22  
 21 12

 11

𝑌2  𝑌3 =  3 

 3.3.11  

solving the above equation, we can get, 

𝑌1 =  1, 

𝑌2 =  2  
 21

 11
 1 

 3.3.12  
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𝑌3 =  3  
 31

 11
  1  

 32  
 31 12

 11

 22  
 21 12

 11

  2  
 21

 11
 1  

  At the final step of LU decomposition, we consider UX=Y now, 

[

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] [
 1

 2
 3

] = [
𝑌1
𝑌2
𝑌3

]  3.3.13  

because the U and Y are known matrices, so we can get the final result as follows, 

 1 =
𝑌1   

𝑌2  
𝑌3𝑢23

𝑢33

𝑢22
 𝑢12

𝑢11
 

 2 =
𝑌2  

𝑌3𝑢23

𝑢33

𝑢22
 

 3 =
𝑌3
𝑢33

 

 3.3.14  

3.3.2 Simple Iterative Method 

 The simple iterative method is a numerical calculation method for solving problems such 

as roots of functions and solutions of equations. Based on the fixed-point theorem, the 

method continuously approaches the solution of the function by iterating an initial 

approximation until the accuracy requirement is satisfied. 

Specifically, for a linear system of equation, Ax=b, the simple iterative method converts 

the equation system into the form of x=Bx+c, where x=g(x)is a new function, usually 

taken as the deformation of Ax=b. Then, starting from an initial value  0, the iterative 

formula is used repeatedly until the precision requirement satisfied, that is, 

| 𝑛+1   𝑛| < 𝜀, where 𝜀 is the preset precision value. 

  In practical applications, simple iterative method has the advantages of simple 
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implementation, easy understanding and debugging, but the convergence speed of simple 

iterative method may be slower than other numerical calculation method, and the 

accuracy of the solution can not be guaranteed. 

3.3.3 Conjugate Gradient Method (CG) 

Many scientific calculations ultimately boil down to solving a large-scale linear 

equation system Ax=b, and various methods to get the solution of system of linear 

equations have been proposed depending on the application. Sparse matrix, dense matrix, 

direct method and iterative method. Sparse matrices appear in numerical analysis such as 

FEM and FDM, and dense matrices usually appear in numerical analysis such as BEM. 

Direct methods such as LU decomposition have the advantages of stability and wide 

application range, but at the same time, compared with iterative methods, they require 

more computing time and memory when calculating dense matrices, and are not suitable 

for large-scale calculations. The iterative method is divided into stationary iterative and 

nonstationary iterative. stationary iterative methods such as Gauss’s elimination, Jacobi, 

etc. usually converge slowly. In the previous section, we explained the simple iterative 

method, one of the stationary iterative methods. The nonstationary iterative method adds 

constraints and optimization conditions, also known as the Krylov subspace method, 

usually including CG iterative method, BiCG-Stab iterative method and GMRES iterative 

method, etc. Compared with the direct methods, the iterative methods have the advantages 

of less calculation and memory, and is suitable for parallel computing, but because the 

convergence is greatly affected by the boundary conditions, there is a possibility of non-

convergence. In this subsection, we explain the concept of Krylov subspace method to 

illustrate the CG iterative algorithm. 



 

60 

 

  Given the following system of linear equations, 

Ax=b  3.3.15  

The basic idea of krylov subspace method is to find the approximate solution of the 

above equation in a subspace with a smaller dimension. This method is also regarded as 

a projection method, which is to find the projection of the true solution in a certain 

subspace (it can be an orthogonal projection or an oblique projection.) 

The first step of Krylov subspace method is to find the suitable subspaces K, 

𝐾𝑛 = 𝐾𝑛 𝐴, 𝒗 =  𝑝   𝒗, 𝐴𝒗, 𝐴2𝒗,… , 𝐴𝑛−1𝒗   3.3.16  

where v is a vector, 𝒗 ∈  𝑅𝑁, and  ≤ 𝑁, and 𝐾𝑛 is the subspace of all the vector m of 

𝑅𝑁, thus we can write the following form, 

𝑚 = 𝜋 𝐴 𝒗, 𝜋 ⊆ 𝑝𝑛−1  3.3.17  

where 𝑝𝑗 is the set of all the polynomials. 

   Since we are looking for an approximate solution in a lower-dimensional subspace, 

so there is,  

𝐾1 ⊆ 𝐾2 ⊆ 𝐾3 ⊆ 𝐾4 …  3.3.18  

and the dimensional cannot exceed the N. Then considering the minimal degree v, 

dim𝐾𝑛 𝐴, 𝒗 = min  n, 𝑣   3.3.19  

  So far, we have determined the subspace, and the second step of krylov subspace 

method is to give a initial value 𝒙0 and the corresponding residual is as follows, 

𝒓0 = 𝒃  𝐴𝒙0  3.3.20  

and then generates iterates 𝒙𝑛, 

𝒙𝑛  𝒙0 = 𝜋𝑛−1 𝐴 𝒓0, 𝒙𝑛 ∈ 𝒙0  𝐾𝑛 𝐴, 𝒓0   3.3.21  

and the residual 𝒓𝑛 = 𝒃  𝐴𝒙𝑛 will satisfy, 

𝒙𝑛  𝒙0 = 𝜉𝑛 𝐴 𝒓0 ∈ 𝐴𝐾𝑛 𝐴, 𝒓0 ∈ 𝐴𝐾𝑛+1 𝐴, 𝒓0   3.3.22  
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where 𝜉𝑛 ∈ 𝑝𝑛, 

𝜉𝑛   = 1   𝜋𝑛−1   , 𝜉𝑛 0 = 1  3.3.23  

  Conjugate Gradient method as the one of representative nonstationary iterative method, 

mainly for symmetric positive definite matrices to solve. Then we will list the execution 

process of CG method. 

comput  𝒓 0 = 𝒃  𝐴𝒙 0  

                   for i=1,2,3,… 

                      𝑝𝑖−1 = 𝒓 𝑖−1 𝒓 𝑖−1  

                      If i=1 

                        𝒑 1 = 𝒓 0  

                       else 

                         𝛽𝑖−1 = 𝑝𝑖−1 𝑝𝑖−2 

                         𝒑 𝑖 = 𝒓 𝑖−1  𝛽𝑖−1𝒑
 𝑖−1  

                       end if 

                         𝒒 𝑖 = 𝐴𝒑 𝑖  

                         𝛼𝑖 = 𝒑𝑖−1 𝒑
 𝑖 𝒒 𝑖  

                         𝒙 𝑖 = 𝒙 𝑖−1  𝛼𝑖𝒑
 𝑖  

                         𝒓 𝑖 = 𝒓 𝑖−1  𝛼𝑖𝒒
 𝑖  

                         check convergence |𝑟| 

                     end 

 3.3.24  

3.3.4 Bi-Conjugate Gradient Stabilized (BiCG-Stab) 

In this section, we will explain another representative nonstationary iterative method, 

that is Bi-Conjugate Gradient Stabilized (BiCG-Stab). Compared with the CG method, 
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BiCG-Stab method is more stable, and BiCG-Stab method can handle not only symmetric 

matrices, but also asymmetric matrices. The main idea of the BiCG-Stab algorithm is 

based on the bilateral Lanczos algorithm, which is an iterative method based on the 

residual orthogonal subspace. The unilateral Lanczos algorithm iterates through specific 

rules in the residual subspace, so that the residual tends to 0, and then to get the equation 

solution, this iteration is finite. However, BiCG-Stab method, an iterative method based 

on krylov residual subspace, has fast convergence speed, high precision and good stability. 

