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ABSTRACTS 

This study aims to investigate the mechanical behavior of embankments constructed 

from volcanic soil under the independent and combined effect of rainfall and seismic 

loadings. To accomplish this purpose, a series of 1g model experiments on embankments 

were conducted with an apparatus that integrated both the spray nozzle and the shaking table. 

The soil samples were prepared using Komaoka volcanic coarse-grained soils as materials 

with 3 different amounts of fine particle contents (K8.5A, Ksoil, K40A) while the initial water 

content was chosen at 0.9 (dry cases) and 1.1 (wet cases) of optimum water content. In the 

experiments, shear strain, acceleration, pore water pressure, and saturation degree were 

monitored and measured to provide an understanding of the influence of different fine 

particle contents and initial water content on the failure mechanism of the volcanic 

embankment subjected to rainfall and earthquake. In post-rainfall earthquake tests, the 

seismic loadings were applied at 3 different conditions of pore water pressure inside the 

embankments to clarify the effect of dissipation time between rainfall and earthquake. The 

results of post-rainfall earthquake cases in this study were compared with those in the cases 

of post-earthquake rainfall in previous research to investigate the importance of the order 

impact of external forces. The physical model test results were also compared with previous 

research including element tests and disaster reports. Besides, modern techniques of artificial 

intelligence were applied to predict the water retention characteristics of volcanic slopes.  

The results show that the previous rainfall plays an important role in evaluating the 

stability of embankments under subsequent earthquakes through water retention conditions 

inside the slope such as rainfall-induced residual pore water pressure and saturation degree. 

The fine particle content has a great influence and must be taken into account when studying 

the stability of the volcanic embankment under the independent or combined effects of 

rainfall and earthquake. At the same degree of compaction, the permeability of volcanic soils 

decreases with the increase in the fine grain content. The earthquake resistance of the 

compacted volcanic embankments subjected to previous rainfall increases as the fine content 

increases. Even so, this increment in seismic strength is not significant when the fines content 

is higher than 27%. Initial water content has a great influence on the mechanical behavior, 

infiltration characteristics, and failure phenomenon of embankments due to rainfall and/or 

earthquakes. The permeability of the compacted soil on the wet side of the optimum moisture 

content is less than it is on the dry side when the fine grain content of the soil is sufficiently 

large. In contrast, embankments compacted on the wet side exhibit less resistance to 

subsequent earthquakes under the same shear strain due to previous rainfall. When 

embankments are subjected to dual disasters, the slope stability may vary for different orders 

of earthquake and rainfall even though the preceding received shear strain is similar. Finally, 

a simple method to evaluate slope stability in practice with the measured water content as 

the object of assessment was proposed based on the change in soil infiltration capacity. 

Machine learning models can be applied to predict pore water pressure values from historical 

data. Daily updates of the dataset and the climate data can significantly improve prediction 

accuracy.  
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INTRODUCTION 

 Overview of the research topic 

In recent times, temperatures and precipitation have both broken new records almost 

every year in Japan and throughout the world. Global warming caused by climate change 

has increased the number of natural disasters; and dual disasters, thus, have become more 

common. In particular, rainfall, when combined with other effects such as cyclic loadings or 

freeze-thaw actions, will cause more unpredictable consequences. That complex effect for 

natural or artificial soil structures has long been recognized. For example, Terzaghi (1950) 

[72] stated that rainfall is rarely the sole reason for failure on a long-standing slope that has 

experienced many heavy rainstorms in the past. Although some research has been made on 

the influence of dual disasters on soil structures using element tests such as triaxial 

experiments, studies based on the results of model tests are still quite restricted. Thanks to 

its ability to simulate real conditions and phenomena, the model is widely applied in the 

study of all geotechnical problems, especially complex mechanisms such as the impact of 

double disasters. Similar to other topics, the failure of embankments subjected to post-

earthquake rainfall has been investigated by model experiments as in some recent studies 

[21, 32, 83]. This fact raises the need to use model tests to study slope stability under the 

effect of post-rainfall earthquakes. 

Among dual hazards, post-rainfall earthquakes are not uncommon in the past and 

have always caused large landslides, such as the 1968 Tokachi-oki earthquake and the 2004 

Niigata Chuetsu earthquake. Moreover, earthquakes that occurred after typhoons are always 

among the costliest disasters, such as Typhoon Hagibis in 2019, or Typhoon Jebi in 

combination with the 2018 Hokkaido Eastern Iburi earthquake (see Figure 1.1). The effect 

of the catastrophic ground disaster in 2018 was reported in the following literature. 

Kawamura et al., (2019) [32] analyzed the large-scale slope failure/landslide in the towns of 

Atsuma and Abira; including slope failure for a gentle slope, surface slope failure, river 

blockage, and rock slide. Besides, the mechanical and physical characteristics of the 

collapsed pyroclastic fall deposits spread over this area were also presented. As for the 
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Sapporo city area, Ishikawa et al., (2021) [21] found cracks and subsidence in the road 

system after the 2018 earthquake, which were not noticed in the 2003 Tokachi earthquake 

with a higher magnitude. According to the hypotheses of the authors, these differences in 

damage scenarios between two large disasters may caused by Typhoon Jebi which occurred 

before the 2018 earthquake, raising groundwater levels. Similarly, Watabe and Nishimura 

(2020) [83] reported the liquefaction disaster caused by the 2018 earthquake in the Satozuka 

district where the valley was filled with Spfl pumice sand deriving from the Lake Shikotsu 

caldera. The effect of previous rainfall was also considered a potential factor in the scenario 

of the liquefaction phenomenon that occurred in Sapporo. These disaster reports posed the 

need to experimentally verify the influence of antecedent rainfall on the earthquake 

resistance of embankments. Through lessons learned from this double disaster that occurred 

in Hokkaido in 2018, Ishikawa et al., (2021) [21] proposed future research directions for 

geotechnical engineering in general and geo-disaster prevention, particularly mitigation 

administration. One of these is the assessment of the liquefaction risk which needs to take 

into account the influence of rainfall and the rise of groundwater levels due to climate change. 

Moreover, rainfall-induced sedimentary disaster warning maps also need to be appropriately 

adjusted to the occurrence of earthquakes and the peculiarity of the material properties of 

crushable weathered volcanic soils. 

 

  

Figure 1.1 Damage situation in Sapporo city in the 2018 Hokkaido Eastern Iburi 

Earthquake (from the report of JGS) 

 

Volcanic soils (pyroclastic fall deposits or pyroclastic flow deposits) are widely 

encountered in many countries around the world and they underlay the surface geology in 

several areas of high population density, which makes an understanding of their geotechnical 

properties of great importance. In nature, volcanic soils are often able to support slopes with 

high angles under normal conditions. This advantage makes it be utilized as a useful 

construction material, especially manmade earth structures such as road embankments or 

plots for housing. In Hokkaido, Japan, there are over forty Quaternary volcanoes, and 
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pyroclastic materials occupy about 40% of the land area. However, these natural or artificial 

slopes are susceptible to sudden and catastrophic failure, which leads to sediment-related 

disasters such as slope failures, landslides, debris flows, etc. For example, Table 1.1 shows 

the failures of volcanic grounds and slopes due to rainfall and earthquakes in Hokkaido over 

the past five decades. 

 

Table 1.1 Recent rainfall- and earthquake-induced failures of volcanic slopes in Hokkaido, 

Japan (Kawamura et al., (2019) [32]) 

Time Disasters 
Amount of 

rainfall 

Magnitude 

for JMA 
Disaster type Origin of volcanic soil 

1968/5/16 
Tokachi-oki 

earthquake 
- 7.9 Liquefaction Shikotsu pumice flow deposits 

1973/9/23~24 Heavy rainfall 268mm - Slope failure Komagatake fall deposits 

1975/8/23 Typhoon 6th Not clear - Slope failure Komagatake fall deposits 

1979/10.2 Typhoon 10th 191mm - Slope failure Komagatake fall deposits 

1980/8/28~31 Iburi-Heavy rainfall 600mm - Slope failure Kuttara flow deposits 

1990/11/5 Heavy rainfall 195mm - Slope failure Komagatake fall deposits 

1993/1/15 
Hokkaido Kushiro-

oki earthquake 

- 
7.8 

Slope failure Pumice flow deposits 

- Slope failure Kusharo pumice flow deposits 

1993/7/12 
Hokkaido Nansei-oki 

earthquake 
- 7.8 Liquefaction Komagatake flow deposits 

1994/10/4 
Hokkaido Toho-oki 

earthquake 
- 8.2 Slope failure Pumice flow deposits 

1998/9/16 Typhoon 5th  305mm - Slope failure Komagatake fall deposits 

1999/4/13 
Rainfall after 

freezing and thawing 

380mm 

(including snow-

melting water) 

- Slope failure  
Toya pumice flow deposits, 

Setana formation, etc. 

2000/10/3 Heavy rainfall 201mm - Debris flow Komagatake fall deposits 

2003/9/26 
Tokachi-oki 

earthquake 

- 
8.0 

Slope failure Kusharo pumice flow deposits 

- Liquefaction Shikotsu pumice flow deposits 

2006/8/18~19 Typhoon 10th 425mm - 
Slope failure, 

Debris flow 

Shikotsu, Tarumae, Eniwa fall 

deposits 

2014/9/10~11 Heavy rainfall 335mm - 
Slope failure, 

Debris flow 

Shikotsu, Tarumae, Eniwa fall 

deposits 

2018/9/6 
Hokkaido Eastern 

Iburi earthquake 
 6.7 

Liquefaction, 

Slope failure 

Shikotsu, Tarumae, Eniwa fall 

deposits 

 

As shown in Table 1.1, it can be seen that volcanic ground and slopes witnessed the 

most severe damage caused by geological disasters in the Hokkaido region. The failures are 

caused by the inexplicable performance and topography of volcanic soils which cannot be 
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discussed in the same category as conventional soils. For these reasons, volcanic soil is 

difficult to design or construct and is known as problematic soil in the field of conventional 

engineering. Moreover, volcanic activity is the source of this soil formation and is also one 

of the causes of earthquakes. As a result, sediments tend to be found in earthquake-prone 

countries like Japan. It should be mentioned that the damage to structures, such as roads and 

bridges, was minor in comparison to past earthquakes in Japan. Thus, an undesirable 

scenario is that the post-rainfall earthquake as discussed above could occur again in the 

future in Hokkaido. This situation requires an urgent need for comprehensive measures to 

prevent and mitigate natural disasters.  

One of the existing problems with the coarse-grained volcanic soil of Hokkaido is 

that its fine content is easily altered by particle crushing when subjected to external factors 

such as consolidation, freeze-thawing, earthquakes, or compaction [20, 52]. In the above-

mentioned report on the liquefaction disaster in the Satozuka district after the 2018 Hokkaido 

Eastern Iburi earthquake, to provide a reasonable scenario for the observed ground 

movements, Watabe and Nishimura (2020) [83] conducted physical and mechanical tests 

with soil samples prepared based on actual field conditions prior to the earthquake: the 

degree of compaction was 70–75%, compaction water content was 47.2%, and fine particles 

content was quite high of about 40%. Although a high fine-grained content may imply high 

seismic resistance to many geotechnical engineers, the results showed that the pumice fill 

was still highly susceptible to liquefaction. However, parametric studies have not been 

performed with different fine particles and initial water content to investigate their effect on 

the mechanical behavior of the soil. As can be seen, although the fine content of soils has a 

significant impact on the mechanical properties and hydraulic conductivity of cohesionless 

soils, its influence is currently ignored in design procedures. In addition, the use of the fine 

grains content increment as a degree of crushability, proposed by Miura and Yagi (1997) 

[50], has been widely applied. Therefore, assessing the effect of fine particle content is also 

synonymous with evaluating the influence of crushability. For these reasons, the study of the 

effects of fine particle content is widely performed by elemental experiments such as triaxial 

tests. Among these studies, Hieu et al., (2017) [16] evaluated the internal erosion and piping 

phenomenon of volcanic soil with different fine grain contents under the same dry density 

condition. However, regulations for backfill or embankments in design practice often focus 

on compaction degree rather than dry density. To simulate this fact, three samples of volcanic 

coarse-grained soil with different fine content were prepared for 1g model tests with the 

same degree of compaction but three different void ratios.  

Besides natural disasters, the rapid development of the economy is putting heavy 

pressure on the natural environment and infrastructure system. Therefore, an important 

factor in ensuring sustainable development is the effective working of early warning systems. 

The experimental results in this study indicated that soil water retention characteristics such 
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as moisture content and pore water pressure play an important role in the evaluation of 

embankment stability. However, it is impossible to monitor these data in all locations at all 

times. This leads to the need to constantly improve and upgrade predictive models. Soil 

mechanics theory and geotechnical software used in analysis and design always contain 

human biases. In contrast, artificial intelligence models cannot focus on evaluating 

phenomena because they only include numerical inputs and outputs. So there may be 

problems these models detect while we do not. For that reason, forecasting techniques need 

to apply machine learning to make up the bigger picture. The determination of soil moisture 

currently requires the use of an oven and takes about 1 day. However, in cases where high 

accuracy is not required, it is very convenient to determine the water content immediately 

based on the image of the soil. In recent times, computer vision technology has been driven 

by the development of deep learning, another application of artificial intelligence. This fact 

facilitates the application of these techniques in moisture prediction based on soil images. 

 Objectives and purpose of the research 

With the analysis of the actual situation in section 1.1, it is necessary to study 

"Stability Evaluation of Volcanic Embankments Subjected to Seismic Loadings and 

Rainfall". To achieve the research purpose, the thesis has solved the following specific 

objectives: 

① Using the physical model test to clarify the mechanical behavior of the volcanic 

embankments under the independent and combined effects of rainfall and earthquake 

at different initial conditions such as water content, fine particle content, etc. 