The iteration process of BiCG-Stab method is as follows, 

𝒙0  initi   v  u  gu    

                     𝒓0 = 𝐛  𝐴𝒙0 

                     𝑟0
∗,  𝑟0

∗,  𝒓0 ≠ 0, e.g., 𝑟0
∗ =  𝒓0 

                     𝛽−1 = 0 

                     for n=0, 1, 2, ……until ‖ 𝒓𝑛‖ ≤ 𝜀‖𝐛‖ 

                     begin 

                       𝑝𝑛 =  𝒓𝑛  𝛽𝑛 𝑝𝑛  𝜉𝑛𝐴𝑝𝑛−1  

𝛼𝑛 =
 𝒓∗,    𝒓𝑛  

 𝒓∗,   𝐴𝒑𝑛  
 

                       𝒕𝑛 =  𝒓𝑛  𝛼𝑛𝐴𝑝𝑛 

𝜉𝑛 =
 𝐴𝒕𝑛,    𝒕𝑛  

 𝐴𝒕𝑛,   𝐴𝒕𝑛  
 

                      𝒙𝑛+1 = 𝒙𝑛+1  𝛼𝑛 𝒑𝑛  𝜉𝑛𝒕𝑛 

                           𝒓𝑛+1 = 𝒕𝑛  𝜉𝑛𝐴𝒕𝑛 

𝛽𝑛 =
𝛼𝑛 𝒓

∗,    𝒓𝑛+1  

𝜉𝑛 𝒓∗,    𝒓𝑛  
 

                    end 

 3.2.25  

3.3.5 GMRES  
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GMRES is an iterative algorithm, which is often used to solve the solution of large sparse 

non-symmetric equations. It approaches the solution of the equation through the vector 

that minimizes the residual obtained in the Krylov subspace. If there is a system of 

equations in the following form, 

Ax=b  3.3.26  

The characteristic polynomial of A is a nullifying polynomial of A, that is, there is a set 

of coefficients  1~ 2, and then we can get the following equation, 

  A = 𝐴𝑛   𝑛−1𝐴
𝑛−1  ⋯  0𝐼  3.3.27  

and the above equation can be rewritten as the following form, 

𝐴−1 =
1

 0
𝐴𝑛−1  

 𝑛−1

 0
𝐴𝑛−2  ⋯ 

 1

 0
 𝐼  3.3.28  

  When solving a system of linear equations, any initial value  0, corresponding to an 

initial residual 𝑟0 =   𝐴 0, and then the exact solution of this system of equations can 

be expressed as, 

 =  0  𝐴−1𝑟0  3.3.29  

by substituting 𝐴−1, we can draw the conclusion: the exact solution of the system of 

equations can be found in the space theoretically. However, it is difficult to achieve in the 

reality, and then we will search for approximate solutions in a lower-dimensional 

subspace as we explained in the previous section about Krylov subspace method. 

  Define the m-dimensional Krylov subspace, 

𝐾𝑚 =  𝑝   𝒓, 𝐴𝒓, 𝐴2𝒓,… , 𝐴𝑚−1𝒓   3.3.30  

where, dim𝐾𝑚 = 𝑚. 

  Assume that the best approximate solution of the analytical solution is  𝑚  in the 

affine space  0  𝐾𝑚. Then the solution for  
𝑚 can be transformed the two parts, one 

is to search for a set of suitable basis, and the other one is to solve the linear expression 
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coefficient y of  𝑚 under this set of basis. 

The next step is to consider the selection of the basis, because 𝒓, 𝐴𝒓, 𝐴2𝒓,… , 𝐴𝑚−1𝒓 

are linearly independent, so they are the basis of 𝐾𝑚. However, we can obtain some good 

properties and simplify subsequent calculations by selecting a set of orthonormal bases 

and using the orthonormal bases. A set of orthonormal basis is constructed by the Arnoldi 

process based on modified Gram-Schmidt orthogonalization. 

  After obtaining the orthonormal basis, we generally use the method of minimizing 

residuals: ‖𝒓𝑚‖2 = ‖𝒃  𝐴𝒙𝑚‖2, the smaller it is, the closer it is to the exact solution. 

  With the previous foreshadowing, now we can start the process of introducing the 

GMRES algorithm: 

(1) Let m=1. 

(2) Define the Krylov subspace. 

(3) Search for the best approximate solution in  0  𝐾𝑚. 

(4) Judging whether the approximate solution meets the accuracy requirements, if so, 

return the result, otherwise, increment m and return to step (2). 

The iterative process of GMRES algorithm is as follows, 

Set an initial guess 𝒙0 

                    Compute  𝒓0 = 𝐛  𝐴𝒙0 

                    Set 𝛽 = ‖𝑟0‖2, 𝒗1 = 𝒓0 𝛽, 𝒆1 = [𝛽, 0, … ,0]𝑇 

                    For k=1, 2, … 

                        𝒘𝑘+1 = 𝐴𝒗𝑘 

                        For i=1, 2, … k 

                         𝑖,𝑘=(𝒘𝑘+1, 𝒗𝑖 ) 

                        𝒘𝑖,𝑘 = 𝒘𝑖,𝑘   𝑖,𝑘𝒗𝑖 

 3.3.31  



 

65 

 

                        End For 

                          𝑘+1,𝑘=‖𝒘𝑘+1‖2 

        𝒘𝑘+1 =
𝒘𝑘+1

 𝑘+1,𝑘
 

                   For i=1, 2, … k-1 

                        ( ℎ𝑖,𝑘

ℎ𝑖+1,𝑘
) = (

 �̅�  ̅𝑖
  𝑖  𝑖

) ( ℎ𝑖,𝑘

ℎ𝑖+1,𝑘
) 

                         End For 

                      𝑘 =
 𝑘,𝑘

√ 𝑘,𝑘
2  | 𝑘+1,𝑘|

2
 

                     𝑘 =
 𝑘,𝑘

√ 𝑘,𝑘
2  | 𝑘+1,𝑘|

2
 

                            𝑘+1 =   𝑘 𝑘 

                          𝑘 =  �̅� 𝑘 

                        𝑘,𝑘 = √ 𝑘,𝑘
2  | 𝑘+1,𝑘|

2
 

                         𝑘+1,𝑘 = 0 

                        If   𝑘+1 ≤  ‖𝒃‖2 then 

                         𝒚𝑘 = 𝐻𝑘
−1𝒆1 

                                              𝒙𝑘 = 𝒙0  ∑ 𝒗𝑖
𝑘
𝑖=1 𝒚𝑖 

                         Stop 

                        End If 

                     End For 
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3.4 Logic Circuits 

3.4.1 Basis of logic Circuits 

A logic circuit is an electronic circuit that is used to implement logical operations and 

logical functions in Boolean algebra. It is a part of a digital circuit, usually consisting of 

logic gates (such as AND, OR, NOT, etc.), which can accept one or more inputs and 

generate one or more outputs. Logic circuits are the basis of modern computers and 

electronic devices, which are used to process digital signals and data. Logic circuits can 

generally be divided into two types: combinational circuits and sequential logic circuits. 

The output of a combinational logic circuit depends only on the current input, not on past 

inputs or outputs. The output of a sequential logic circuit depends on current inputs and 

past inputs and, or outputs. Logic circuits are commonly used in a computer's CPU and 

memory, but also in controllers and other digital circuits. As with any digital circuit design, 

the design and implementation of logic circuits is critical. 

As an integral part of ASIC design, logic circuit contains a large number of logic 

circuits in ASIC. ASIC stands for Application-Specific Integrated Circuit, which is 

different from general-purpose IC (Integrated Circuit), and this IC are manufactured to 

realize specific functions. Most ASIC technologies use standard cells, which are 

predesigned logic blocks consisting of one to a few logic gates. ASIC cell library may 

have hundreds of standard cells, such as AND, NAND, OR, NOR, Exclusive-OR, 

Exclusive-NOR, D flip-flop, latch, etc. In the ASIC design process, the design of the logic 

circuit is a very important step. Logic designers need to ensure the correctness and 

performance of the design through logic simulation and verification, because the 

optimization of logic circuits can lead to better performance and smaller area, thereby 
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reducing cost and power consumption. 

Since we will involve a large number of operations when designing the solver, and 

these operations are basically completed by the full adder and the shift register, we will 

explain the full adder and the shift register here. In digital circuits, the operation of 

temporarily storing the binary data or code being processed is called registering. In any 

modern digital circuit system, especially some large-scale digital processing systems, it 

is often impossible to process all the data at one time, so some data codes that need to be 

processed must be registered in the process of processing. So that it can be used anytime 

when needed. Registers are also divided into different types according to their functions, 

for example, general-purpose registers for arithmetic units, address memory for 

specifying memory addresses, and memory registers for temporary storage when 

inputting and outputting data from memory. 

We will describe the shift register in detail here. A shift register is a register with a shift 

function. Shifting one binary digit to the left results in doubling, while shifting one binary 

digit to the right halves it. And all bits are shifted left or right synchronously with the 

system clock. Since this function can be applied to multiplication and division, it can be 

used by adding it to a general-purpose register or the accumulator of the arithmetic unit. 

Since the shift register shifts in synchronization with the system clock, using D-FF or JK-

FF, data input to the shift register can be input serially starting from the least significant 

bit, or can be input in parallel with each FF. When outputting data, there is a serial output 

for the most significant bit and a parallel output for each bit. By combining these functions, 

it can be used as a serial/parallel converter or a parallel/serial converter for data 

input/output. 
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There is a JK-FF as shown in Fig.3.4.1, in the JK-FF, J and K can be input at the same 

time, we use JK-FF to design a 4-bit right shift register as an example to illustrate the 

shift register. And this designed shift-register as shown in Fig.3.4.2. 

In electronics, an adder is a digital circuit component used to perform add operations, 

and is the basis of the arithmetic logic unit in the core microprocessor of an electronic 

computer. The half adder is an adder that does not consider the carry of the previous stage, 

but obtains the sum of a binary number and the carry of the next stage, which will be used 

  

Fig. 3.4.1 The JK-FF 
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Fig. 3.4.2 The shift-register 
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in the design of the full adder. The circuit and symbol of the half adder is shown in the 

Fig.3.4.3 and Fig.3.4.4 below. And then, we consider to design a full adder based on a 

one bit half-adder, the full adder is an adder that takes into account the carry of the 

previous stage. Fig.3.4.5 shows the circuit of the full adder. C is the carry from the 

previous stage, and S is the sum. 

Add two one-bit binary numbers, and output the sum and carry out according to the 

received low-order carry signal. The three inputs of the full adder are two addends A and 

  

Fig. 3.4.3 The circuit of half-adder 
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Fig. 3.4.4 The symbol of half-adder 
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Fig. 3.4.5 The circuit of full-adder 
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B and the low-order carry C. The full adder can usually be cascaded to form the basic of 

a multi-bit (8-bit, 16-bit, 32-bit) binary number adder part. The difference between the 

full adder and the half adder is that the full adder can receive a low-order carry input 

signal C. 

3.4.2 Integer and floating format 

In this section, we explain how numbers are represented in computers. There are two 

types of methods for processing numerical values inside a computer, floating-point and 

fixed-point. The difference between the two is that the decimal point of floating-point 

numbers is floating, and the decimal point of fixed-point numbers is fixed. 

Floating-point values are approximate representations of any real number in a computer. 

Specifically, this real number is obtained by multiplying an integer or fixed-point number 

(that is, the mantissa) by the integer power of a certain base (usually use binary in 

computers). This representation method is similar to scientific notation with a base of 

decimal. Floating point numbers are represented as follows, 

N=M 𝑅𝐸  3.4.1  

In any such system, we choose a base R and a precision P. M (ie, the mantissa) is P 

digits of the form ±d. ddd…ddd. If the first bit of M is a non-zero integer, M is said to 

be normalized. There are some descriptions that use a single sign bit (S stands for + or -) 

to signify, such that M must be positive, E is the exponent. As shown in the following 

 

 

Fig. 3.4.6 IEEE Floating point representation 
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formula, 31245.0 is the floating-point number N, 3.1245 is the mantissa M, 10 is the base, 

and 3 is the exponent.  

31245.0=3.1245 103  3.4.2  

The floating-point number format defined by the IEEE 754 standard is as shown in 

Fig.3.4.6 and Fig.3.4.7. This is a Float-type in the Fig.3.4.6. For Float-type floating point, 

the MSB is the sign bit, the exponent bit is 8bits, and the mantissa is 23 bits, 32 bits in 

total. Since the mantissa is normalized, the MSB of mantissa must be non-zero, and the 

MSB is hidden, therefore the mantissa is actually 24bits. And then this is a Double type 

in the Fig.3.4.7. For Double-type floating point, the MSB is sign bit, the exponent is 11bits, 

and the mantissa is 52 bits, 64 bits in total. 

Next, we will explain fixed-point values. The decimal point of floating-point values 

changes with the exponent, so the range of decimals that can be expressed by floating-

point values is very wide, but the amount of calculation of floating-point values is very 

 

 

Fig. 3.4.7 IEEE Double precision floating point representation 
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Fig. 3.4.8 Signed representation of fixed-point values 
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large (we can get this according to its definition). The decimal point of a fixed-point 

number is fixed at one position and does not occupy a single bit. As shown in the figure 

below, the decimal point of a fixed-point number is fixed between the sign bit and the 

most significant bit (MSB), and the decimal point of a pure integer is fixed after the lowest 

significant bit (LSB). 

Methods of handling positive and negative numbers in the fixed-point representation 

system include absolute value representation, bias representation, and complement 

representation. The absolute value representation is a method in which the MSB is a sign 

bit, and when the value of the MSB is 0, it represents a positive number, and when it is 1, 

it represents a negative number. When performing subtraction in terms of absolute values, 

a comparison circuit, a multiplexer circuit for data exchange, a sign determination circuit, 

will be required to realize the subtraction operations, so the circuit scale of the arithmetic 

unit is increased accordingly. 

Bias expression is the conversion of a negative number into a positive number by 

adding a bias value. The bias value is chosen to be the smallest negative absolute value. 

However, it is difficult to read the numerical value intuitively, and similar to the absolute 

value expression, additional circuits are required to implement addition and subtraction 

  

 

Fig. 3.4.9 The two’s complement 

 

 

positive value negative value

decimal 2’s complement decimal 2’s complement

1 0001 -1 1111

2 0010 -2 1110

3 0011 -3 1101

4 0100 -4 1100

5 0101 -5 1011



 

73 

 

operations. 

There are two types of complement of binary number, one’ s complement and two’s 

complement. We can get the one’s complement of a binary number by inverting the given 

number simply. To get the two’s complement of binary number is that one’s complement 

number of given number plus one to the LSB. Find two’s complement of each decimal 

numbers as shown in Fig.3.4.9. 

In computers, data is stored in complement code. Next, we perform a shift on the basis 

of the complement to realize the multiplication and division operation. 

Regarding shifting, we need to pay special attention to positive numbers. No matter 

left shifting or right shifting, they are complemented with 0, and the complement of 

negative numbers needs attention. Left shifting needs to complement 0 on the right, and 

right shifting needs to complement 1 on the left. The Fig.3.4.10 below is an example of 

division by shifting a negative number to the left. 

3.4.3 Hardware Description Languages (HDL) 

   

Fig. 3.4.10 The right shift process of negative value based on 2’s complement 
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Design methods using HDL (Hardware Description Languages) have been widely used 

in the design of large-scale integrated circuits such as ASIC (Application Specific 

Integrated Circuit), and the design is not limited to ASIC, but also has many advantages 

for relatively small-scale designs using FPGA, PLD, etc. The Fig.3.4.11 below shows the 

comparison between logic circuit input design and HDL design. 

HDL design does not need to consider complex formulas by designing at a higher level 

of abstraction. This frees designers from the burden of design and shortens the design 

cycle. In addition, a high level of abstraction makes it easier to change the design, 

allowing designers to build more complete systems. 

   

Fig. 3.4.11 Logic circuit input design and HDL input design 
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Fig. 3.4.12 Comparison of various HDL 
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Hardware description languages include VHDL (VHSIC HDL), Verilog-HDL, 

UDL/I(Unified Design Language for Integrated Circuit), and SFL (Structured Function 

Description language). Each function is shown in the Fig.3.4.12, and each description 

language has its advantages and disadvantages, but among them, VHDL is the most 

widely used as an industry standard. 

VHDL is a highly descriptive language that can be described at different levels. 

Describe the algorithm of the entire system (architecture-level description), by modeling 

hard disk data exchange and motor control, etc., describe the entire system at a higher 

abstraction level, or at a level (RTL: Register Transfer Level) that allows logic circuit 

generation. Of course, logical gates can also be described. In the actual large-scale design, 

CPU, communication, image processing design, etc., first we describe the architecture-

level and behavior-level, and verify the entire system. Design efficiently by catching 

system errors earlier. Afterwards, the parts of the verification system to be converted to 

ASICs are rewritten at the logic generation level (RTL), and logic circuits are generated. 

When designing with VHDL, there are mainly four units that will be used as the 

following: 

(1) Entity 

(2) Architecture 

(3) Configuration 

(4) Package  

Entity as mentioned above is that to define the interface (inputs and outputs) as shown 

in the Fig. 3.4.13. Entity can be viewed as a black box, before we define what happens 

inside the black box, we know what are my inputs and outputs, so that we can write entity 

because entity tells us who are the members in the “house”. That is, entity helps us define 
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input and output ports and also specify what type of ports they will be. 

Architecture describes the innards of circuit. What actually is happening from those 

inputs and how it generates outputs. That is, Architecture let us get the information of 

unknown circuit in Fig.3.4.12. To model the architecture of an Entity, we have several 

modeling methods: 

(1) Dataflow 

(2) Behavioral 

(3) Structural 

(4) Mixed 

If we have an entity, we can map multiple architectures to same one Entity. So this one 

Entity how does know which architecture to map. And then we can introduce the 

Configuration. We specify that in Configuration file in Configuration part of the VHDL 

design we specify which Entity maps to which Architecture. 