② Compare model test results with previous research including element test results and 

disaster reports 

③ Proposing a method to evaluate the stability of volcanic embankments based on 

experimental results and modern techniques 

In this study, a series of 1g model tests were conducted using an apparatus that 

integrated both the spray nozzle and the shaking table. In the experiments, shear strain, 

acceleration, pore water pressure, and saturation degree were monitored and measured to 

provide an understanding of the failure mechanism of the model embankment under the 

independent and combined action of rainfall and seismic loadings. Samples of Komaoka 

volcanic coarse-grained soil in Hokkaido, Japan with three different fine contents were 

prepared at initial water contents on the dry and wet side of the optimum water content. In 

particular, the slope behavior under rainfall before the earthquake was compared with that 

in the case of the earthquake before rainfall to clarify the role of the order of external forces 

on the failure mechanism of the embankment. The test scheme and flow of discussions are 

illustrated in Figure 1.2. 

Research method: This study used quantitative data (expressed in numbers) to 

produce generalizable knowledge about the mechanical behavior of volcanic slopes under 
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the effect of rainfall and subsequent earthquakes. The controlled experimental conditions 

will be carefully designed and fully documented in the study so that they can be replicated 

by other researchers. The primary data is collected by the author, and the secondary data 

(used for comparison) is collected by previous researchers. The existing data were obtained 

through the same experimental method as this study by previous researchers. The 

experimental data is gathered by controlling and manipulating variables while the field 

monitoring descriptive data by gathering observations without intervening. 

Scope of this study: The samples used in this study are Komaoka volcanic coarse-

grained soil from Hokkaido, Japan. The obtained results, discussions, and conclusions will 

extend to volcanic soils in particular and cohesionless soils in general. In terms of time, 

technique and method performed with the field monitoring results from 2012 to 2014 can be 

used for any other periods. 

 

 

Figure 1.2 Test scheme and flow of discussions 

 

 Thesis outline 

This thesis consists of six chapters as shown in Figure 1.3. The main contents of each 

chapter are briefly outlined as follows: 

 

Physical and mechanical 

properties of volcanic soils 

Mechanical behavior of embankments 

constructed by volcanic soil 

Failure mechanism of volcanic 

embankments caused by 

independent effect of rainfall and 

earthquake  

Effect of different fines 

content on mechanical 

behavior of volcanic 

embankments  

Stability evaluation of volcanic embankments subjected to seismic loadings 
and rainfall under various conditions 

Failure mechanism of volcanic 

embankments caused by combined 

effect of rainfall and earthquake  

Effect of different initial 

water content on 

mechanical behavior of 

volcanic embankments  

Effect of different orders 

of external forces on 

mechanical behavior of 

volcanic embankments  
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Figure 1.3 Research outline 

 

⚫ Chapter 1: Introduction 

The current chapter introduces the topic of this study, its urgency as well as 

theoretical and practical implications. The general aims of the thesis are mentioned in its 

scope and limitations. The organization of the thesis is given to achieve the final goals. 

⚫ Chapter 2: Literature Review 

The definitions used in the study and the failure mechanism of the embankments 

under earthquakes and rainfall are briefly presented in this chapter. Then, the author reviews 

previous studies investigating the effects of rainfall and earthquakes on slope stability, 

Stability Evaluation of Volcanic Embankments 

Subjected to Seismic Loadings and Rainfall 

Chapter I 

Introduction 

Chapter II 

Literature Review

Chapter III 

Soil Materials and Testing Methods 

Chapter IV 

Physical Model Test Results and Analysis

Chapter V 

Discussion on Stability Evaluation of Volcanic Slopes 

Chapter VI 

Conclusions and Suggestions 
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especially research conducted using model experiments. 

⚫ Chapter 3: Soil Materials and Testing Methods 

This chapter introduced the properties of the soil materials and the test apparatus used 

in the experiments of this study. Then sample preparation and testing procedures are reported 

so that the results can be reproduced. 

⚫ Chapter 4: Physical Model Test Results and Analysis 

Based on the test samples, equipment, and procedures in the fourth chapter, the 

experimental results were presented and analyzed to show the influence of different 

conditions on the failure of the volcanic embankments under the independent and combined 

effect of rainfall and earthquakes. 

⚫ Chapter 5: Discussions on Stability Evaluation of Volcanic Slopes 

In this chapter, the results of the model tests in Chapter 5 were compared with those 

of the element experiments and disaster reports. In addition, a method of assessing the 

stability of the embankment is proposed based on the trends obtained from the experimental 

results. The feasibility of applying machine learning in predicting the water content of 

volcanic soils was also presented. 

⚫ Chapter 6: Conclusions and Suggestions 

The final chapter summarized the main results obtained in this study and discussed 

the suggestions and proposals in related fields. Finally, ideas for future research were also 

recommended. 
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LITERATURE REVIEW 

 Introduction 

Due to the necessity and urgency presented in Chapter 1, the research problem has 

received the attention of authors around the world. Studies have been carried out using 

various methods and their current status is summarized in this chapter. First, general 

concepts related to this study were briefly defined and categorized. Then the development 

of the application of the modeling technique in geotechnical engineering is presented. 

Outstanding studies on the failure mechanism of embankments subjected to rainfall and/or 

earthquakes are summarized, especially studies based on the results of model experiments. 

Among the studies on slope stability under the effect of dual hazards, the remaining issues 

will be analyzed to highlight the content that this study wants to convey in the next chapters. 

 Definitions and classifications 

Volcanic soils and distribution in Hokkaido, Japan 

In geology, tephra is volcanic soil in a wide sense, which mainly refers to volcanic 

ash and pumice, which are solid elements included in volcanic gas produced by explosive 

volcano eruptions. In other words, tephra is clastic debris blasted by volcanoes and carried 

through the air, as opposed to lava. Tephra deposits are roughly classified into two classes 

based on the methods by which they originate, namely "pyroclastic fall deposits" (fa) and 

"pyroclastic flow deposits" (fl). The term "pyroclastic fall deposits" (fa) refers to the 

depositing product of volcanic ash and pumice created during the airborne transport of 

volcanic ejecta. Following an eruption with a volcanic column rising over the volcano, 

volcanic ash and pumice erupted and began descending to deposit on the ground when 

gravity and air resistance balanced. Then, because each volcanic product has a range of grain 

sizes and densities, those are chosen based on their proximity to the volcano. As a result, the 

grain size distribution in the Tephra fall deposit is very consistent. The phrase "pyroclastic 

flow deposits" (fl) denotes pumice, volcanic ash, and scoria yielded to gravity action 

generated by a flow or avalanche down the flank of a volcano. As a result, the pyroclastic 

flow deposit is often constituted of fine-grained soils. 
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Figure 2.1 depicts a distribution map of tephra deposits in Hokkaido, distinguishing 

between the tephra fall deposit and the pyroclastic flow deposit (Matsumura (2014 [43]). 

The sampling site of soils utilized in this study, Komaoka districts (⑧ Shikotsu pyroclastic 

flow deposit), is also highlighted in the picture. It can be seen that the tephra fall deposits 

extend eastward across broad distances due to the westerlies, whilst the pyroclastic flow 

deposits remain closer to the volcanoes. 

 

 

Figure 2.1 Distributions of volcanic soils deposited in Hokkaido (Matsumura (2014) [43]) 

 

Table 2.1 Geotechnical classification for volcanic soils by JGS Hokkaido (2011) [25] 

Classification by 

Fines content Fc 

Fc ≥ 50%:                                 

Fine-grained soil 

Fc < 50%: Coarse-

grained soil 

Volcanic cohesive soil {V} 

Low liquid limit (VL) wL > 50% 

Organic soil {O} 

Organic, dark-

colored soil with an 

organic smell 

5% ≤ Fc 

< 15% 

15% ≤ 

Fc < 

50% 50 < wL < 80 wL ≥ 80 

Type I (VH1) Type II (VH2) 
Organic-volcanic 

ash soil (OV) 

(G-V, S-

V) 

(GV, 

SV) 

Classification by 

Stratum, 

Unusual soil, 

Local soil 

colloquial term 

Shirasu Kanto loam Hachinohe loam 

(SV) (VH1, VH2) (VL) 
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Apart from the producing method, sedimentary structure, components, distributional 

area, and degrees of weathering vary substantially with the depositional environment and 

influence the mechanical characteristics of volcanic soils. As stated in Table 2.1, the 

Hokkaido section of the Japanese Geotechnical Society (JGS) [25] also offers a geotechnical 

categorization of volcanic soils based on fines content Fc (%) (< 75µm) and liquid limit wL, 

among other factors. In terms of fines content, through investigation of the property and 

application of volcanic soil in Hokkaido, JGS differentiated volcanic soils with Fc < 50% 

and Fc ≥ 50% as "volcanic coarse-grained soil" and "volcanic fine-grained soil," 

respectively. Which, the volcanic coarse-grained soil is the primary or secondary sediment 

produced by volcanic ash, pumice, and scoria, whereas the volcanic fine-grained soil is the 

weathered volcanic coarse-grained soil. The term "primary sediment" refers to the product 

that falls and deposits following an eruption, whereas "secondary sediment" refers to the re-

deposition of the primary sediment on the ground or in water as a consequence of gravity 

action or water movement. 

Embankment 

 

 

Figure 2.2 The standard structure for embankments and cut slopes of expressways 

specified by Nexco Research Institute (2012) [54] 

 

In geology and geography, embankments may refer to: 

- A levee: an artificial bank elevated above the nearby land that frequently follows 

a river's path in its floodplain or along low-lying beaches. Its goal is to prevent 

rivers from altering their course and to safeguard against floods in the region 

around the river or the shore. 

- Fill dam: a sizable man-made dam that is often built by placing and compacting 

a complicated semi-plastic mound made of several types of soil or rock. It 

features a solid, impermeable core and a natural waterproof layer that is semi-

permeable. This renders the dam resistant to seepage or surface erosion. Such a 
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dam is made up of separate material fragments. Instead of using a cementing 

agent, friction and particle contact combine the particles into a stable mass. 

- Embankment in earthworks: a compacted earth structure built higher than the 

surrounding terrain to support a road, railway, or canal at the intended height 

through a low-lying or swampy area. In cases when the land was initially higher 

than needed, a cutting is employed for the same reason. An example of a standard 

structure for embankments and cut slopes in highways required by Nippon 

Expressway Company (Nexco) is shown in Figure 2.2. 

Depending on the degree of direct water exposure and precipitation, the requirements 

for core material, surface, drainage system, … in embankment design are different. 

Slope stability and failure 

Slope stability is the capacity of slopes that are inclined and covered with soil or rocks 

to endure and experience movement. Slope instability or slope failure is the opposite state. 

The ratio between the active shear stress and the available shear strength, which may be 

represented in terms of a safety factor if these numbers are integrated across a possible (or 

real) sliding surface, fundamentally determines how stable a slope is. If the safety factor, 

calculated along every conceivable sliding surface extending from the top of the slope to its 

toe, is always more than 1, then the slope may be said to be globally stable. A slope that was 

previously stable may first be impacted by preparation variables, rendering the slope 

conditionally unstable, either by raising the shear stress or by reducing the shear strength, 

and can ultimately lead to slope failure. Hydrologic events (such as prolonged or intense 

rain, rapid snowmelt, progressive soil saturation, and an increase in water pressure within 

the slope), earthquakes (including aftershocks), internal erosion (piping), surface or toe 

erosion, artificial slope loading (due to the construction of a building), slope cutting (to make 

room for roads, railroads, or buildings), or slope flooding (for example) are some of the 

factors that can cause a slope to fail. 

Rainfall 

A primary type of precipitation is rainfall, which is made up of water droplets that have 

condensed from atmospheric water vapor and subsequently descend to the ground due to 

gravity. The movement of moisture along three-dimensional areas of temperature and 

moisture differences known as weather fronts is the primary factor in the formation of rain. 

Additionally, it is possible for substantial precipitation to occur in mountainous places where 

upslope flow is maximum inside windward sides of the topography at elevation, forcing 

moist air to concentrate and fall out as rainfall along the sides of mountains. Downwind of 

cities, the urban heat island effect causes an increase in rainfall, both in volume and severity. 

The worldwide precipitation pattern is changing as a result of global warming. Rain gauges 

are used to measure rainfall. Weather radar can anticipate how much rain will fall. The 

amount of rain that falls over time is gauged by the intensity of the precipitation. The height 
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of the water layer that gradually covers the ground over time serves as a proxy for rain's 

intensity. It implies that a layer of a specific height would form if the rain stays where it falls. 

Earthquakes 

The shaking of the Earth's surface that results from a rapid release of energy in the 

Earth's lithosphere that generates seismic waves is known as an earthquake, quake, tremor, 

or temblor. Earthquakes cause the ground to shake, move, or otherwise be disturbed at the 

Earth's surface. The bottom may be sufficiently moved to generate a tsunami when a big 

earthquake's epicenter is offshore. Landslides can also be brought on by earthquakes. One 

of the natural causes of earthquakes is volcanic activity. Tectonic faults and magma 

circulation in volcanoes both contribute to the frequent occurrence of earthquakes in 

volcanic areas. Such earthquakes can be used to predict volcanic eruptions in advance. 

Physical model tests 

The assessment of one or more properties of a given product, process, or service via a 

predetermined protocol is the basis of a physical test, which might be qualitative or 

quantitative in nature. Physics, engineering, and quality control all frequently use physical 

testing. Performance testing, which includes a variety of engineering or functional 

assessments if a material, product, or system is not specified by precise material or 

component requirements, is a type of physical testing. The final quantifiable performance 

criteria are instead highlighted. Testing is a process that can be qualitative or quantitative. 

Performance testing is a common component of acceptance testing methodologies. 

A physical model that is geometrically comparable to an object (sometimes referred to 

as the prototype) is called a scale model. Scale models might be bigger than small prototypes, 

although they are often smaller than giant prototypes. In many different industries, scale 

models are utilized for a variety of tasks, including tools for engineering design and testing. 