The Package as mentioned above, it reads everything defined in the std_logic_1164 

and std_logic_unsigned packages in the VHDL standard library IEEE. Required for type 

declarations and for using operations. 

 

 

 

           

Fig. 3.4.13 The Entity of VHDL 
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Chapter 4  

Dataflow Architecture Dedicated Computer Ba

sed on FIT Scheme for Electromagnetic Field 

Simulations 

In this Chapter, we introduce the simulation of FIT dataflow machine based on 

fundamental theories and formulations described in Chapter3. 

4.1 Dedicated Computer for 2-D Magneto-static Field 

Simulation 

In this section, the design of an overview architecture of dataflow machine for 2-D 

magneto-static field and its specific circuit design including matrix solver will be 

explained. As mentioned in Chapter 3.1.2, the vector Poisson’s equation is the basis of 

Magneto-static field. Then, the calculation of 2-D magneto-static field is simulated on the 

basis of FIT (Chapter 3.2.2). After the whole grid space of the whole grids space of 2-D 

magneto-static field is discretized, the distribution of magnetic potential in the form of 

matrix equation is determined. To solve this matrix equation, a stable and quick 

convergence iterative method is considered, that is BiCG-Stab (Chapter 3.3.3), and the 

implementation of the BiCG-Stab matrix solver scheme on the hardware circuit (Chapter 

3.4) is discussed. Finally, the FIT dataflow machine intended for 2-D magneto-static field 

simulation is designed through the hardware description language VHDL (Chapter 3.4.2). 



 

78 

 

4.1.1 FIT Scheme for 2-D Magneto-static Field 

The behavior of magneto-static field can be described by the vector Poisson’s Equation, 

∇  (
1

𝜇
∇  𝐀) = 𝐉  4.1.1  

B=∇  𝐀  4.1.2  

where, 𝜇  represents the magnetic permeability, A represents the vector potential, J 

represents the current density, and B represents the magnetic induction. In case of 2-D 

magneto-static field, which means 𝐁𝑧 = 0, the following equation holds, 

𝐁 = (

𝐁𝑥

𝐁𝑦

𝐁𝑧

) =

(

 
 
 
 

𝜕𝐴𝑧
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𝜕𝐴𝑥
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𝜕𝐴𝑦

𝜕 
 

𝜕𝐴𝑥
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=
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𝜕𝐴𝑧

𝜕 

 
𝜕𝐴𝑧

𝜕 
0 )

 
 

  4.1.3  

It can be found out from the above equation that there is only the z-component of magnetic 

vector potential A in the 2-D case. The integral form of the Equation (4.1.1) is as follows, 

∮ (
1

𝜇
∇  𝐀)

𝑐

∙ 𝑑𝐥 = 𝐼  4.1.4  

where, I represents the current. The Finite Integration Technique (FIT) scheme for 2-D 

magneto-static field simulation is considered. With discretization performed in a grid 

space for the above Equation (4.1.4) as shown in Fig. 4.1.1. the following equation can 

be obtained, 

∆𝑙 𝐻𝑥𝑖,𝑗−1  𝐻𝑦𝑖,𝑗  𝐻𝑥𝑖,𝑗  𝐻𝑦𝑖−1,𝑗 = 𝐽𝑖,𝑗∆𝑙
2  4.1.5  

where 𝐻𝑥𝑖,𝑗  and 𝐻𝑦𝑖,𝑗  are the magnetic field components around a grid (i,j), 

respectively. According to Equation (4.1.4) along the integral path C in Fig.4.1.1, 

Equation (4.1.6) can be rewritten as, 

 𝑖,𝑗
0 𝐴𝑧𝑖,𝑗   𝑖,𝑗

1 𝐴𝑧𝑖,𝑗−1   𝑖,𝑗
2 𝐴𝑧𝑖+1,𝑗   𝑖,𝑗

3 𝐴𝑧𝑖,𝑗+1   𝑖,𝑗
4 𝐴𝑧𝑖−1,𝑗 = 𝐽𝑖,𝑗∆𝑙

2  4.1.6  
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where,  

 𝑖,𝑗
1 =

1

2𝜇𝑖,𝑗−1
 

1

2𝜇𝑖−1,𝑗−1
,  𝑖,𝑗

2 =
1

2𝜇𝑖,𝑗−1
 

1

2𝜇𝑖,𝑗
, 

 𝑖,𝑗
3 =

1

2𝜇𝑖,𝑗
 

1

2𝜇𝑖−1,𝑗
,  𝑖,𝑗

4 =
1

2𝜇𝑖−1,𝑗
 

1

2𝜇𝑖−1,𝑗−1
, 

 𝑖,𝑗
0 =  𝑖,𝑗

1   𝑖,𝑗
2   𝑖,𝑗

3   𝑖,𝑗
4  

 

 4.1.7  

To construct the matrix equation based on the discretization Equation (4.1.6) for all 

grid points as shown in Fig.4.1.2. The final FIT matrix equation can be obtained. Then, 

the information about distribution of the magnetic field can be obtained by solving the 

matrix equation in Fig.4.1.2. 

   

Fig. 4.1.1 FIT discretization in 2-D grid space  
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Fig. 4.1.2 FIT scheme matrix equation 
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4.1.2 Hardware Circuit of BiCG-Stab Matrix Solver 

To solve the large sparse matrix equation, the BiCG-Stab scheme is adopted. In 

addition, detail digital circuits of the BiCG-Stab matrix solver based on dataflow 

architecture are designed. 

In this study, the iterative process of BiCG-Stab scheme to solve matrix equation of 

Ax=b is expressed as follows, 

𝐫0 = 𝐛  𝐴𝐱0, 𝐱0 is an initial guess, 

            𝐫0
∗,  𝐫0

∗, 𝐫0 ≠ 0,  . 𝑔. , 𝐫0
∗ = 𝐫0, set 𝛽−1 = 0, 

for n=1, 2, 3……until ‖𝐫𝑛‖ ≤ 𝜀‖𝐛‖, 

begin 

    𝐩𝑛 = 𝐫𝑛  𝛽𝑛−1 𝐩𝑛−1  𝜁𝑛−1𝐴𝐩𝑛−1  (i) 

                                        𝛼𝑛 =
 𝐫0

∗, 𝐫𝑛 

 𝐫0
∗, 𝐴𝐩𝑛 

                                        ii  

                                        𝐭𝑛 = 𝐫𝑛  𝛼𝑛𝐴𝐩𝑛                                   (iii) 

                                         𝜁𝑛 =
 𝐴𝐭𝑛, 𝐭𝑛 

 𝐴𝐭𝑛, 𝐴𝐭𝑛 
                                       iv  

                                         𝐱𝑛+1 = 𝐱𝑛  𝛼𝑛𝐩𝑛   𝜁𝑛𝐭𝑛                    (v) 

                                         𝐫𝑛+1 = 𝐭𝑛   𝜁𝑛𝐴𝐭𝑛                                  (vi) 

                                         𝜁𝑛 =
 𝐴𝐭𝑛, 𝐭𝑛 

 𝐴𝐭𝑛, 𝐴𝐭𝑛 
                                      vii  

                 end 

 4.1.8  

In the BiCG-Stab scheme (4.1.8), initial value should be set, before the iterative process 

((i) ~ (vii)) of (4.1.8). After the setting of an appropriate initial value of 𝐱0, the initial 

residual 𝐫0 and the initial shadow residual 𝐫0
∗, the iterative process ((i) ~ (vii)) of BiCG-

Stab starts. Also, the iterative process ((i) ~ (vii)) is repeated until the residual 𝐫𝑛+1 

converges and become sufficiently small. 
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  In the design of dedicated computer, one of our purposes is potability, which means, a 

smaller size hardware is required. Since the use of floating-point arithmetic in the 

hardware circuits can result in a large size hardware, it is considered to use the fixed-point 

arithmetic with integer format to instead of the floating-point arithmetic. In addition, 

during the process of BiCG-Stab iteration, the range of dynamic change of the value 

   

Fig. 4.1.3 FIT scheme grid circuit based on BiCG-Stab scheme 
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exceeds 1022, to keep the sufficient precision in the BiCG-Stab matrix solver, we employ 

200-bit registers to store all unknown values. The overview of FIT scheme grid circuit 

based on BiCG-Stab matrix solver is shown in Fig4.1.3. Then, the detailed circuits of the 

unit FIT grid based on BiCG-Stab scheme are explained, as shown in Fig.4.1.4. In the 

BiCG-Stab matrix solver circuits, all of the unknown values (𝐩𝑛, 𝐭𝑛, 𝐱𝑛, 𝐫𝑛, 𝐴𝐩𝑛, 𝐴𝐭𝑛) of 

 

 

(c) Iteration process (iii) in (4.1.8)                  (d) One component of 𝐴𝐭𝑛 

  

 

(e) Iteration process (v) and (vi) in (4.1.8) 

Fig.4.1.4 Individual circuit operations of BiCG-Stab scheme 
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the BiCG-Stab iterative process ((i) ~ (vii)) in (4.1.8) and the coefficients 

( 𝑖,𝑗
0 ,  𝑖,𝑗

1 ,  𝑖,𝑗
2 ,  𝑖,𝑗

3 ,  𝑖,𝑗
4 ) in (4.1.6) are stored in the registers at each grid, and these registers 

are connected with each other according to the arithmetic circuit. The highlighted parts 

of Fig.4.1.4 (a), (c) and (e) correspond to iterative process (i), (iii) and (vii), while these 

logic circuits can execute the arithmetic operations in parallel with one clock cycle. It 

should be noted that the highlighted parts of Fig.4.1.4 (b) and (d) are one component of 

matrix-vector products 𝐴𝐩𝑛  and 𝐴𝐭𝑛 , while the one component of 𝐴𝐩𝑛  and 𝐴𝐭𝑛  is 

executed by the logic circuit with one clock cycle. In addition, the other components in 

all the grids space of 𝐴𝐩𝑛 and 𝐴𝐭𝑛 can be executed in parallel by synchronizing with 

one clock cycle.  

The inner product  𝐫0
∗, 𝐫𝑛  , (𝐫0

∗, 𝐴𝐩𝑛 ),   𝐴𝐭𝑛, 𝐭𝑛  , (𝐴𝐭𝑛, 𝐴𝐭𝑛 ) is collected after each 

component is executed at the individual grid circuit of Fig.4.1.3. Then, these 

multiplications of each grid circuit are summed up to compute 𝛼𝑛, 𝜁𝑛 and 𝛽𝑛 as shown 

 

(a) Inner product  𝐫0
∗, 𝐫𝑛 , (𝐫0

∗, 𝐴𝐩𝑛) for 𝛼𝑛 in (4.1.8) 
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in Fig.4.1.5, corresponding to the iterative process (ii), (iv) and (vii) in (4.1.8), 

respectively. So far, the design of detailed circuit of BiCG-Stab matrix solver has been 

explained. Next, the whole configuration of FIT dataflow machine for 2-D magneto-static 

 

(b) Inner product  𝐴𝐭𝑛, 𝐭𝑛 , (𝐴𝐭𝑛, 𝐴𝐭𝑛) for 𝜁𝑛 in (4.1.8)                 

 

(c) Inner product  𝐫0
∗, 𝐫𝑛 , (𝐫𝑛, 𝐫𝑛+1) for 𝛽𝑛 in (4.1.8) 

    Fig. 4.1.5 Summation of inner product component 
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field simulation on hardware circuit will be introduced. 

  Fig.4.1.6 shows the whole configuration of FIT dataflow machine. This dataflow 

machine consists of 3 parts: MASTER SCHEDULER module, INNER PRODUCT 

module and FIT GRID module. As explained, the FIT GRID module (Fig.4.1.3) executes 

the BiCG-Stab iterative process ((i) ~ (vii)) in (4.1.8) for the FIT matrix equation 

(Fig.4.1.2). The INNER PRODUCT module collects the multiplications of 𝑟0𝑖,𝑗𝑟𝑖,𝑗 , 

𝑟0𝑖,𝑗𝐴𝐩𝑖,𝑗,  𝑖,𝑗𝐴𝐭𝑖,𝑗, 𝐴𝐭𝑖,𝑗𝐴𝐭𝑖,𝑗, and these multiplications are summed up to compute the 

inner product of  𝐫0
∗, 𝐫𝑛 , (𝐫0

∗, 𝐴𝐩𝑛),  𝐴𝐭𝑛, 𝐭𝑛 , (𝐴𝐭𝑛, 𝐴𝐭𝑛) with one clock cycle. Then the  

𝛼𝑛, 𝜁𝑛 and 𝛽𝑛 are computed and sent back to FIT GRID module for the computations 

of (i), (iii), (v) and (vii) in (4.1.8). The execution of FIT GRID module and INNER 

RPODUCT module is controlled by the data strobe (DS) signals from MASTER 

           

 

    Fig.4.1.6 The whole configuration of FIT dataflow machine 
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SCHEDULER module.  

4.1.3 Division Circuit with Multiple Precision Integer Format  

The hardware implementation of the FIT method scheme is not suitable for the floating-

point calculations with a large hardware size, as mentioned in Chapter 3.4.2. Also, the 

hardware implementation of the FIT scheme and matrix calculations in fixed-point 

arithmetic with integer format calculations is essential. In particular, the division 

calculations using the BiCG-Stab method require at least double-precision calculations, 

which must be performed through integer format operations without degrading precision. 

In addition, VHDL can not support the integer calculations beyond 32 bits. In this research, 

it is considered to design a division circuit with multiple precision integer formats on the 

hardware. 

In this research, we examine a circuit that executes arbitrary multiple-precision integer 

division in one clock without depending on precision, which is based on this standard 32-

bit integer division in VHDL. The division circuit proposed in this research is explained 

using the example of division between 96 bits (equivalent to 29 decimal digits) shown in 

Fig.4.1.7. Firstly, the 96-bit divisor (den) and dividend (num) are divided into 16-bit units 

and express as follows: 

num= 0  280   1  264   2  248   3  232   4  216  

                                                                                                         5  20 

 4.1.9  

and 

den=d0  280  𝑑1  264  𝑑2  248  𝑑3  232  𝑑4  216  

                                                                                                        𝑑5  20 

 4.1.10  

that is to say, this division num/den=(ND) can be written as follows, 
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ND =
num

d n
  4.1.11  

Then, the first term d0  280 is divided by the numerator and denominator at the same 

time, to obtain the following equatuion, 

ND =

num
𝑑0  280

d n
𝑑0  280

  4.1.12  

For the numerator, VHDL standard 32-bit division can be used to calculate   0  216  

 1  𝑑0,  

 0  216   1 ≡  𝑞 1  𝑑0   𝑟 1   4.1.13  

where, the quotient nq(1) and the reminder nr(1) are calculated. Then, the remainder nr(1) 

(16-bit or less) with the next lower 16-bit n2 forms a new 32-bit value,   𝑟 1  216  

 2 , and this value is used to divide d0 as follows, 

 𝑟 1  216   2 ≡  𝑞 2  𝑑0   𝑟 2   4.1.14  

where, the quotient nq(2) and the reminder nr(2) are calculated, as shown in Fig.4.1.8. 

By repeating this process, the numerator 
num

𝑑0 280
 of (4.1.12) can be rewritten as, 

𝑁 =   𝑞 1  264   𝑞 2  248   𝑞 3  232   𝑞 4  216

  𝑞 5  20  2−80 

 4.1.15  

 

Fig.4.1.7 16-bit register allocation for multiple precision division 

n0 n1 n2 n3 n4 n5

d0 d1 d2 d3 d4 d5

ND=

： 16-bit register
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and similarly, when calculating the second term in the denominator of (4.1.12), we can 

get, 

ε =  𝑑𝑞 1  264  𝑑𝑞 2  248  𝑑𝑞 3  232  𝑑𝑞 4  216

 𝑑𝑞 5  20  2−80 

 4.1.16  

where dq(i) represents the quotient (16 bits) of each 32-bit division. From the above, the 

(4.1.12) can be rewritten as, 

ND =
𝑁

1  ε
  4.1.17  

where, ε ≪ 1, so that (4.1.17) can be expanded as follows, 

ND = 𝑁   1  ε  1  ε2  ε4  ε6  ⋯   4.1.18  

By truncating the infinite series with sufficient precision required for the computation, 

the division in (4.1.11) can be performed with only 32-bit division. For example, it is 

sufficient to use up to the term that has the precision equivalent to double precision for 

 

Fig.4.1.8 Multiple precision division circuit 
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BICG-Stab matrix calculation. At that time, since the series of division processing in Fig. 