Despite the fact that structural engineering has been studied for thousands of years and that 

many significant problems have been resolved using analytical and numerical methods, 

many problems are still too complex to be understood analytically or the current numerical 

methods do not have sufficient real-world support. According to the notion of similitude, a 

number of specified quantities must be scaled for engineering scale models. The loading, 

shape, and material qualities of these variables can be roughly divided into three groups. To 

achieve the similitude criteria of scale model manufacture and testing, engineering scale 

models might employ a variety of strategies. 

 Overview of model tests in geotechnical engineering 

In most sciences, experiments provide input to theories and test them. The problem of 

geotechnical engineering in particular and civil engineering in general is the scarcity of 

information about the performance of natural or man-made structures. While soil mechanics 

is required to assume simplified hypotheses about actual phenomena, field monitoring faces 

technical and economic difficulties, especially with disasters such as earthquakes. This 
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situation puts the engineers at a disadvantage and leads to damage to the structure or waste 

due to excessive safety. This leads to the belief that the application of physical model 

experiments in geotechnical engineering brings even greater value than studying structures 

by model. Rocha (1957) [61] was a pioneer in considering the possibilities of employing 

physical modeling experiments to solve soil mechanics issues. After that, the application of 

the model has been widely accepted in the world thanks to its higher reliability and 

practicality compared with element experiments. Many researchers have discussed physical 

modeling for model tests (e.g., Zelikson (1969) [86]; Iai (1989) [18]). Kokusho (2014) [34] 

summarized several patterns of physical modelings for geo-materials. Along with the 

development of technology, measuring devices for physical modeling experiments in the 

geotechnical field are constantly being researched and improved. Minardo et al., (2021) [48] 

used the distributed optical fiber sensors in flume tests with volcanic sand subjected to 

rainfall as well as in the monitoring of a coastal cliff to propose its application in the early 

warning system. Zhang et al., (2018) [87] presented the potential for measurement of deep 

deformation in landslide model tests of a flexible inclinometer probe, a design that includes 

gravity acceleration sensors. As discussed above, one of the driving forces behind the use of 

the model is cost savings compared to field monitoring. Therefore, when studying soil 

mechanics, 1g model tests are usually performed before further steps. Not only the economic 

advantages, the simplicity in operation and results of the 1g model test lead to its importance 

in both research and education. For these reasons, 1g modeling experiments are still widely 

carried out in the identification of the mechanism of the phenomenon in all areas of 

geotechnical engineering, although centrifugal modeling tests have been proposed and 

studied for a long time after Schofield (1980) [64]. Because of the practicality and similarity 

with this study, the research based on the results of model experiments will be presented in 

more detail in this Chapter. 

 Previous studies on the failure of embankments caused by rainfall and earthquake 

2.4.1 Independent effect of earthquake or rainfall 

2.4.1.1. Rainfall only 

In recent years, sediment-related disasters such as landslides, debris flows, etc. caused 

by far-than-expected heavy rainfalls have frequently occurred, leading to the need for 

comprehensive measures to prevent and mitigate the adverse impacts of these natural 

disasters. Along with the development of measuring equipment, experiment apparatus, and 

computers; a huge number of studies on rainfall-induced slope failure have been carried out 

over the past 60 years using a variety of methods: Theoretical studies; Case studies of 

disasters; In-situ field monitoring and measurements: Laboratory experiments; Numerical 

simulations; and some other special methods. Among them, Song and Hao (2017) [68] used 

numerical simulation on a sandy slope to clarify the influence of rainfall intensity and 

duration on the stability and mechanical behavior of railway slopes. Robinson et al., (2017) 
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[60] provided warning and raised awareness by comparing the slope stability under rainfall 

with intensity from history and climate change scenarios. Kusaka and Takahashi (2018) [35] 

conducted a parametric study to determine the influencing factors and the degree of influence 

of each factor on the water level of road embankments under rainfall. Slope height is 

proportional to convergent water level, time to start rising, and convergent time while rainfall 

intensity and saturated permeability are inversely proportional to these. Zhang et al., (2019) 

[88] analyzed the slopes that have weak interlayers during rainfall infiltration with the 

strength reduction technique. After rainwater infiltrates, the weak interlayer is readily 

plastically deformed to create a slip surface, making this type of slope more susceptible to 

damage than others. Mori et al., (2020) [52] presented a method to calculate the runout 

distance of landslides in the conditions of different soil properties and recorded rainfall by 

using smoothed particle hydrodynamics simulation. Through the probabilistic approach, 

surrounding areas that may be affected will be alerted as a result of this study.  

 

 

Figure 2.3 Typical model shapes (60- and 65-degree slopes) and setting positions of 

measurement devices (Kawamura and Miura (2013) [27]). 

 

 

Figure 2.4 The typical shape of failed slope for Komaoka volcanic soil: (a) 45-degree 

slope and (b) 65-degree slope (Kawamura and Miura (2013) [27]). 
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Figure 2.5 The behavior of pore water pressure during model tests for Komaoka volcanic 

slopes: (a) 45-degree slope and (b) 65-degree slope (Kawamura and Miura (2013) [27]). 

 

Kawamura and Miura (2013) [27] presented the influence of slope angle on the failure 

mechanism of embankments constructed by many kinds of volcanic soils including 

Komaoka (see Figure 2.3). The deformation behavior and failure shape of Komaoka volcanic 

slopes with the angle of 45- and 65-degree slopes are shown in Figure 2.4 (a) and (b). The 

depths of the collapse region for the 65-degree slope are shallower than those for the 45-

degree slope, as indicated in the image, and are similar to those of the other volcanic soils. 

The difference in failure patterns between Komaoka and other volcanic soils such as 

Touhoro was that the first failure (slip line 1) was generated at the toe of slopes, and the 

second failure (slip line 2) was induced with an increase in groundwater level for each slope 

regardless of slope angle. In terms of pore water pressure behavior, the pressure ratios around 

the slip line steadily grew until Δu/σ’v0 reached 1 or higher, and then the ratios around slip 

line 2 similarly increased, as illustrated in Figure 2.5. Although the variation in behavior 

appears to be based on soil material qualities, the behavior of pore water pressure still can 

effectively explain the aforementioned failure occurrence. Based on those results, it is 

critical to understand the water retention capacity properties of soil materials as well as how 

saturation and pore water pressure develop in slopes. 

 

 

Figure 2.6 Failed shapes of slopes subjected to rainfall (a) w0=34% (side view), (b) 

w0=38% (side view), (c) w0=43% (side view), (d) w0=43% (cross view) (Kawamura and 

Miura (2014a) [29]). 
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Figure 2.7 Deformation behavior at failure for Komaoka volcanic slope (a) w0=34%, (b) 

w0=38%, (c) w0=43% (Kawamura and Miura (2014a) [29]). 

 

 

Figure 2.8 Changes in the saturation degree during rainfall (a) w0=38%, (b) w0=43% 

(Kawamura and Miura (2014a) [29]). 

 

 

Figure 2.9 Changes in pore water pressure during rainfall (a) w0=38%, (b) w0=43% 

(Kawamura and Miura (2014a) [29]). 

 

Using Komaoka and some other kinds of volcanic soils, Kawamura and Miura (2014a) 

[29] clarified the effect of initial water content on the behavior of pore water pressure and 

saturation degree in volcanic slopes during rainfall. Figures 2.6 and 2.7 show typical failed 

forms and shear strain distributions at slope failure for Komaoka volcanic soils. In the cases 
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of lower water contents of w0=34% and 38%, the first failure (Slip line 1) is formed at the 

toe of slopes, and the second failure (Slip line 2, circular failure) is swiftly induced with an 

increase in pore water pressure. Nevertheless, slope failure with circular slip is not verified 

in the case of the high water content of w0=43%. Surface flow with gully erosion proceeded 

until the Slip line indicated in Figure 2.6(c) for the case of high water content, and the elapsed 

time was 9,000 seconds (see Figure 2.6(d)) when the model test was continued until the same 

depth as the slip line 2 for w0 =34% and 38% (see Figure 2.7(a) and (b)). As shown in the 

compaction curves of that study, the optimum water content is 40.5%. The difference can 

also be seen from the changes in the development of saturation degree in Figure 2.8 and 

excess pore water pressure in Figure 2.9. Pore water pressure for w0=38% is suddenly 

increased compared with that for w0=43%. Owing to the difference in the initial water 

content, different slope failure types can be explained by the permeability that generally 

decreases for higher water content over the optimum water content. 

2.4.1.2. Earthquake only 

 

 

Figure 2.10 Slope shape after cyclic loadings of 280gal: (a) w0=37%, (b) w0=43% 

(Kawamura and Miura (2014a) [29]). 

 

Studies on the mechanical behavior of slopes under earthquakes performed in many 

different ways have contributed to increasing knowledge of the seismic resistance of 

embankments. Similar to rainfall, studies on the effect of earthquakes performed by 

numerical simulation are more numerous than those performed by laboratory experiments. 

Notable studies: Muraleetharan et al., (2004) [53] monitored the dynamic deformations of 

embankment centrifugation models with different relative densities and slope angles. These 

experiments show that the medium-dense sand embankment and lighter slope have greater 

displacement and an increase in pore water pressure. Lee et al., (2019) [38] compared the 

seismic deformation results calculated from computer software based on the finite difference 

method with the measured data from the centrifuge experiments, and the conformity 

increases confidence in the program's predictability. Shinoda et al., (2020) [67] assessed the 

practical seismic risk by presenting a simple approach for estimating the earthquake fragility 

of unreinforced and reinforced embankments using sensitivity analysis. Chakraborty et al., 
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(2020) [4] investigated the stability of slope in hydraulic fill dams under earthquakes and 

concluded that the slip surface with the lowest factor of safety for static loading may not be 

the most dangerous for seismic action. After finding that the reliability index decreases 

linearly with an increase in horizontal seismic coefficient, the authors proposed a method of 

estimating the reliability index, which is expected to significantly reduce computational time 

and effort.  

 

 

Figure 2.11 Variation of accelerations in the basement, the crown of the embankment, and 

shaking table (a) w0=37% (b) w0=43% (Kawamura and Miura (2014a) [29]). 

 

 

Figure 2.12 Changes in pỏe water pressure during shaking table test: (a) w0=37%, (b) 

w0=43% (Kawamura and Miura (2014a) [29]). 

 

In Kawamura and Miura (2014a) [29], the fundamentals of the mechanical behavior 

of volcanic slopes during cyclic loadings were examined with two kinds of initial water 

content. The typical slope failure shape after cyclic loadings of 280 gals for each water 

content is shown in Figure 2.10. Shear strain generated for w0=37% and 43% was γ=2.8% 

and 1.6%, and vertical strain εv (ratio of settlement of crown/the initial height) was 1% and 

0.4%, respectively. Figures 2.11 (a) and (b) show the variance in acceleration at the basement 

and crown when compared to the shaking table. As shown in the Figure, the maximum 

acceleration at the crown of the slope (A point) is greater than at other locations (B and C 

points) in both cases, and its tendency is significant for w0=43%. Under the same conditions, 

the behavior of pore water pressure normalized by the initial effective overburden pressure 
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σ’v0 was depicted in Figure 2.12. When w0=37%, it is clear that pore water pressure fluctuates 

frequently with cyclic loadings. The pore water pressure ratio for w0=43%, on the other hand, 

is greater than Δu/σ’v0=1 indicating beginning liquefaction. However, slope failure did not 

occur with cyclic loadings at that time. This means that a volcanic slope with w0=43% has 

cyclic mobility, as seen in dense sand.  

2.4.2 Studies on the combined effect of rainfall and earthquake 

Although the unexpected impacts of complex natural catastrophes have long been 

known, as mentioned in Chapter 1, only very few studies have been conducted on this topic. 

Some outstanding studies on the failure mechanism behavior of embankments subjected to 

freeze-thaw action in combination with rainfall or earthquake can be mentioned: the field 

monitoring results in Kawamura et al., 2013 [30], the model experiments in Kawamura et 

al., (2016) [31]; the proposed early warning criteria in Zhu et al., (2021) [89]; or overview 

of hazard events and research in Baselt and Heinze (2021) [1]. Regarding the stability of the 

slope under the dual hazard of rainfall and earthquake, the number of studies is even smaller, 

these studies often use data from actual complex disasters in the past. The majority of these 

researches are case studies of actual complex disasters in the past. In many cases, even 

though earthquakes have not caused slope collapse, they can leave long-term effects such as 

cracks or structural looseness at some local points. If adequate post-earthquake remedial 

measures are not taken, this can make it easier for water to penetrate and slopes to become 

weaker during the rainy season. Therefore, the previous earthquake could be one of the 

causes of slope collapse due to rainfall.  

Nomura et al., (2014) [58] showed an example of a slope in Tochigi prefecture that 

collapsed by rainfall after the 2011 Tohoku Earthquake (Great East Japan Earthquake) with 

an Mw of 9.0~9.1. Which, the seismic disturbances in the slope are believed to be one of the 

reasons for the failure. The authors suggested that in general, after a large earthquake, 

landslides are thought to be more frequent with less rainfall than before the earthquake. 

Evidence to support this assumption can be easily found after the previous great earthquakes 

around the world. The Mw7.7 Chi-chi earthquake in September 1999 severely affected 

central Taiwan. In July 2001, almost 2 years later that earthquake, The Toraji typhoon 

produced strong precipitation of 650 mm per day and created widespread landslides in 

central Taiwan and areas of eastern Taiwan. The average area of a typhoon-related landslide 

is 2.1 ha/landslide, which is double the size of a 1999 Chi-chi earthquake-induced landslide, 

as reported in Wang et al., (2003) [81]. About 65% of typhoon-related landslides occurred 

in the affected region of the Chi-chi earthquake.  

The above-mentioned assumption that the Toraji typhoon-related landslide in 2001 

was a secondary calamity of the Chi-chi earthquake was confirmed by Wang et al., (2004) 

[82]. According to the interpretation from aerial pictures, around 30% of the typhoon-related 

landslides were caused by the outward spreading of earthquake-induced landslides, implying 
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that the strata near the earthquake-induced were fractured by the Chi-chi seismic shaking. 