4.1.8 does not include any registers and is composed of combinational circuits in principle, 

this division processing can be executed in one clock. Also, in the variants from (4.1.11) 

to (4.1.12), the value of the denominator den is not necessarily large enough to occupy 

the entire register, especially when most of the high-order bits are zero, d0 are all 0 in 16 

bits, and (4.1.12) cannot be calculated. For this reason, in general, the denominator is first 

carried until the most significant bit (MSB) of the denominator den becomes non-zero 

before processing (4.1.12). That is to say, the shift left by the number of zeros is in the 

high-order bits. Then, it is stored in another register (Fig.4.1.8). In Fig.4.1.9, there are k 

bits of 0 in the high-order bits of the denominator den, and the left-justified value is the 

temporary divisor (dent), 

dent=d 0  2 96− 𝑘+16   𝑑 1  2 96− 𝑘+32   𝑑 2  2 96− 𝑘+48   

𝑑 3  2 96− 𝑘+48   𝑑 4  20               
 4.1.19  

and then, the (4.1.12) can be rewritten as, 

ND =

num
𝑑 0  2 96− 𝑘+16  

1  
𝑑 

𝑑 0  2 96− 𝑘+16  

  4.1.20  

By applying the process after (4.1.13) above to (4.1.20), which corresponds to (4.1.17), 

ND =
𝑁𝑇  2− 96− 𝑘+16  

1  𝜀  2− 96− 𝑘+16  
  4.1.21  

 

Fig.4.1.9 Register allocation for multiple precision division when denominator k bits is zero 

(d0 = 0) 
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where, 𝑁𝑇 =
num

𝑑𝑡0
 and εt =

dt

𝑑𝑡0
. 

4.1.4 Numerical Examples 

As mentioned in the last section, DS control signals are generated in the MASTER 

SCHEDULER module. Fig.4.1.10 shows an example of the DS signals, it takes 8 clock 

cycles for one iteration of BiCG-Stab in (4.1.8) to complete, and it costs a total of 272 

 

Fig.4.1.11 The 2-D numerical model for inductor 

coil

magnetic materials

 

Fig.4.1.10 Data strobe control signals generated at MASTER SCHEDULER module 
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clock cycles until to the residual 𝐫𝑛 converges. 

In addition, the FIT dataflow machine intended for 2-D magneto-static field simulation 

is designed by using hardware description language, namely VHDL. Fig.4.1.11 shows a 

2-D numerical model for the inductor, and this 2-D numerical model is discretized in the 

grids space with 16 16 grids, the outer boundary was set to be 0. Then the magnetic 

vector potential distribution of the 2-D numerical model is simulated by C language and 

VHDL simulation, revealing that the results of C language for simulation and VHDL 

simulation have a good appointment. That means, the designed logic circuit of BiCG-

Stab matrix solver for FIT scheme can operate correctly. Furthermore, if we implement 

this designed dataflow machine on 50-MHz FPGA, it will cost about 6𝜇  to obtain the 

result. then the computation time for C language based on a standard PC with Core i5 

CPU will cost about 40ms. That means, FIT dataflow machine has more than 6000 times 

performance. 

 

 

(a) C language                         (b) VHDL simulation 

Fig.4.1.12 Simulation result of magnetic fields force 

magnetic materials

coil

magnetic materials

coil
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4.2 Dedicated Computer for 3-D Electro-static Field 

Simulation 

In the last section, the design of dataflow machine for 2-D magneto-static field is 

discussed. In this section, the design of FIT dataflow machine for 3-D electro-static field 

simulation is explained. As mentioned in Chapter 3.1.1, the Poisson’s equation is the basis 

of electro-static field. Then, the calculation of 3-D electro-static field is simulated based 

on FIT (Chapter 3.2.2). After a discretization of the whole grids space of 3-D electro-

static field, the distribution of electric potential in the form of matrix equation is obtained. 

To solve this matrix equation, a same iterative method as 2-D magneto-static field case is 

considered, that is, BiCG-Stab scheme. In addition, a “sliced 3-D architecture” is 

considered for 3-D field simulation performed in FDTD dataflow machine (Chapter 

2.3.2). Also, the implementation of the BiCG-Stab matrix solver scheme on the hardware 

circuit (Chapter 3.4) is discussed. Finally, the FIT dataflow machine for 3-D electro-static 

field simulation is designed by using the hardware description language VHDL (Chapter 

3.4.2). 

4.2.1 FIT Scheme for 3-D Electro-static Field  

  The behavior of electro-static field can be expressed as the following Poisson’s 

Equation for the scalar potential ∅, 

∇ ∙  𝜀∇∅ =  𝜌  4.2.1  

E= ∇∅  4.2.2  

where, 𝜀 represents the permittivity, ∅ represents the scalar potential, 𝜌 represents the 

charge density, and E represents the electric field intensity. Considering that the case of 
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3-D electro-static field is discussed, the following equation holds, 

𝐄 = (

𝐄𝑥

𝐄𝑦

𝐄𝑧

) =

(

 
 
 
 
 

𝜕∅

𝜕 

 
𝜕∅

𝜕 

 
𝜕∅

𝜕 )

 
 
 
 

  4.2.3  

Then, the integral form of the Equation (4.2.1) is presented as follows, 

∯  𝜀∇∅ ∙ 𝑑𝐒
𝑠

=  ∰ 𝜌𝑑𝑣
𝑣

  4.2.4  

After the discretization in a grid space in FIT scheme for the above Equation (4.2.4) as 

shown in Fig.4.2.1. The following equation can be obtained, 

∆𝑆 𝐷𝑥2  𝐷𝑦2  𝐷𝑧2  𝐷𝑥1  𝐷𝑦1  𝐷𝑧1 =  𝜌𝑖,𝑗,𝑘∆𝑣  4.2.5  

where 𝐷𝑥 , 𝐷𝑦  and 𝐷𝑧  are referred to as the electric displacement. Then, the above 

Equation (4.2.5) can be rewritten as follows, 

 𝑖,𝑗,𝑘
0 ∅𝑖,𝑗,𝑘   𝑖,𝑗,𝑘

1 ∅𝑖+1,𝑗,𝑘   𝑖,𝑗,𝑘
2 ∅𝑖,𝑗+1,𝑘   𝑖,𝑗,𝑘

3 ∅𝑖,𝑗,𝑘+1   𝑖,𝑗,𝑘
4 ∅𝑖−1,𝑗,𝑘

  𝑖,𝑗,𝑘
5 ∅𝑖,𝑗−1,𝑘   𝑖,𝑗,𝑘

6 ∅𝑖,𝑗,𝑘−1 =  𝜌𝑖,𝑗,𝑘∆𝑣 
 4.2.6  

where,  

 𝑖,𝑗,𝑘
1 =

𝜀𝑖,𝑗,𝑘  𝜀𝑖,𝑗,𝑘−1  𝜀𝑖,𝑗−1,𝑘−1  𝜀𝑖,𝑗−1,𝑘

4
, 

  𝑖,𝑗,𝑘
2 =

𝜀𝑖,𝑗,𝑘  𝜀𝑖,𝑗,𝑘−1  𝜀𝑖−1,𝑗,𝑘−1  𝜀𝑖−1,𝑗,𝑘

4
, 

 𝑖,𝑗,𝑘
3 =

𝜀𝑖,𝑗,𝑘  𝜀𝑖,𝑗−1,𝑘  𝜀𝑖−1,𝑗−1,𝑘  𝜀𝑖−1,𝑗,𝑘

4
,  

 𝑖,𝑗,𝑘
4 =

𝜀𝑖−1,𝑗,𝑘  𝜀𝑖−1,𝑗,𝑘−1  𝜀𝑖−1,𝑗−1,𝑘−1  𝜀𝑖−1,𝑗−1,𝑘

4
, 

 𝑖,𝑗,𝑘
5 =

𝜀𝑖,𝑗−1,𝑘  𝜀𝑖,𝑗−1,𝑘−1  𝜀𝑖−1,𝑗−1,𝑘−1  𝜀𝑖−1,𝑗−1,𝑘

4
, 

  𝑖,𝑗,𝑘
6 =

𝜀𝑖,𝑗,𝑘−1  𝜀𝑖,𝑗−1,𝑘−1  𝜀𝑖−1,𝑗−1,𝑘−1  𝜀𝑖−1,𝑗,𝑘−1

4
, 

 𝑖,𝑗,𝑘
0 =  𝑖,𝑗,𝑘

1   𝑖,𝑗,𝑘
2   𝑖,𝑗,𝑘

3   𝑖,𝑗,𝑘
4   𝑖,𝑗,𝑘

5   𝑖,𝑗,𝑘
6  

 

 4.2.7  
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To construct the matrix equation based on the discretization Equation (4.2.6) for all 

grid points as shown in Fig.4.2.2. The final FIT matrix equation is obtained. And then the 

information about distribution of the magnetic field can be obtained by solving the matrix 

equation in Fig.4.2.2. 