The failure rate of a stratum or rock formation is calculated by the proportion of landslide 

area to stratum area. In the same stratum, typhoon-related failure rates were generally higher 

than earthquake-induced failure rates, implying that many earthquake-induced landslides 

could be widened during the Toraji typhoon. Figure 2.13 shows the frequency of rain-

induced, earthquake-induced, and typhoon-related landslides against slope location (A) and 

slope angle (B). Due to the difference in mechanism, the distribution of landslides caused by 

rain and earthquakes is different in both cases. Rain-induced landslides occurred mostly on 

the lower sections of slopes, whereas earthquake-induced landslides occurred primarily on 

the upper sections. Furthermore, earthquake-induced landslides were centered on slope 

angles of 40 degrees, but rain-induced landslides relocated to slopes dipping approximately 

30 degrees. These results might be due to ground motion being enhanced on the higher and 

steeper slopes and rainfall being concentrated on the lower and gentler slopes. However, the 

distribution of typhoon-related landslides was similar to that of earthquake-induced 

landslides. Field reconnaissance revealed tension fractures on upslopes and failed materials 

on mid-slopes following the Chi-chi earthquake. It is clear that the spread of the Toraji 

typhoon-induced landslides was connected to the Chi-chi earthquake occurrence. 

 

  

Figure 2.13 Frequency of each type of landslide (A) slope location (B) slope angle (Wang 

et al., (2004) [82]). 

 

 

Figure 2.14 Different types of landslides in each satellite image (Lin et al., (2006) [39]). 

 

(A) 
(B) 
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Lin et al., (2006) [39] compared the occurrence of landslides in the Choushui River 

watershed using eight satellite photographs from 1996 to 2001 to assess the impact of the 

1999 Chi-Chi earthquake on subsequent rainfall-induced landslides. According to the study, 

the Chi-Chi earthquake not only caused severe coseismic landslides but also severely 

disrupted the surface strata surrounding the epicenter. Following the severely disturbed 

surface strata, torrential rainfalls in 2000 and 2001 generated more landslides than the 

earthquake itself. When compared to data gathered from photos prior to the earthquake, it is 

clear that the density of rainfall-induced landslides rose dramatically after the earthquake, as 

did the locations where landslides occurred, as can be seen in Figure 2.14. Although 

Typhoon Herb in 1996 dropped more rain than Typhoon Toraji in 2001, Herb caused just 

9.77 km2 of landslides, but Toraji caused 48.8 km2 of landslides--nearly five times the size 

of those caused by Herb. 

Shieh et al (2009) [65] analyze variability in rainfall threshold for debris flow between 

1999 and 2006 (critical rainfall for debris flow triggering) after the Chi-Chi earthquake. 

Results show that the rainfall threshold for debris flow was remarkably lower just after the 

Chi-Chi Earthquake, but gradually recovered. The rainfall threshold after 7 years of the 

earthquake was still lower than the original level prior to the earthquake. This variability in 

rainfall threshold is closely related to the amount of sediment material in the initiation area 

of debris flow, which increased rapidly due to landslides resulting from the earthquake. This 

variation in rainfall threshold is strongly tied to the amount of sediment material in the debris 

flow's commencement location, which grew significantly owing to landslides caused by the 

earthquake. The rainfall threshold was drastically reduced during the first year following the 

Chi-Chi earthquake due to an increase in silt material. Heavy rains, on the other hand, 

activated the silt material, generating debris flows and carrying sediment downstream. The 

rainfall threshold steadily recovered over time as silt material decreased. 

Similarly, tens of thousands of landslides in the Wenchuan region of China were 

caused by extreme rainfall following the devastating Mw7.9 earthquake in May 2008 (Marui 

and Nadim (2009)). According to Fan et al., (2018) [8], most co-seismic landslides were 

confined to hillslopes and ravines, but there was an abundance of loose co-seismic landslide 

debris on the slopes following the earthquake, which later served as source material for 

rainfall-induced debris flows or shallow landslides. Heavy rains in the central section of the 

Wenchuan Earthquake-affected region generated 72 debris floods on September 24, 2008. 

Tang et al., (2009) [70] documented the process of debris flow commencement and 

movement in the research locations, as well as field observations on the roles of rainfall, 

lithology, and the existence of faults. Following the earthquake, the critical amount of 

accumulated precipitation and the hourly rainfall intensity required to initiate debris flow 

was most likely reduced compared to pre-earthquake values. The debris flow from the 

Xishanpo gully generated a substantial accumulation in the already destroyed city of 
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Beichuan. It is concluded that the whole area shaken by the Wenchuan Earthquake is now 

more vulnerable to debris flows, which might be triggered by locally severe rainfall. 

Heavy rainstorms occurred in regions devastated by the 2008 Wenchuan Earthquake 

from August 12 to 14, 2010, causing catastrophic debris flows known as "the 8.13 debris 

flows". According to Xu et al., (2012) [84], the 8.13 debris flows are positioned along the 

seismic fault because the source materials are primarily loose deposits of landslides 

generated by the Wenchuan Earthquake. The major causes of these debris flows are the 

presence of huge volumes of these loose materials on the slopes and the emergence of high-

intensity rainstorm events. The real discharge of the 8.13 debris flows is substantially more 

(up to ten times) than the values computed using Chinese rules, emphasizing that design 

standards for debris flow mitigation in earthquake zones must be improved. Finally, the 

authors introduced new debris flow mitigation measures that proved effective during the 

2011 heavy rainy season. Following the 8.13 events, check dams, along with a sediment trap 

and a diversion tunnel built in the upstream part of Wenjia gully, successfully separated and 

diverted the water and solid materials, preventing new catastrophic debris flows. 

Furthermore, the construction of a flexible drainage system with reinforced stone cages 

successfully prevented lateral erosion along the erosion channels of potential debris flows. 

 

 

Figure 2.15 Intensity–duration graph for five debris flow events in the Wenjia torrent 

compared with previous research (Tang et al., (2012) [71]). 

 

Through field reconnaissance, measurements, and aerial picture interpretation, Tang 

et al., (2012) [71] investigated the locations and structural characteristics of 20 in the 8.13 

debris flows in the Qingping region of southern China. Among these, the devastating tragedy 

in the Wenjia catchment was caused by extensive erosion in loose material, which was 

deposited by a rock avalanche during the 2008 Earthquake event. From an overview of the 

Wenjia watershed debris flow fan, the debris flow dam, and the submerged region of 

Qingping's recently restored dwellings, it can be seen that a huge quantity of avalanche 

deposits in the lower stretch of the stream has led to the occurrence of debris flows. The 
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biggest debris flow occurrence was caused by rainfall with a peak intensity of 38.7 mm/h. 

Rainfall data from five debris flow incidents in the Wenjia stream were used to develop a 

basic rainfall intensity-duration relationship for initiating debris flows, which was then 

compared to other rainfall duration thresholds from across the world, as shown in Figure 

2.15. As demonstrated by Chien-Yuan et al., (2005) [6], debris flows in the Qingping area 

were often generated by rainfalls with substantially lower hourly intensity and cumulative 

precipitation than those connected with the Chi-Chi earthquake area in Taiwan in Chien-

Yuan et al., (2005) [6]. It can be seen from the above research that in earthquake-prone areas, 

the post-seismic debris-flow threat can last for decades. 

Also happened in Sichuan province, the Lushan earthquake (April 20, 2013) 

unavoidably sparked further debris flow activity (Guo et al., (2021) [11]). During the rainy 

season, debris flows were generated twice in more than 20 gullies shortly after the 

earthquake (May 23 and July 9), as reported in [11]. Some gullies experienced their first-

ever debris flow, according to historical records. Considering the same area, the initiating 

rainfall quantities and peak rainfall intensities were both substantially lower than those of 

the 2012 storm. However, the newly produced gully debris flows were much larger. The 

explanation was an increase in the amount of accessible loose debris as a result of the 2013 

Lushan earthquake. Even with the relatively modest quantity of rainfall, this supply of loose 

particles might fuel debris flows. Debris flows were common and widespread throughout the 

region from 2014 to 2018. The volumes, however, were rather tiny. In contrast, the debris 

flows that followed the August 19-22, 2019 rainstorm event are rated as the most devastating 

in recorded history. The spatial distribution of material sources and production processes in 

the Desheng gully debris flow can be found in Guo et al., (2021) [11]). Desheng Gully is 

located in the Baoxing River's upstream portion, where debris flows were not observed 

before 2019. Recovery of natural vegetation, remaining solid material reduction, and control 

projects for debris flow control all play major roles in increasing the threshold of rainfall 

conditions necessary for starting debris flows. 

Figure 2.16 shows the production mechanism of debris flows. Earthquakes are not 

thought to be the primary cause of debris flows, but rather the source of the plentiful loose 

materials in the original channel. Rainfall is the precipitating element for debris flows. High-

velocity runoff can erode loose material quickly and significantly (Figure 2.16(a) and (b)). 

The surface flow concentrates loose debris, which leads to additional eroding of the channel 

bed by progressive bulking effect. The channel incision procedure exposes a free surface of 

diluvium along the channel, which might result in significant lateral erosion (Figure 2.16(c)). 

The channel bed was made up of either loose coarse material from local lower-gradient slope 

failures or poorly consolidated soils, which are extremely prone to runoff erosion (Figure 

2.16(d)). The process of consecutive channel incision and erosion then converts a water flow 

into a debris flow. There is the possibility of debris flows becoming obstructed in limited 
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parts; nevertheless, when the loose slope is subjected to mass failure by the eruption of the 

blockage, the debris flow volume and velocity can be significantly amplified. 

 

 

Figure 2.16 Debris-flow formation process (Guo et al., (2021) [11]).  

 

Yang et al., (2015) [85] used the Stability Index MAPping model to assess and 

investigate slope stability following the 2013 Lushan earthquake in several rainfall scenarios 

as light rainfall, moderate rainfall, heavy rainfall, and rainstorm. The model parameters were 

adjusted to account for the major impact of severe earthquakes on geological settings. An 

increase in rainfall intensity leads to an increase in unstable areas. Despite varying rainfall 

circumstances (light rainfall, moderate rainfall, heavy rainfall, and rainstorm), the diverse 

distribution of slope instability is closely associated with the dispersion of earthquake 

intensity. According to the authors, seismic strength and rainfall are both important 

determinants in post-earthquake slope stability. 

From the lessons learned above, one of the most severe worries about the 2016 

Kumamoto earthquake in Japan was that it occurred so close to the rainy season which led 

to a high risk of post-seismic landslides. Many slopes in the affected area were loosened and 

left in a vulnerable state. As predicted, heavy rains over the Kumamoto prefecture in June 

2016 prompted massive landslides and debris flows (Goda et al (2016) [10]). Matsunaga et 

al., (2019) [45] also depicted the subsequent rise in hillside failures as an example of the 

consequence of rainfall as a secondary disaster. As can be seen, the number of disasters in 

the event of post-earthquake rainfall is large due to the long-term effects of the earthquake 

described above. This led to a large number of studies on the effects of previous earthquakes 

on landslides or debris flows caused by subsequent rainfall, leading to many proposed 

guidelines. For example, Nomura et al., (2014) [58] recommended that landslide incidence 

thresholds should be reduced following big earthquakes of level 5+ on the Japanese scale. 
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On the contrary, the less attention paid to the case of post-rainfall earthquakes could be a 

reason for the enormous losses of this type of double disaster. 

Mishima and Kimura (1970) [49] reported the embankment failure and landslide during 

the 1968 Tokachi-oki earthquake. About embankment, severely damaged highway and 

railway embankment areas coincide with areas of heavy rainfall, with the exception of banks 

on plateaus or along foothills. The majority of banks are made up of volcanic ash or fine 

sands with a poor homogeneity coefficient. Figure 2.17 depicts the collapse characteristics 

of a typical bank composed of volcanic ashes at Kami-Metoki. Regarding landslides, it is 

worth noting that the inclination of the natural slopes where the landslide occurs is quite 

gentle and concentrated in a small range from 20 to 25 degrees. The slide locations were 

covered with thick volcanic ash consisting of loam and pumice. The occurrence of many 

landslides can be attributed to volcanic ash containing a lot of water, resulting in saturation 

and high pore water pressure after four days of heavy rain, and they are in an earthquake-

induced liquefaction-prone state. So with the results of field investigations, the decisive role 

of rainfall on landslide and embankment collapse may be demonstrated by the facts that there 

was adequate rainfall amount over the affected regions prior to the occurrence of the 

earthquake and that the locations with greater rainfall overlap with the areas that suffered 

more damage. 

 

 

Figure 2.17 Failure situation of volcanic ashes bank at Kami-Metoki (Mishima and 

Kimura (1970) [49]). 

 

Uzuoka et al., (2005) [79] conducted a field investigation of the characteristics of two 

landslides during Earthquake No. 526 in May (Dateshita landslide) and Earthquake No. 726 

in July (Nishisaruta landslide), 2003, in Miyagi, Japan. The situation of the two landslides 

can be seen in Figure 2.18. For a week before the Dateshita landslide, no rainfall had been 

recorded at Tsukidate. Therefore, the soil at a depth of several meters in the upper section of 

the collapsed layer was unsaturated. Despite having a very loose fill structure, the 

unsaturated soil with high suction was not destabilized for a long time before the earthquake. 
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Then the collapsed soil was easily fluidized under the effect of cyclic shear. The composition 

of the slope is mainly pyroclastic sediments which generally crush its particles during 

shearing (Miura et al., (2003) [51]), which may have contributed to the high fluidity of the 

collapsed soil in addition to the loose state. In contrast, It had rained for a week before the 

earthquake that caused the Nishisaruta landslide, and the accumulated precipitations of 114 

mm were measured for 3 days. Rainfall was considered by the authors as an important feature 

that exacerbated the Nishisaruta landslide. Under the effect of rain, the entire upper part of 

the slope was said to be saturated. Consequently, the main failure of the slide occurred at the 

upper part of the slope. The residual strength, after undrained cyclic shear loading, of the 

collapsed soil was much larger than that of the collapsed soil at Dateshita. This could also 

be an indication that previous rain was one of the causes of the Nishisaruta landslide because 

the two earthquakes have similar magnitudes. 

 

     

Figure 2.18 Aerial view of earthquake-induced landslides in Miyagi, Japan in 2003 (A) 

Dateshita landslide, (B) Nishisaruta landslide (Uzuoka et al., (2005) [79]). 

 

In 2004, many significant rain events hit Japan, resulting in some landslide disasters 

such as the one in Yamakoshi Village. The total quantity of rain reported for the Niigata-

Fukushima Heavy Rain (from July 10 to July 14) and the Fukui Heavy Rain (from July 16 

to July 18) were 428 mm and 272 mm, respectively. Since 1993, rainfall amount in Niigata 

prefecture peaked in 2004. However, large landslides did not occur during this heavy rainfall 

period. Then, on October 20, typhoon No. 23 repeated the torrential rains of 100 mm in this 

area. The Chuetsu earthquake (2004 Mid-Niigata Prefecture earthquake) happened three 

days after the storm, leading to hundreds of landslide disasters as reported by Sassa et al., 

(A) (B) 
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(2006) [62]. The authors presented the Soil Water Index (SWI) provided by the Japan 

Meteorological Agency as a criterion for assessing the amount of water stored below the 

ground surface. Based on SWI, an efficient technique for estimating landslide disaster 

probability is proposed by comparing the values of SWI for past landslide disasters. As 

shown above, major landslides did not occur during the July heavy rains although the 

maximum value for the period 1994 to 2003 in this area was exceeded. This is explained by 

the lower permeability of the slopes in the Tertiary weathered mudstone area of Niigata 

compared with the standard granitic slopes used by SWI. The authors suggested the necessity 

of reconsideration of the precipitation parameters. 

 

 

Figure 2.19 The Higashi Takezawa landslide and the head scarp of previous landslides 

(Sassa et al., (2006) [62]). 

 

Sassa et al., (2006) [62] also discussed the difference between the consequence of the 

2004 Mid-Niigata Prefecture earthquake with those of the Hyogoken-Nambu earthquake, 

which occurred in January 1995, the dry season, with no rainfall before the earthquake. The 

energy of the Mj7.2 Hyogoken-Nambu earthquake with an epicentral depth of 17 km was 

higher than that of the M6.8 earthquake in Mid-Niigata Prefecture with an epicentral depth 

of 13 km. However, the quantity and scale of landslides caused by the Mid-Niigata 

Prefecture earthquake were substantially bigger. The earthquake triggered hundreds of 

landslides with widths of more than 50 m and 12 large-scale landslides with volumes greater 

than 1 million cubic meters, while the only notable landslide triggered by the Hyogoken-

Nambu earthquake was the Nikawa rapid landslide (volume of 1.1-1.2 x 105 m3 and width 

of 125 m). This big difference might be explained by the impact of heavy rainfall preceding 

the Mid-Niigata Prefecture earthquake  

 



29 

 

 

Figure 2.20 Decrease in Factor of Safety with Peak Ground Acceleration of the earthquake 

at different values of ru (Tuladhar et al., (2007) [77]). 

 

Among the landslides caused by the 2004 Mid-Niigata prefecture earthquake, the 

Higashi Takezawa landslide occurred within past landslide masses and created the largest 

dam over the river near the toe of the landslides, inflicting significant property destruction, 

as presented in Tuladhar et al., (2007) [77]. The overview of that landslide can be seen in 

Figure 2.19 with red arrows showing the head scarp of the current landslide and a curved 

line with red arrows presenting the head scarp of the previous landslide. The landslide was 

caused at the interface between two radically diverse geological layers: the upper layer of 

heavily weathered and loose sandy soil and the lower layer of mudstone. Soil samples were 

taken from these two layers to conduct laboratory tests. Shear tests and X-ray fluorescence 

tests were conducted to respectively measure friction angle and chemical index to assess the 

weathering index of the soil specimen. The results showed that the weathering degree of 

sandy soil in the upper part is higher than that of mudstone in the lower layer. In both kinds 

of soil, the residual friction angle decreases proportionately with the increase in weathering. 

That internal friction angle was used to determine the dynamic safety factor of slopes with 

different peak ground accelerations based on the Newmark method, as shown in Figure 2.20. 

In the figure, the different values of pore water pressure ratio ru can also represent the 

different seasons. The significant impact of pore water pressure on the dynamic safety factor 

of the landslide was proved through the fact that it decreased exponentially with the increase 

in water pressure. It can be seen from Figure 2.20 that the safety factor of the slope is still 

higher than 1 in the dry season (ru = 0) even with the earthquake with a PGA of 900 gals. 

When ru increases to 0.35, a PGA of 400 gals is sufficient to produce instability. These results 

imply that the typhoon that occurred 3 days before the earthquake may have played a 

significant influence in the landslides. If the earthquake occurred during the dry season or if 

the soil mass was not loosened by the tremendous rainfall of the typhoon, the magnitude of 

the 2004 Mid-Niigata prefecture earthquake is insufficient to induce failure. 

In contrast to those post-rainfall earthquake-induced disasters mentioned above, the 

motivation behind the 2006 Southern Leyte mudslide (Philippines) has been controversial 
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among experts. The fact that the magnitude of the earthquake was so small has led to the 

idea that it was a rainfall-only disaster. The characteristic of that massive rock slide-debris 

avalanche was detailed by Sassa et al., (2007) [63]. As can be seen in Catane et al., (2007) 

[3], the landslide's source region and deposits showed the projection of the Philippine Fault 

Zone and other geologic features while the close-up of the source region showed at least 

three primary failure planes: Fractures cut the bedrock in the top part of the segment; The 

slip surface (fault plane) is lined by the gouge; Sheared rocks and earlier landslide deposits 

form the mounds under the peak. 

 

 

Figure 2.21 Rainfall record at the nearest station from the 2006 Leyte landslide (Sassa et 

al., (2007) [63]). 

 

 

Figure 2.22 Concept of the stress-controlled dynamic-loading ring-shear apparatus (Sassa 

et al., (2007) [63]). 

 

The rainfall data record at the nearest station from the landslide was shown in Figure 

2.21 (Sassa et al., (2007) [63]): Heavy rainfall with a total amount of 571.2 mm over 5 days 

from 8 to 12 February (459.2 mm for 3 days from 10 to 12) were measured before the 

landslide. This high quantity of precipitation should have raised the groundwater level and 
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pore water pressure within the slope. Experts generally agree that excessive precipitation a 

week before the failure contributed to its circumstances. However, considering the rainfall 

on 13-17 February was little, it was likely that the peak of groundwater level had passed 

before the landslide on 17 February. Because of that 5-day delay between the heaviest 

rainfall and the landslide, as well as the fact that Southern Leyte usually receives high overall 

amounts of precipitation, the hypothesis of precipitation as the sole cause became 

unconvincing. 

With an official death toll of 1126, this landslide was the greatest single landslide 

disaster in the world since the 2001 Las Colinas landslide caused by the Mw7.7-7.9 El-

Salvador earthquake. However, the nearby earthquake occurred at about the same time as 

the landslide only had a magnitude of 2.6, which made the role of that minor ground shaking 

still uncertain. It is also possible that the earthquake did not cause the landslide, but that the 

landslide produced ground shaking, which was recorded as an earthquake. Because 

earthquake-induced landslides are often generated by large earthquakes, it is difficult to 

persuade both landslide and earthquake experts that such a minor earthquake may create a 

massive landslide. Sassa et al., (2007) [63] used the result of a ring-shear simulation 

experiment to support the view that the landslide was caused by a combination of rainfall 

and earthquake. The concept for the undrained stress-controlled dynamic loading ring shear 

device can be seen in Figure 2.22. This apparatus tries to simulate the geotechnical formation 

of a sliding surface and the post-failure motion by reproducing the stresses acting on the 

potential sliding surface in the slope, including static stress from the soil layer's self-weight, 

seismic stress from an earthquake, and pore-pressure increase from rainfall. The test results 

of the Leyte landslide clearly demonstrated that even a very minor earthquake can be the 

essential trigger of a landslide when the stability of the slope has already been weakened 

owing to rains and the groundwater table has been near the critical level. In contrast, the 

authors also suggested that a severe earthquake does not always cause a large-scale landslide 

if the groundwater level is lower than the likely sliding surface. 

The unpredictable consequences of the double disaster outlined by the above case 

studies as well as the analysis of the Hokkaido Eastern Iburi earthquake in Chapter 1 posed 

a requirement for verification. With that in mind, a number of studies have been done using 

numerical simulation. Matsumaru and Uzuoka (2016) [42] replicated the damage of the 2004 

Niigata Chuetsu Earthquake including the recorded rainfall before this earthquake to 

examine the influence of rainfall on seismic activity. The behavior of unsaturated soil was 

modeled by a typical elastoplastic constitutive model and analyzed with a combination of 

three phases soil, water, and air. The results show that the embankment impacted by 

rainwater prior to the earthquake exhibited more deformation. The dynamic response with 

recorded heavy rainfall showed liquefaction as a result of the reduction in skeleton stress by 

earthquakes. As a result, the acceleration's reaction altered, and huge strains occurred. In 
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contrast, when only annual rainfall was applied, the appearance of liquefaction was minimal. 

From that comparison, the amount of rainfall before the earthquake clearly influenced the 

seismic behavior of the embankment. In addition, parametric analyses were also carried out 

to reveal that drainage and an impermeable roadbed might reduce the degree of saturation in 

the embankment. However, the embankment's seismic resistance remained low due to the 

low resistance to cyclic loading of material. The seismic behavior of the embankment was 

significantly enhanced by the use of high-quality embankment material. 

 

 

Figure 2.23 Horizontal and vertical displacement at slope crown (a) (d) Rainfall, (b) (e) 

Earthquake, (c) (f) Rainfall – Earthquake (Vickneswaran and Ravichandran (2020) [80]). 

 

Vickneswaran and Ravichandran (2020) [80] used a numerical simulation with the 

acceleration of the 1940 El-Centro earthquake that attacked Imperial Valley, California to 

compare the effect of rainfall and erosion or rainfall and earthquake with a single hazard. 

The model of embankments was built with PLAXIS 2D, a combined geotechnical-

hydrological finite element program capable of connecting soil deformation and flow 

behavior. To explore the influence of steepness on the stability and deformation behavior of 

earth slopes, investigations were performed for different slope ratios SR1 (1.5:1), SR2 (2:1), 

and SR3 (3:1). The results show that the factor of safety dropped as the slope ratio decreased. 

Figure 2.23 shows the horizontal and vertical displacement of the crown point in different 

cases. As can be seen, dual hazards lead to greater slope movement and lower factor of safety 
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when compared with single hazard, i.e., rainfall-only and earthquake-only (Figure 2.23). 

Further, it was found that the factor of safety has an inverse relationship with erosion and 

the duration of rainfall. 

Current commercial software often analyzes slope stability using the phi-c reduction 

method in finite element models like Plaxis or limit equilibrium methods like GeoSlope of 

GeoStudio. Input for analysis of Geoslope is also based on finite element method such as 

SEEP/W module determines the infiltration of rainwater according to Darcy's law or 

QUAKE/W module calculates excessive pore water pressure due to inertia force according 

to the cyclic stress ratio, ... It can be seen that difficulties of general finite element method 

in the simulation of the granularity of the soil lead to the imprecision of some actual 

phenomena, such as the effect of rainfall on soil structure or the rearrangement of soil 

particles caused by earthquakes, ... For that reason, studies based on the results of model 

experiments are still indispensable. 

2.4.1.3. Research on post-earthquake rainfall by model test 

 

 

Figure 2.24 Movement of wetting fronts and seepage velocity of rainwater (a) post-

earthquake rainfall test, (b) rainfall-only test (Tiwari et al., (2017a) [75]). 

 

 

Figure 2.25 Variation of suction (a) post-earthquake rainfall test, (b) rainfall-only test 

(Tiwari et al., (2017a) [75]). 

 

Among dual hazards, few studies investigated the failure of embankments subjected to 

post-earthquake rainfall by model experiments. Tiwari et al., (2017a) [75] compare the slope 
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stability in the case of rainfall only and post-earthquake rainfall. The movement of the 

wetting fronts with time for two laboratory-prepared models subjected to post-seismic 

rainfall and rainfall without earthquake is observed visually for comparison. The time it took 

for the wetting front to reach a certain point (point A in Figure 2.24) was also used to 

calculate the seepage velocity. Figure 2.24 clearly shows that the time necessary for total 

saturation of the model subjected to earthquake loading was longer than the time required 

for complete saturation of the model not subjected to any shaking. A comparison of the 

results from the tensiometers (Figure 2.25) also agrees with the observations made of the 

wetting fronts. As the wetting front passes through the position of the tension meter, suction 

rapidly reduces and reaches a value of zero. With the time required for the suction to reduce 

to a value of zero at the same location, the slope subjected to rainfall without an earthquake 

shows a smaller number than the slope subjected to post-earthquake rainfall. The 

instrumentation used in that study could only measure negative pore water pressure, so the 

above-calculated seepage velocities were used as input for the numerical analysis. Figure 

2.26 shows that the factor of safety for the slope subjected to rainfall following earthquake 

shaking was higher than the slope subjected to rainfall without any earthquake shaking. 

 

 

Figure 2.26 Comparison of safety factors in post-earthquake rainfall test and rainfall-only 

test (Tiwari et al., (2017a) [75]). 

 

Tiwari et al., (2017b) [76] conducted similar research with different materials. A slope 

was shaken on a shake table with varied amplitudes and frequencies of seismic movements 

before being subjected to rainfall to measure the change in suction and seepage velocity. The 

investigation found that the seepage velocity dropped by around 40% following the shaking 

event. This is mostly due to a decrease in the slope's void ratio as a result of seismic stresses. 