4.2.2 Hardware Circuit of BiCG-Stab Matrix Solver 

In this case for 3-D electro-static field simulation, the same iterative method as in the 

case of 2-D magneto-static field simulation is adopted. The unit grid circuit of BiCG-Stab 

   

Fig. 4.2.1 FIT discretization in 3-D grid space  
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Fig. 4.2.2 FIT scheme matrix equation 
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matrix solver for 3-D electro-static field is shown in the Fig.4.2.3. Then if many unit grid 

circuits are interconnected all over the 3-D grids space, such as the allocation of 2-D 

magneto-static field, this allocation can indeed achieve an extremely high-performance 

computation. However, such the 3-D grid circuits will result in a large hardware size, and 

it is impossible to be implemented in a single LSI (Large-Scale Integrated Circuits). 

To avoid a very large hardware size, a “3-D sliced structure” is considered and 

implemented in a 3-D FDTD dataflow machine for microwave simulation (Chapter 2.3.2). 

The basic “3-D sliced structure” is shown in Fig. 4.2.4. There are 3 gird circuits arranged 

vertically, and they are called “arithmetic 3 grid circuit”. The upper and lower grid circuits 

only have registers to store the unknown values (𝐩𝑛, 𝐭𝑛, 𝐱𝑛, 𝐫𝑛, 𝐴𝐩𝑛, 𝐴𝐭𝑛) of iterative 

   

Fig. 4.2.3 Unit grid circuit of BiCG-Stab matrix solver for 3-D electrostatic field 

 

 

x

yz

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

n

−

−

−

: multiplier

: adder

(0) ( )( , )i i nr r



 

96 

 

process in BiCG-Stab scheme (4.1.8) and the coefficients value 

( 𝑖,𝑗,𝑘
0 ,  𝑖,𝑗,𝑘

1 ,  𝑖,𝑗,𝑘
2 ,  𝑖,𝑗,𝑘

3 ,  𝑖,𝑗,𝑘
4 ,  𝑖,𝑗,𝑘

5 ,  𝑖,𝑗,𝑘
6 ) of (4.2.7). The middle grid circuit execute the 

iterative process of BiCG-Stab scheme in (4.1.8). This “arithmetic 3 grid circuit” is 

located at the bottom, with the register grid layer added on the top to form a “Sliced 3-D 

dataflow architecture” as shown in Fig.4.2.4. This “Slice 3-D dataflow architecture” 

expands horizontally to all 3-D grids space as shown in Fig. 4.2.4. The calculation and 

vertical shift are alternated to execute the iterative process of BiCG-Stab throughout the 

3-D grids space. For example, for 𝑁𝑧 layers, after the middle grid circuit of “arithmetic 

3 grid circuit” executes the iterative process (i) in (4.1.8), the updated value shift down to 

the lower grid, and the registers of upper grid shift down to the middle grid circuit to 

execute (i) in (4.1.8) until the value of every layer can be updated in all over 3-D grids 

space. 

  

 

Fig. 4.2.4 Sliced 3-D dataflow architecture 
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4.2.3 Numerical Examples 

The whole configuration of FIT dataflow machine for 3-D electrostatic field simulation 

as shown in Fig.4.2.5, which consists of 3 parts, FIT GRID module, INNER PRODUCT 

module and MASTER SCHEDULER. These three parts have same function as the whole 

   

Fig. 4.2.5 The whole configuration of 3-D FIT dataflow machine 
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Fig. 4.2.6 VHDL simulation for MASTER SCHEDULER 

 

 

data strobe for (i) 
system clock 

data strobe for 

data strobe for (ii)

data strobe for (iii)

data strobe for 

data strobe for (iv)

data strobe for (v)
data strobe for (vi)

data strobe for (vii)

operation phase

(i) (ii) (iii) (iv) (v),(vi) (vii)

Cal. shift

Cal. shift

Cal. shift
Cal. shift

Cal. shift



 

98 

 

configuration of 2-D magneto-static field simulation, FIT GRID module executes the 

iterative process of BiCG-Stab scheme, INNER PRODUCT module executes the inner 

product calculations of 𝛼𝑛, 𝜁𝑛, 𝛽𝑛 and then sends back to the FIT GRID module, and 

the MASTER SCHEDULER module generates DS signals to control the execution of FIT 

GRID module and INNER PRODUCT module. The VHDL simulation of MASTER 

SCHEDULER for one iteration process of BiCG-Stab scheme (4.1.8) is shown in 

Fig.4.2.6. In one iteration of BiCG-Stab in all the 3-D grids space, it takes (2𝑁𝑧  5  

3𝑁𝑧  3) clock cycles. 

  The VHDL simulation of one row for the 𝐩𝑛 of (i) in (4.1.8) is taken as an example 

as shown in Fig.4.2.7. When the DS for 𝐩𝑛  at a high level, the middle layer of 

“arithmetic 3 grid circuit” executes the computation for 𝐩𝑛 of (i) in (4.1.8). When the 

DS for 𝐩𝑛 at a low level, the unknown values (𝐩𝑛, 𝐭𝑛, 𝐱𝑛, 𝐫𝑛, 𝐴𝐩𝑛, 𝐴𝐭𝑛) of the iterative 

process in (4.1.8) and the coefficients ( 𝑖,𝑗,𝑘
0 ,  𝑖,𝑗,𝑘

1 ,  𝑖,𝑗,𝑘
2 ,  𝑖,𝑗,𝑘

3 ,  𝑖,𝑗,𝑘
4 ,  𝑖,𝑗,𝑘

5 ,  𝑖,𝑗,𝑘
6 ) of (4.2.7) 

are shift down to the lower layer. Then, it can be confirmed that the computation for 𝐩𝑛 

is executed correctly according to the (i) in (4.1.8). That is to say, the designed “Sliced 3-

D dataflow architecture” is carried out as normal. 

 

 

 

 

Fig. 4.2.7 VHDL simulation result for one row of 3-D grids space 
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4.3 Dedicated Computer for Eddy Current Field 

Simulation 

In this section, the conceptual design of dataflow machine for 2-D eddy current field 

simulation and its specific circuit design including matrix solver is explained. As 

mentioned in Chapter 3.1.3, the basic equation for the behavior of eddy current fields 

were introduced. Then, the calculation of 2-D eddy current fields is simulated based on 

FIT (Chapter 3.2.2). After a discretization of the whole grids space of 2-D eddy current 

fields, we obtain the distribution of magnetic potential in the form of matrix equation. To 

solve this matrix equation, it is considered to use the same iterative method as 2-D 

magneto-static fields, that is BiCG-Stab (Chapter 3.3.3). Also, the implementation of the 

BiCG-Stab matrix solver scheme on the hardware circuit (Chapter 3.4) is discussed. 

Finally, the FIT dataflow machine for 2-D eddy current field simulation is designed by 

using the hardware description language VHDL (Chapter 3.4.2). 

4.3.1 FIT Scheme for 2-D Eddy Current Field  

  The behavior of eddy current field can be described by using the following vector 

Poisson’s Equation for the scalar potential A, 

∇  (
1

𝜇
∇  𝐀) =  σ

𝜕𝐴𝑧

𝜕 
 𝐽0𝑧  4.3.1  

where, 𝜇  represents the permeability, 𝜎  represents the conductivity of conductor, 𝐽 

represents current density. After discretization in a grid space in FIT scheme for the above 

Equation (4.3.1) as shown in Fig.4.2.1. The following equation can be obtained, 
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(
𝜎