The deformation and seepage velocity data from the laboratory tests were utilized to validate 

the numerical analysis. The change in the factor of safety of the slope with a length of rainfall 

in two cases is shown in Figure 2.27. For the reasons stated above, the static factor of safety 

was lower than the post-earthquake factor of safety. In that study, slopes compacted at lower 

relative densities (larger void ratios) settled following seismic loading, increasing soil 
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density. That phenomenon lowered the seepage velocity in the slope and increased the safety 

factor. 

 

 

Figure 2.27 Comparison of safety factors in post-earthquake rainfall test and rainfall-only 

test (Tiwari et al., (2017b) [76]). 

 

Kawamura et al., (2016) [31] and Kawamura and Miura (2014a) [29] clarified the 

rainfall-induced failure of volcanic slopes subjected to earthquakes for both water contents. 

Figure 2.28 shows the behavior of pore water pressure and the changes in the degree of 

saturation, respectively for w0=37%. In that case, with a prior cyclic loading of 280 gals, a 

shear strain of γ=2.8% was obtained in the model tests. In this situation, basement pore water 

pressure and saturation (pw2 and sm2) progressively rise with time. The first slope failure 

(failure 1) is caused by changes in pore water pressure and saturation degree at the toe of the 

slope. After that, the second slope failure (failure 2) is caused by developments of pore water 

pressure and saturation degree at the crown (pw1 and sm1). The model test was then 

continued until it reached the same depth as the slip line at 38%. (final failure). The 

schematics of slope forms during model tests are shown in Figure 2.29. It is clear that the 

failure pattern is nearly similar to that without cyclic stress (rainfall only). 

The test for w0= 43% is similarly conducted, as shown in Figure 2.30. A shear strain of 

γ=1.6% was created by cyclic loading of 280 gals in advance for the model slope of w0=43%. 

Despite the fact that pore water pressure is considerable, as illustrated in Figure 2.30(a), 

rainfall-induced collapse does not occur in this situation. This is due to cyclic loadings 

increasing both slope density and saturation degree. Indeed, following seismic loadings, the 

degree of compaction Dc increased by up to 23% compared to the starting condition, and the 

degree of saturation rose by 1% (see Figure 2.30(b)). For model slopes having γ=1.6%-4% 

for w0=43%, a similar result was obtained. In contrast, slope failure occurred for model 

slopes having less than γ=1.6%. 
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Figure 2.28 Changes in pore water pressure and saturation degree during rainfall test after 

cyclic loadings for w0=37%: (a) pore water pressure, (b) saturation degree (Kawamura and 

Miura (2014a) [29]). 

 

 

Figure 2.29 Schematics of failed slope shape for w0=37% (Kawamura and Miura (2014a) 

[29]). 

 

 

Figure 2.30 Changes in pore water pressure and saturation degree during rainfall test after 

cyclic loadings for w0=43%: (a) pore water pressure, (b) saturation degree (Kawamura and 

Miura (2014a) [29]). 

 



37 

 

The relationship between the failure time ratio in both cases and shear strain caused by 

cyclic loadings is summarized in Figure 2.31. In which, the failure time ratio is the elapsed 

time at ultimate failure normalized by that of the rainfall only in the case of w0=37%. As can 

be seen, the elapsed time at failure reduces with increasing shear strain in the case of w0=37%, 

while it slightly increases until γ=1% and then declines for more than γ=4% in the case of 

w0=43%. For the instance of w0=43%, there is no failure zone in the range of seismic-

induced shear strain from 1.6% to 4%. As can be seen, slope failure seems to change 

depending on the stress-strain history caused by cyclic loadings. 

 

 

Figure 2.31 Required time until slope failure (Kawamura and Miura (2014a) [29]). 

 

2.4.1.4. Research on Post-rainfall earthquake by model test 

In the case of post-rainfall earthquakes, the number of research is even smaller than in 

the above case. Tiwari et al., (2013) [73] poured rainfall of 0.5 mm/min at two slopes 

constructed by loose sand with 30 and 40 degrees in 3 hours. The real-time moisture meter 

is not used during the test. Instead, soils at different locations were taken to measure 

saturation at the end of the experiment, as shown in Figure 2.32. Besides, shear strength was 

also measured with the direct shear device. That strength corresponding degree of saturation 

is shown in Figure 2.33. As can be seen, when the degree of saturation increases, apparent 

cohesion drops. For all points after the rainfall test, the friction angle was changed to about 

300 from 340 in dry conditions. The data are used for stability analysis, which indicates that 

a seismic coefficient of 0.21 is enough to cause failure. However, the slope catastrophically 

failed at a seismic acceleration of 0.5g. The above-mentioned decrease in cohesion due to 

previous rainfall may result in failure when the slope is subjected to a subsequent earthquake. 

It is quite obvious that the value of allowable load when designing with software is smaller 

than the actual destructive force, which ensures safety for the design. 
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Figure 2.32 Changes in saturation degree in the embankment after 3 hours of rainfall 

(Tiwari et al., (2013) [73]). 

 

 

Figure 2.33 Changes in cohesion with saturation degree (Tiwari et al., (2013) [73]). 

 

Tiwari et al., (2016) [74], based on the experimental results on soil samples collected 

from Southern California, conclude that both the rainfall before and after the earthquake can 

lead to the instability of the slopes. The infiltration rate of rainwater in the slope is increased 

by the earthquake effect. Therefore the seepage rate in the case of rainfall after the 

earthquake will be higher than in the reverse case.  

 Research of physical and mechanical properties of volcanic soils 

Because of the specific behavior of volcanic soil as discussed in Chapter 1, the study 

of the mechanical and physical properties of this soil has attracted the interest of many 

authors around the world. Ng & Chiu (2001) [55] performed a series of triaxial tests and 

found that saturated loose volcanic soils behave like clay or sand under different conditions 

of stress path. Nguyen et al., (2018) [57] conducted column tests and numerical analyses to 

investigate differences in the amount of infiltration and runoff water between bare and 

grassed volcanic soil. Miura et al., (2003) [51] clarified the mechanical behavior of coarse-

grained volcanic soils in Hokkaido, Japan, and evaluated the effect of particle breakage on 

their mechanical behavior. Ng and Pang (2000) [56] investigated the soil–water 

characteristic curve of completely decomposed volcanic soil in Hong Kong with different 

initial conditions by a conventional and a newly modified extractor. Hernandez et al., (2018) 
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[15] used mineralogical characterization tests and thermogravimetric analysis and found the 

high irreversibility of the characteristics of compacted volcanic soils depending on the water 

content before compaction.  

As discussed in Chapter 1 on the importance of fine particle content to the mechanical 

behavior of volcanic soils, studies on this issue were widely performed by elemental tests. 

Liu and Yang (2014) [40] investigated the small-strain shear modulus of volcanic soil from 

northeastern Japan and found that this parameter rises significantly when particles smaller 

than 63 μm are removed from the original soils. Matsumura and Tatsuoka (2019) [44] 

demonstrated that the compacted volcanic soil’s dry density and the molding water content 

have a notable effect on its cyclic undrained strength; however, the trend of these 

relationships varies depending on the content of the fine particles. Dao (2018) [7] studied 

the piping and the boiling phenomenon of saturated Komaoka volcanic soil (see Figure 2.34). 

 

       

(A)                     (B) 

Figure 2.34 Piping test results of Komaoka volcanic soils: (A) piping, (B) boiling (Dao 

(2018) [7]). 

 

 

Figure 2.35 Change in results of Ksoil with different compaction degrees (a) velocity (b) 

hydraulic conductivity (Dao (2018) [7]). 
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Before discussions on the effect of fines content, the relationship between hydraulic 

gradient and flow velocity of Komaoka volcanic soil with the different degrees of 

compactions Dc of 83, 88, and 95% were investigated, as shown in Figure 2.35. As can be 

seen, internal erosion started at i=0.2 in all cases. The erosion process caused the migration 

of fine particles inside the pores of coarse particles. When i=0.2, a little fine particle was lost 

from the test specimen in the Ksoil with Dc=83%. This leads to a rise in void ratio, as well as 

an increase in hydraulic conductivity until i=0.4. From that point to i=0.8, the relationship 

between hydraulic gradient and hydraulic conductivity was recognized as approximately 

linear at this stage, and internal erosion was not detected during that time. In contrast, the 

permeability of the Ksoil with compaction degrees of 88% and 95% is reduced until i=0.4. 

This might be because the process of soil compaction causes a significant decrease in the 

pore size of the samples, preventing the movement of fine particles and incorporating them 

into the filter fabric. After i= 0.4, fine particles were washed out by seepage flow. As a result, 

effective porosity increased, resulting in an increase in permeability. Finally, the 

phenomenon of “boiling” occurred. These results suggest that the performance of the 

primary fabric of samples constructed by Komaoka volcanic soil can be influenced by the 

degree of compaction. The main fabric serves as a filter for fine particles carried by seepage 

flow. A high degree of compaction for the same volcanic soil sample results in a high value 

of the critical hydraulic gradient for the start of boiling. Yet, the internal erosion process of 

compacted materials with Dc>88% is nearly the same. 

The results of piping tests of saturated Komaoka volcanic soil with different fine 

contents but the same dry density and water content at compaction are shown in Figure 2.36. 

In the figure, the hydraulic behavior of these test samples was similar and indicated that the 

internal erosion according to Darcy’s law occurred in all samples. As can be seen in the 

relationship between hydraulic gradient i and velocity v (Figure 2.36(A)), the piping 

phenomenon occurred early at i = 0.2, and the critical hydraulic gradient corresponding to 

the occurrence of the boiling phenomenon was 1.4, 1, and 0.6 for K8.5A, Ksoil, and K40A, 

respectively. This implied that the permeability of compacted volcanic soil is affected by the 

increase in fine grains. Furthermore, the difference in hydraulic conductivity of K8.5A, Ksoil, 

and K40A as shown in Figure 2.36(B) was explained by the fine grains clogging to coarser 

particles and then being released. The tendency of water to flow through the pore network 

and wash out the fine particles was particularly obvious in samples with high fine content 

such as K40A. The loss of fine particles increased permeability and led to internal instability 

of the soil, so the boiling phenomenon of sample K40A was recorded with the smallest 

hydraulic gradient. 
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Figure 2.36 Piping test results of Komaoka volcanic soil (A) velocity (B) hydraulic 

conductivity (Dao (2018) [7]). 

 

Due to obvious difficulties, the number of studies on the effect of fine particle content 

using modeling experiments is very limited. Kawamura and Miura (2013) [27] Kawamura 

and Miura (2014a) [29] investigated the increment of fines content before and after different 

tests ΔFc (%) for many types of volcanic soil, as shown in Figure 2.37. ΔFc rises as the 

initial water content increases. It is important to mention that particle breakage rises with 

rainfall-induced stress histories. This means that failures of unsaturated volcanic slopes with 

crushable particles can be attributed to a shearing resistance decrease caused by particle 

breakage during rainfall. Miura et al., (2003) [51] reported that reduction in shearing 

resistance caused by particle breaking. Accurate estimation of the softening of slope surfaces 

is important for the stability of volcanic slopes; in particular, its influence is attributed to the 

reduction of shearing resistance due to particle breakage. 

 

 

Figure 2.37 Changes in the increment of finer content ΔFc after rainfall test (Kawamura 

and Miura (2014a) [29]). 

 

 Summary 

The slope stability under the effect of rainfall and earthquakes has been studied for a 

long time by various methods. Especially after the proposal of Rocha (1957) [61], the model 
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was applied to bring understanding in many areas of geoengineering. This method has been 

applied to study the failure mechanism of embankments under the independent effect of 

rainfall (Kawamura 2013), and earthquake (Kawamura 2014). The model is also initially 

applied to study the mechanism of double disasters such as in the case of post-earthquake 

rainfall ([75], [76]), and post-rainfall earthquakes ([73], [74]). However, the results still have 

many limitations due to objective difficulties. With the development of current equipment, 

these studies need to be completed. Despite the wide occurrence of volcanic soils and the 

hazards associated with their tendency to become highly unstable during earthquakes and 

heavy precipitation, there are relatively few published studies on their geotechnical 

characterization, much fewer attempts to identify common properties and formulate a 

generic model for their behavior. Based on an analysis of the current state of research in this 

area, the remaining issues include: 

- Studying the earthquake-induced failure mechanism of volcanic embankments 

subjected to rainfall based on the results of model experiments; 

- Influence of fine grain content and initial water content on the stability of 

embankment under the independent and combined effects of rainfall and seismic loadings: 

- Compare the impact order of rainfall and earthquake on the slope failure. 

Therefore, these problems were focused to solve on in the following chapters. 
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SOIL MATERIALS AND TESTING 

METHODS 

 Introduction 

To fill in the gap of knowledge discussed in Chapter 2, Komaoka volcanic coarse-

grained soils were reconstituted as samples for model experiments in this study. This chapter 

presents the physical and mechanical properties of the test specimens. The data on soil 

material including compaction characteristics was investigated in previous research. 

Because of its importance to this study, it was briefly summarized and further explained and 

discussed. After that, the specifications of the test apparatus which contains a shaking table 

and spray nozzle were shown. During the tests, measuring devices including pore water 

pressure transducers, soil moisture meters, and acceleration meters were utilized to provide 

an understanding of the failure of volcanic embankments under rainfall and seismic loadings. 

The similarity laws used in model tests were built and the preparation of the model 

embankment was illustrated. In order to provide fundamentals and to grasp the effects of 

geotechnical conditions on the mechanical behavior of volcanic coarse-grained soils, the test 

conditions were chosen with various cases of initial water content, and fine particle contents, 

… Besides, the influence of external factors were clarified with the dissipation time between 

rainfall and earthquake, or the order impact of rainfall and earthquake in test conditions. 

 Test materials 

The original material used in this study is the volcanic coarse-grained soils derived 

from Shikotsu caldera’s ejecta, Hokkaido, Japan (see Figure 3.1). This soil, hereafter referred 

to as Komaoka volcanic soil, is the sample adopted for the construction of a series of physical 

model tests as well as the full-scale embankment (e.g., Chapter 5). It is estimated that the 

eruption age for Komaoka volcanic soil belonging to Shikotsu primary tephra was 31,000 ~ 

34,000 years and was flow deposits (the notation is Spfl; Shikotsu pumice flow deposits). 

Spfl is the same type of Shikotsu caldera liquefied by the 2018 Hokkaido Eastern Iburi 

Earthquake, as reported in [33]. Besides, volcanic soils, including Spfl, which have been 

utilized for residential embankments have repeatedly liquefied due to the strong earthquakes 
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in the past; examples include Hokkaido Nansei-oki (1993), Hokkaido Toho-oki (1994) and 

Tokachi-oki (1968 and 2003). The physical properties of Spfl in comparison with those of 

Toyoura sand are shown in Table 3.1. The natural water content of Spfl is ignored in this 

table because it is easily changed in the event of rainfall or earthquakes due to its loose 

deposition in nature. The fines of Komaoka volcanic soil were classified into non-plastic 

material (NP) according to Atterberg limits, the liquid limit is 46.7%, plastic limit is NP).  

 

Table 3.1 Physical properties of Komaoka volcanic soil and Touyoura sand 

Parameters Komaoka volcanic soil Touyoura sand 

Soil particle density, ρs (g/cm3) 2.47 2.68 

Maximum void ratio, emax 2.25 0.96 

Minimum void ratio, emin 1.21 0.64 

Mean grain size, D50 (mm) 0.27 0.18 

Coefficient of uniformity, Uc 46 1.5 

Natural fines content, Fc (%) 26.0~42.6 0 

 

 

Figure 3.1 Locations of sampling and monitoring site of embankment in this study 

 

Similar to elemental experiments, the material sample Ksoil (Fc = 27%) in this study 

was obtained by removing particles larger than 9.5 mm from the Spfl to reduce errors due to 

the scale effect. As discussed in Chapter 2, Hieu et al., (2017) [16] used the elemental 

experiment to investigate the influence of fine particle content on the hydraulic activity and 

permeability of Komaoka volcanic soils, which will be verified and compared in this study. 

In that way, the experimental samples were prepared in the same manner as in [16]. From 

Ksoil, the fine particle content was adjusted to produce samples K8.5A (Fc = 8.5%) and K40A 

(Fc = 40%). The grain size distribution, which was determined according to the procedure 
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in JGS 0131-2009 [22], and the physical properties of the test samples are shown in Figure 

3.2 and Table 3.2, respectively. 

 

 

Figure 3.2 Grain size distribution of test samples in this study, according to [23]. 

 

Table 3.2 Physical properties of test samples in this study. 

Parameters K8.5A Ksoil K40A 

Fine particles content, Fc (%) 8.5 27 40 

Optimum water content, wopt (%) 35.81 34.32 31.20 

Maximum dry density, ρd max (g/cm3) 1.0412 1.1049 1.1241 

Mean grain size, D50 (mm) 0.50 0.27 0.16 

Uniformity coefficient, Uc 10.6 62.5 42.8 

Soil particle density, ρs (g/cm3) 2.5289 2.5203 2.5134 

Maximum void ratio, emax 2.76 2.25 2.46 

Minimum void ratio, emin 1.30 1.21 1.25 

 

Since Komaoka soil particles are fragile and easily broken by compaction [16], the 

compaction curves of the test samples in this study are determined by a non-repetitive 

method (A-b method of JGS 0711-2009 [23]), as shown in Figure 3.3. The compaction effort 

was equal to 550 kJ/m3. Although the optimum water content is different, the peaks of these 

curves are all located near the line of Sr = 65%. As can be seen, the optimum saturation is 

almost similar with different fine content. The dry densities corresponding to these peaks are 

called the maximum dry density ρd max and were used as the base data to calculate the 

compaction degree Dc in the model experiments, such as the test conditions in Section 3.3.3. 

The influence of fine particle content on optimum water content and maximum dry density, 

obtained from these three compaction curves, is shown in Figure 3.4. As can be seen, an 

increase in fine content leads to an increase in the maximum dry density, but a decrease in 

optimum water content. Compaction by standard mortar or by roller in model tests is a 

0

20

40

60

80

100

0.001 0.01 0.1 1 10

P
er

ce
n

ta
g

e 
fi

n
er

 (
%

)

Grain size (mm)

K8.5A

Ksoil

K40A



46 

 

process by which soil particles rearrange to reduce volume and increase density. Therefore, 

soils with a higher fine content more readily allow fine grains to enter the voids between 

larger particles, resulting in easier compaction and density increase. However, greater 

density also means less porosity and space to hold water. Figure 3.5 shows the maximum 

and minimum void ratio according to JGS 0161-2009 [24]. In the figure, the increase in fine 

content also leads to a decrease in the minimum void ratio. The compaction behavior of soil 

samples with different fine content shows a similar trend between dry conditions and 

optimum water content conditions. In contrast, the maximum void ratio in Figure 3.5 related 

to the loose condition shows that the Ksoil has a higher dry density or lower void ratio than 

K8.5A and K40A. In addition, the variation in emax was higher than that in emin, predicting that 

an increase in compaction degree reduces the effect of fine particle content. 

 

 

Figure 3.3 Compaction curve of test samples in this study, according to the A-b method 

[16]. 

 

   

Figure 3.4 Influence of fines contents on compaction features of Komaoka volcanic soil 

(A) optimum water content wopt, (B) and maximum dry density ρd max. 
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Figure 3.5 Maximum and minimum void ratio of Komaoka volcanic soils with different 

fine particle contents. 

 

Due to the size of the test apparatus, the influence of different fine contents on soil 

particle density cannot be taken into account by experiments. Therefore, the soil particle 

density ρs for K8.5A, Ksoil, and K40A in this study were calculated by the formula in Equation 

(1) and data proposed by Matsumura (2014) [43]: 

 

ρs = Σρsixi (3.1) 

 

where ρsi is the soil particle density of each grain size shown in Table 3.3 and xi is the content 

of this size in the soil sample. 

 

Table 3.3 Soil particle density of each grain size [43]. 

Grain Size (mm) 
4.75 ~ 2.00 ~ 0.85 ~ 0.425 ~ 0.25 ~ 0.106 ~ 0.075 ~ 

<0.075 
9.50 4.75 2.00 0.85 0.425 0.25 0.106 

Index i 1 2 3 4 5 6 7 8 

Soil particle density, ρsi (g/cm3) 2.595 2.591 2.569 2.587 2.519 2.444 2.414 2.484 

 

 Test apparatus and procedures 

3.3.1 Test equipment 

 

Table 3.4 Specifications of the shaking table used in this study 

Parameters Value 

Maximum loading weight (N) 1500 

Amplitude  ±50 mm 

Frequency 0.05Hz ~ 5 Hz 

Wave Regular wave (sinusoidal form) 

Control system  AC-Servo motor, Hydraulic control 
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Figure 3.6 Overall view of test apparatus in this study. (A) Overall view (B) Side view (C) 

Front view (D) 1-dimensional vibration loading device (E) Spray nozzle. 

 

Figure 3.6 shows the overall view of the test apparatus used in this study to 

investigate the behavior of embankments subjected to rainfall and earthquakes. The internal 

dimensions of the model soil tank are 2000 mm long, 700 mm high, and 600 mm wide. The 

side of this tank is fitted with a 20 mm thick tempered glass to allow monitoring of the 

deformation and phenomena occurring with the slope during the tests. In the soil tank, the 

model embankment was prepared in a shaking table with dimensions of 400 mm in length, 

450 mm in height, and 580 mm in width. Friction on the sides of this table is eliminated by 

applying grease. The computer controls the one-dimensional vibration loading device 

attached under the shaking table through a hydraulic cylinder to apply a wave with 

specifications shown in Table 3.4. The support system for the spray nozzle can be adjusted 

(A) 
(B) 

(C) 

(D) 

(E) (E) 
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in position and height so that the entire slope receives rainwater, and the rainfall intensity is 

managed by the valve system. Two digital cameras were used to record the phenomena on 

the front and side of the slope. Rainfall from the slope bottom was drained by a pump as 

necessary. 

 

(A)    

(B)  

(C)     

Figure 3.7 Measuring devices in this study (A) Pore water pressure transducer (B) Soil 

moisture meter (C) Acceleration meter 

 

The types of measuring devices used in this study are listed in Table 3.5. All devices 

are small-sized gauges for model experiments (see Figure 3.7). Through the soil–water 

characteristic curve of compacted Spfl [43] as shown in Figure 3.8, Kawamura et al., (2021) 

[33] demonstrated that the influence of suction on the mechanical behavior of this soil can 
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be ignored when the saturation is greater than 60% along the wetting path. Thus, the use of 

BPR-A-50KPS to monitor pore water pressure in the post-rainfall earthquake experiments 

with high soil moisture conditions in this study is completely appropriate.  

 

Table 3.5 Specification of measuring devices in this study 

Measuring device Pore water pressure 

transducer 

Soil moisture meter  Acceleration meter  

Type 
Small-sized gauge for 

model experiments 

Volumetric water 

content (VWC) sensor  

Oil damping 

Manufacturer Kyowa METER Group Kyowa 

Name BPR-A-50KPS ECH2O EC-5 ASW-2A 

Range  0 - 50 kPa 0 – 100% (VWC) ±19.61m/s2 (±2G) 

Specifications [36] [46, 47] [37] 

 

 

Figure 3.8 Soil-water characteristics curve of Komaoka volcanic soil [43] 

 

Soil moisture meters were calibrated on several slope density conditions. However, 

variations in soil moisture attributed to dilatancy induced by the deformation of slopes during 

model testing were not evaluated in Chapter 4 due to the difficulty in defining their behavior. 

The measured volumetric water content θ was used to calculate the water content w and 

saturation degree Sr discussed in Chapter 4 by Equations (3.2) and (3.3).  

 

𝑤 =  
𝜃𝜌𝑤

𝜌𝑑
100% (3.2) 

𝑆𝑟 =  
𝑤𝜌𝑠

𝑒
 =  

𝑤𝜌𝑠
𝜌𝑠𝜌𝑤

𝜌𝑑
− 1

 (3.3) 
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Which, ρd is the dry density of samples shown in Table 3.6, and ρw is water density (1g/cm3). 

ρs is above-mention soil particle density, and e is the void ratio. The settings for these devices 

will be described in section 3.3.2. 

3.3.2 Model embankment preparation 

The shape and dimensions of the model embankments with the locations of 

measurement equipment are depicted in Figure 3.9. In this study, three acceleration meters, 

three pore water pressure transducers, and six soil moisture meters were used. Besides, the 

shear strain γ was calculated from the displacement of the six kite strings inserted during the 

preparation of the slope model (see Figures 3.10 and 3.11). Shear strain, acceleration, pore 

water pressure, and saturation degree were the parameters for understanding the slope failure 

mechanism. 

 

  

Figure 3.9 Shape and dimensions of model embankments and setting positions of 

measuring instruments. 

 

      

Figure 3.10 The initial shape of the model embankments (A) front view (B) side view. 
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Figure 3.11 Slope preparation (A) Kite strings and side aluminum sashes (B) Excessive 

soil removal 

 

The slope preparation method: 

The volume of the embankment was calculated from the dimensions and shape of the 

model embankment shown in Figure 3.9. The volume and density in Table 3.6 were then 

used to compute the required soil mass for the test. Finally, the mass of dry soil and water 

was determined by the initial water content in Table 3.6. The soil is dried in an oven at 1100C 

for at least 1 day before being mixed with water. Two aluminum sashes were installed on 

either side to provide the slope with a defined shape and angle (see Figure 3.11). The sample 

was then sprinkled and settled uniformly to be homogeneous. For each 5 cm thick layer, a 

roller with a weight of 127.4N was used to compact to ensure dry density (degree of 

compaction) for the whole slope. The number of compactions is 4 times per 1 layer. The 

fluctuation in dry density during compaction is limited to 5% to reduce the effect of the 

variance in compaction density on the failure behavior. The compaction process at the initial 

water content is carried out so that the constituent particles are not broken. This process was 

continued until the embankment reached the specified height. After that, excess soil was 

removed from the slope surface by carefully sliding the iron plate with a sharp cutting edge 

on the aluminum sashes. 

3.3.3 Test conditions 

Since the three soils have different optimum water content, the curves in Figure 3.3 

are adjusted as shown in Figure 3.12 by normalizing the water content with the optimum 

water content of each soil type. As shown in figure 3.12, the test cases in this study are 

marked with the symbol ■, which lies on the dashed lines representing the compaction 

degree of Dc=90% by compaction method in model tests described in section 3.3.2. This 

degree of compaction was chosen to reduce the effect of internal erosion as discussed in 

Chapter 2. Similar to maximum dry density, optimum water contents were used as the base 

to determine the initial conditions of the tests in this study as shown in Table 3.6. 

 

(A) (B) 
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Figure 3.12 Adjusted compaction curves and test conditions 

 

Figure 3.13 shows the relationship between permeability and initial water content by 

Dao (2018) [7] and Matsumura (2014) [43]. To examine that by model test and focus on the 

effect of initial water content on the mechanical behavior of compacted volcanic soils, the 

initial water content ratio w0/wopt is set at 0.9 and 1.1, representing the dryer and wetter sides 

of the optimum water content (in practice, the soil is usually compacted around wopt in 

Japan). Through comparison, the influence of the difference in initial water content during 

compaction in the same dry density condition on the slope failure phenomenon was 

investigated. Because of the different specific initial water content values, these experiments 

are collectively referred to as the "dry cases" and the "wet cases" for all 3 kinds of soil.  