∆ 
 

𝐶1  𝐶2  𝐶3  𝐶4

2
)𝐴𝑧𝑖,𝑗

𝑛+1 

 
𝐶1

2
𝐴𝑧𝑖,𝑗−1

𝑛+1  
𝐶2

2
𝐴𝑧𝑖+1,𝑗

𝑛+1  
𝐶3

2
𝐴𝑧𝑖,𝑗+1

𝑛+1  
𝐶4

2
𝐴𝑧𝑖−1,𝑗

𝑛+1  

= (
𝜎

∆ 
 

𝐶1  𝐶2  𝐶3  𝐶4

2
)𝐴𝑧𝑖,𝑗

𝑛  

 
𝐶1

2
𝐴𝑧𝑖,𝑗−1

𝑛  
𝐶2

2
𝐴𝑧𝑖+1,𝑗

𝑛  
𝐶3

2
𝐴𝑧𝑖,𝑗+1

𝑛  
𝐶4

2
𝐴𝑧𝑖−1,𝑗

𝑛  𝐉 
 

 4.3.2  

where, 

𝐶1 =
1

2𝜇𝑖−1,𝑗−1
 

1

2𝜇𝑖,𝑗−1
, 𝐶1 =

1

2𝜇𝑖,𝑗−1
 

1

2𝜇𝑖,𝑗
, 

𝐶3 =
1

2𝜇𝑖,𝑗−1
 

1

2𝜇𝑖−1,𝑗
, 𝐶4 =

1

2𝜇𝑖−1,𝑗
 

1

2𝜇𝑖−1,𝑗−1
 

 4.3.3  

where 𝐴𝑧𝑖,𝑗
𝑛  represents the n-th time step value of z-component of the vector potential at 

i-th, j-th grid for x and y directions. According to the above Equation (4.3.2), the (n+1)-

th time step value of 𝐴𝑧𝑖,𝑗
𝑛+1 at i-th, j-th grid can be calculated when the previous time step 

value of 𝐴𝑧𝑖,𝑗
𝑛  is obtained. Then, to construct the discretized equation of (4.3.2) for all 

grids space and time axis, the matrix equation is obtained, as shown in the Fig.4.3.1. In 

the FIT scheme for eddy current fields, the behavior of eddy current fields is described 

by Equation (4.3.1). Then, in addition to being discretized in space, it is also discretized 

in time domain. After the discretization, and to construct the discretized equation for all 

grids space and time axis in matrix form, the matrix equation can be obtained (Fig.4.3.1). 

  

 

Fig. 4.3.1 FIT scheme matrix equation 
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And then, the right hand side of the matrix equation (Fig.4.3.1), except the given value 

current J, there is also the n-th time step value, after addition of these two components, 

the result of (n+1)-th time step can be calculated. Then, the matrix form similar to the 

matrix of magneto-static field case can be found (Fig.4.1.2). 

4.3.2 Hardware Circuit of BiCG-Stab Matrix Solver 

To solve the large sparse matrix equation, the iterative method, BiCG-Stab scheme is 

considered. In addition, the detailed arithmetic circuits of the BiCG-Stab matrix solver 

based on dataflow architecture are designed. Because the discretized matrix equation of 

2-D eddy current fields is the same as the discretized matrix equation of 2-D magneto-

static fields, the circuit connection of iteration process for eddy current fields is also the 

same as in the case of magneto-static fields, as shown in Fig.4.3.2. It has been known that, 

the circuit connection of iteration process of BiCG-Stab scheme for 2-D eddy current 

   

Fig. 4.3.2 Circuit connection for the iterative process of BiCG-Stab scheme 
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fields is the same as in the case of 2-D magneto-static fields. Then for the entire arithmetic 

circuit in the unit grid is discussed in detail. As shown in Fig.4.3.3, on the right hands side 

of the matrix equation, there are two components, not only the given value J, but also the 

result of previous time step 𝐀𝑛. After addition of these two components, the vector v is 

 

Fig. 4.3.3 FIT scheme matrix equation 
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Fig. 4.3.4 Circuit connection for the initial value setting of BiCG-Stab scheme 
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obtained. Then, the dataflow machine executes the iteration process similar to the case of 

2-D magneto-static fields. In addition, the right-hand side of the matrix equation is 

reconstructed, and the initial value of BiCG-Stab scheme is also need to be reset. 

Therefore, it is considered to design two more circuits for calculating the reconstruction 

on the right-hand side, and setting the initial value, as shown in Fig.4.3.4. After the last 

iteration process is completed (the bottom left of Fig.4.3.4), the last time step value 𝐀𝑛 

is updated to calculate the right-hand side of matrix equation (the bottom right of 

Fig.4.3.4). Then, the initial value is reset (the upper right of Fig.4.3.4). 

4.2.3 Numerical Examples 

The whole configuration of FIT dataflow machine for 2-D eddy current field simulation 

 

Fig. 4.3.5 The whole configuration of 2-D eddy current fields dataflow machine 
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as shown in Fig.4.3.5, which consists of three parts, the FIT GRID module including the 

circuit of right-hand side of matrix equation reconstructed and the circuit of initial value 

reset, the INNER PRODUCT module and the MASTER SCHEDULER. These three parts 

have the same function as the whole configuration of 2-D magneto-static field simulation, 

FIT GRID module executes the iterative process of BiCG-Stab scheme, the INNER 

PRODUCT module executes the inner product calculations of 𝛼𝑛 , 𝜁𝑛 , 𝛽𝑛  and sends 

back to the FIT GRID module, the MASTER SCHEDULER module generates DS signals 

to control the execution of FIT GRID module and INNER PRODUCT module. The 

 

Fig. 4.3.6 VHDL simulation for MASTER SCHEDULER 

 

 

data strobe for (vii)

system clock

data strobe for 

data strobe for (i)

data strobe for (ii)

data strobe for 

data strobe for (iii)

data strobe for (iv)

data strobe for (v)

data strobe for (vi)

operation phase

Right-hand side

Initial value reset

Single iteration of BiCG-Stab
Clear and initial value reset Next time step iteration process of BiCG-Stab

Previous time step iteration process of BiCG-Stab

 

Fig. 4.3.7 VHDL simulation result for clear and initial value setting and one iteration  
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VHDL simulation of MASTER SCHEDULER for one iteration process of BiCG-Stab 

scheme (4.1.7) is shown in Fig.4.3.6. In one iteration of BiCG-Stab in all the 2-D grids 

space, it takes 12 clock cycles, and the process of reconstructing and resetting the initial 

value takes 2 clock cycles. 

  During VHDL simulation, the clear and initial setting process is conducted to confirm 

that the circuits of reconstruction and initial value reset are performed correctly. In 

addition, VHDL simulation of one iteration process of BiCG-Stab scheme is performed 

to confirm the circuits of iteration process of BiCG-Stab shceme in unit grid can be carried 

out correctly. Also, these two parts between clear and initial value setting with iteration 

process of BiCG-Stab scheme can be connected smoothly and correctly to perform the 

arithmetic circuits. 
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Chapter 5  

Summary 

In this research, we mainly focus on the development of FIT dataflow machine based 

on the BiCG-Stab scheme, and the design of overview architecture of dedicated computer. 

Then, VHDL simulation is performed to confirm the correctness of designed logic circuit. 

In summary, we have accomplished the following things: 

(1) As one part of the development of portable, low-power HPC technology for 

electromagnetic field simulation through the dataflow architecture dedicated computer 

method, we investigate an arbitrary multiple-precision integer division circuit for high-

speed matrix calculations in order to further expand the application fields. An arbitrary 

multiple-precision integer division can now be executed in one clock. 

 (2) We develop a FIT dataflow machine for the simulation of 2-D magneto-static fields. 

The detailed dataflow circuits of the BiCG-Stab matrix solver for the FIT matrix equation 

are designed, and the whole configuration of the entire system of the dedicated computer 

is designed, including the FIT GRID module, the INNER PRODUCT module, and the 

MASTER SCHEDULER module. In addition, the dataflow machine of the FIT dedicated 

computer for 2-D magneto-static field simulation is designed by using the hardware 

description language, VHDL. The result of VHDL simulation is compared with that of C 

software simulation to confirm the correctness and validity of the designed dataflow 

machine.  

(3) We also discuss the FIT dataflow machine for the simulation of 3-D electro-static 
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fields. Also, the specific dataflow circuits of the BiCG-Stab matrix solver for the FIT 

matrix equation are designed, and the whole configuration of the entire system of the 

dedicated computer is designed, including the FIT GRID module, INNER PRODUCT 

module, and the MASTER SCHEDULER module. In addition, to reduce the hardware 

size of dataflow machine to achieve a higher performance machine, it is considered to use 

the “Sliced 3-D dataflow architecture”, and the single BiCG-Stab iteration process for all 

the 3-D grids space takes (2𝑁𝑧  5  3𝑁𝑧  3) clock cycles. Then the logic circuit of the 

vertical grid circuit of 3-D FIT dataflow machine is designed through VHDL to confirm 

that the designed logic circuits for the BiCG-Stab scheme are implemented correctly.  

(4) We discussed the 2-D FIT dataflow machine for the simulation of eddy current fields. 

And the detailed logic circuits based on the BiCG-Stab scheme are designed. In addition, 

the unit grid of BiCG-Stab matrix solver includes three parts, the iteration process circuit, 

the circuit for reconstruction of the right-hand side of FIT matrix equation, and the initial 

value setting circuit. It is confirmed by the VHDL simulation that the circuits designed 

via VHDL for the BiCG-Stab matrix solver in unit grid are carried out correctly. We will 

soon proceed to the VHDL simulation for all grids, and then evaluate performance of the 

2-D FIT dataflow machine for eddy current fields simulation. 
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