 

 

Figure 3.13 Relationship between permeability and initial water content (Dao (2018) [7] 

and Matsumura (2014) [43])  

 



54 

 

As discussed in previous Chapters, the effect of the impact order of external force 

was clarified by comparing the slope stability under post-rainfall earthquakes in this study 

with the results of post-earthquake rainfall cases in Kawamura et al., (2016). To ensure a 

basis for comparison, the experimental conditions in these cases were also chosen similar to 

those in Kawamura et al., (2016) [31], as summarized in Table 3.7. Besides, given the fact 

that real earthquakes might happen at any moment following the end of rainfall, seismic 

loadings in this study were applied to the model slope according to 3 typical cases based on 

different pore water pressure conditions before earthquakes: 

- Case (i): pw1 is higher than pw2; 

- Case (ii): pw1 and pw2 reach the lowest value; 

- Case (iii): pw2 is higher than pw1. 

in which, pw1 and pw2 are the pore water pressure at the upper part and lower part of the 

slope, respectively. 

 

Table 3.6 Test conditions to clarify the effect of finer contents 

Parameters K8.5A Ksoil K40A 

Fines content (%) 8.5 27 40 

Slope angle (0) 45 45 45 

Length of base (mm) 400 400 400 

Initial water content in dry cases (%) 32 31 28 

Initial water content in wet cases (%) 39 38 34 

Rainfall intensity (mm/h) 100 100 100 

Acceleration (m/s2) 2.8 2.8 2.8 

Degree of compaction (%) 90 90 90 

Dry density (g/cm3) 0.93 0.99 1.00 

Void ratio 1.72 1.55 1.50 

Rainfall-only experiments 

Rainfall time (minutes) ≥30 ≥30 ≥30 

Failure time in dry cases (minutes) 10 10 9 

Failure time in wet cases (minutes) 8 14 15 

Post-rainfall earthquake experiments (Dry cases) 

Rainfall time (min.) 5 5 4.5 

Shear strain after rainfall (%) 3.88 4.68 3.11 

Number of cycles 100, 200 100, 200 100, 200 

Post-rainfall earthquake experiments (Wet cases) 

Rainfall time (min.) 4 7 7.5 

Shear strain after rainfall (%) 4.70 4.37 3.89 

Number of cycles 100, 200 100, 200 100, 200 
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Table 3.7 Test conditions to clarify the effect of impact order of external force 

Parameters 
Post-earthquake rainfall 

Kawamura et al., (2016) [31] 

Post-rainfall earthquake 

(This study) 

Material Komaoka volcanic soil 

Slope angle (0) 45 

Length of base (mm) 400, 750 400 

Initial water content 37, 43  

Degree of compaction (%) 85 

Dry density (g/cm3) 0.9 

Rainfall intensity (mm/h) 100 

Acceleration (m/s2) 2.8 2.8, 3.2 

Number of cycles 20 

 

3.3.4 Similarity laws of model tests 

Similar laws are the condition for selecting soil materials for the model test and also 

the basis for determining the magnitude of loadings and impacts applied to the model based 

on desired conditions in the prototype. Due to several inaccuracies such as the scale effect, 

the soil particle effect, and the confining pressure effect, it is difficult to precisely recreate 

mechanical behavior on model embankments, particularly in the 1g field. However, it is well 

known that physical modeling in model testing can enhance our knowledge (Kawamura et 

al., (2010) [26], Kawamura and Miura (2013) [27], Kawamura and Miura (2014) [30]). 

 

 

Figure 3.14 Stress-strain relationship between prototype and model (Rocha (1957) [61]) 

 

Figure 3.14 shows the first idea of Rocha (1957) [61] in his attempt to use the 

information obtained from model tests in geotechnical engineering: The material of the 

model must have a stress-strain diagram that is produced from the diagram of the prototype 

by multiplying the ordinates by l/α and l/β in the vertical and horizontal axes. This condition 
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needs to be satisfied for any triaxial loading to which cylinders of the materials are subjected 

and for the strain in any direction. Then a physical modeling approach was suggested based 

on that stress-strain relationship, in which force ratios on mechanical behavior were 

synchronized in the model and prototype. It is obvious that rigid adherence to general 

similarity laws is not possible due to the complexity of soil properties. Accuracy here is 

required by the problem itself. As in soil mechanics, accepting simplified hypotheses 

changes the laws of similarity. For example, the deformation of the soil is assumed to be 

proportional to the stress when working in the elastic region. Then the similarity laws only 

require that the model materials have elastic moduli proportional to the similar modulus of 

the prototype and have an equal Poisson coefficient. Another simple case is problems that 

deal with failure and ignore non-linear relationships between stress and strain, the conditions 

apply only for stress and strain values at the time of failure, namely the cohesion and angle 

of internal friction. In contrast, for general problems, the number of conditions can be 

increased. For example, when it is necessary to consider strain as a function of time, the 

relationship graph of deformation and time of the homologous material should obey the 

similarity laws. When studying the flow of the liquid phase, to consider the buoyancy of the 

solid phase due to its immersion in the liquid phase, the porosity of the prototype and the 

model materials must be equal. 

The stress(σ) - strain (ε) relationship of soil material in the model and prototype 

according to the concept in Figure 3.14 were presented by Equations (3.2) and Equation 

(3.3). Then the fundamental scaling (model/prototype) of length (L), time (T), density (ρ), 

and gravity acceleration (g) were shown in Equations (3.4) to (3.7).   

 

σm/σp = 1/α (3.4) 

εm/εp = 1/β (3.5) 

Lm/Lp = 1/λ (3.6) 

tm/tp = 1/λt (3.7) 

ρm/ρp = 1/λρ (3.8) 

gm/gp = 1/λg (3.9) 

 

The interdependence between these scales needs to be eliminated in order to retain 

only the independent scales. First, the time scale is expressed as the scale of length and 

gravity acceleration as shown in (3.8). Then, the stress scale is also reproduced as the scale 

of length, gravity acceleration, and density by deducing from the self-weight formula as in 

(3.9). 

 

tm/tp = 1/λt = (λg/βλ)0.5 (3.10) 

σm/σp = 1/α = 1/(λρλgλ) (3.11) 
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Thereafter, by synchronizing the ratios of force on influence factors for each other, 

physical modeling can be obtained for acceleration (a) in Equation (3.10), deformation (d) 

in Equation (3.11), and deformation modulus (E) in Equation (3.12). The scale of 

permeability (k) is also determined by Darcy's law as shown in Equation (3.13). The state of 

stress at the failure of the material of the prototype and model are σp, σ'p and σp/α, σ'p/α, 

respectively. Hence Mohr’s circles of the prototype and model materials are congruent, 

resulting in congruent envelope lines. Based on this analysis, the scale for Friction (tanϕ), 

and Cohesion (c) was derived in Equation (3.14) and Equation (3.15). 

 

am/ap = 1/λg (3.12) 

dm/dp = 1/(βλ) (3.13) 

Em/Ep = β/(λρλgλ) (3.14) 

km/kp = λρ/(βλ/λg)
0.5 (3.15) 

tanϕm/tanϕp = α/(λρλgλ) (3.16) 

cm/cp = 1/(λρλgλ) (3.17) 

 

In addition, if the stress-strain relationship is expressed by a hyperbolic model, the 

scaling of strain can be theoretically derived as Equation (3.16). The details of the procedure 

were described by Kokusho (2014) [34]. Besides, Equation (3.17) can be applied for 1g 

model testing and Equation (3.18) can be applied in the case that soil in the prototype was 

used as model material. Apply Equation (3.16) to (3.18) to the general scaling in Equation 

(3.9) to (3.14), the similarity laws were obtained as summarized in Table 3.8 for 1g model 

testing if the same material as that in the prototype is adopted. The more general conditions 

of similarity a material satisfies, the more information can be obtained from the experiment. 

 

1/β = 1/λ0.5 (3.18)  

gm/gp = 1/λg = 1 (3.19)  

ρm/ρp = 1/λρ = 1 (3.20)  

 

The use of prototype soil itself for the model tests is simple and satisfy some 

assumption of Rocha (1957) [61]. However, it is easy to see from these above calculations 

that not all prototype soils can be used as materials for 1g model experiments in all problems. 

Now we consider the suitability of Komaoka volcanic coarse-grained soil in rainfall and 

earthquake experiments in this study by its stress-strain relationship. Figure 3.15 shows the 

results of consolidated undrained triaxial tests (CU̅̅̅̅  tests) for Komaoka volcanic soils in 

terms of the relationship between the stress ratio σ1’/σ3’ and shear strain γ (Kawamura et al., 

(2021) [33]. In the figure, the Poisson’s ratio is 0.5 to calculate the shear strain in CU̅̅̅̅ . As a 
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result, an angle of internal friction of 380 and cohesion of 0 kN/m2 was estimated. In Figure 

3.15 (a), the stress-strain relationship is affected by the difference in effective confining 

pressure. However, if the strain was normalized by the square root of σc’ as in Figure 3.15 

(b) the stress-strain curves fit for each other, and peak points roughly lie on the same 

hyperbola. 

 

Table 3.8 Similarity laws applied in 1g model experiments where the prototype soils are 

used as test materials 

Parameters Scale (Model/Prototype) 

Length (L) 1/λ 

Time (t) 1/λ0.75 

Density (ρ) 1 

Acceleration (a) 1 

Stress (σ) 1/λ 

Strain (ε) 1/λ0.5 

Deformation (d) 1/λ1.5 

Deformation modulus (E) 1/λ0.5 

Permeability (k) 1/λ0.75 

Friction (tanϕ) 1 

Cohesion (c) 1/λ 

 

 

 

Figure 3.15 Consolidated undrained triaxial test results of Komaoka volcanic soils 

(A) Relationship of σ1’/σ3’ and γ, (B) Relationship of σ1’/σ3’ and γ/(σc’)
0.5 [34] 

 

(A) (B) 
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Figure 3.16 Test concept for 1g model test 

 

Table 3.9 Similarity laws were applied in this study. 

Parameters Scale (Model/Prototype) 

Length (L) 1/λ 

Earthquake acceleration (a) 1 

Rainfall intensity (R) 1 

Stress ratio in element in slope (σ) 1 

Strain in element in slope (ε) 1 

Pore water pressure ratio (Δu/ σv’) 1 

Saturation degree ratio (Sr/Sr0) 1 

Deformation (d) 1/λ 

 

Based on the consideration of the above discussion, the relationship between stress 

and normalized strain is unique, which leads to the possibility of using prototype Komaoka 

soils as model material according to the satisfaction of Rocha's assumption. Therefore, the 

strength of soil can be assumed to vary proportionally by the normalization of effective 

confining pressure, as described in Figure 3.16. Namely, the conventional way of thinking 

for element testing is taken in that of the 1g model testing. According to this technique, the 

mechanical behavior at the failure of slope elements for the 1g model corresponds with those 

at failure in the real field if rainfall intensity and seepage speed in the model are consistent 

with those in the prototype (Permeability of Komaoka volcanic soil is a high value of more 

than 10-5 m/s). Owing to this, rainfall intensity which was assumed to occur in the real field 

was directly applied to the slope surface. As a result, the similarity of dependency on time 

regarding the development of pore water pressure and the consolidation phenomenon may 

be not required theoretically. Additionally, note that the pore water pressure value obtained 

from model testing can be similarly evaluated as a true value. Consequently, reproduction 

by model testing is theoretically enabled for cohesionless soils such as Komaoka volcanic 
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soils, although the assumption that a model and a natural physical phenomenon occur by the 

same mechanism is required (Kawamura et al., (2010) [26]). In addition, the effect of suction 

on mechanical behavior until failure was small because the degree of saturation was more 

than 60 % in test ranges, as discussed above. To summarize, Similarity laws applied in this 

study are shown in Table 3.9. 

3.3.5 Test procedures 

Definition of slope failure 

Kawamura and Miura (2013) [27] monitored the failure phenomenon of the model 

embankments through the PIV method and found that the saturation reached its peak value 

when the shear strain was 4–6%, independent of the differences in soil material, rainfall 

intensity, slope angle, and permeability of the bottom layer; after that, the embankment 

collapsed. Therefore, the moment when the shear strain γ reaches 6% is also defined as slope 

failure. 

Rainfall amount in post-rainfall earthquake experiments: 

Firstly, rainfall-only experiments were conducted. In which, the rainfall 

corresponding to the shear strain γ = 6% was set as R0. In post-rainfall earthquake tests, 

rainfall amounts of 0.5R0 were applied to the slope before carrying out seismic loadings to 

quantitatively evaluate the effect of the previous rainfall on the collapse of the model 

embankments. 

The procedure for post-rainfall earthquake experiments used in this study is 

presented as follows: 

1. Adjust the type, position, and water pressure of the spray nozzle installed at height 

G.L. + 2.6 m to obtain the rainfall intensity at the specified value of 100 mm/h. The 

acceleration is also set at 280 m/s2; 

2. After the slope model is completed, spray water from the spray nozzle and 

simultaneously start measuring the pore water pressure transducers, soil moisture meters, 

and acceleration meters; 

3. When the amount of rainfall reaches a predetermined value, finish the rainfall test 

and carry out the seismic loading test. 

In the present study, each test was performed at least two times. 

 Summary  

Similar to other volcanic soils in Hokkaido, Komaoka has liquefied many times 

under the influence of major earthquakes in history. The fine content of Komaoka volcanic 

soil ranges from 26.0 % to 42.6 %. The fines were classified into non-plastic material (NP). 

The physical model tests in this study were conducted on the embankments constructed from 

3 types of soil with different amounts of fine content: K8.5A, Ksoil, and K40A. They are 

prepared with initial water contents on the dry side and wet side as the boundary of optimum 

water content. In addition, the relationship between the initial water content and dry density 
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of test materials was examined based on A-b compaction test methods. Results indicated that 

an increase in the number of fine particles of Komaoka volcanic soils leads to the decrease 

of optimum water and the increase of maximum dry density, respectively. The apparatus 

combined shaking table and spray nozzle were used to investigate the mechanical behavior 

of volcanic embankments subjected to rainfall and earthquake. Based on the similarity laws, 

the phenomenon that occurred with the prototype can be estimated by monitoring of model. 

The model embankment was built by the compacting method at the compaction degree of 

90%. Pore water pressure, saturation degree, acceleration, and shear strain are data of tests, 

which were discussed in Chapter 4. 
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PHYSICAL MODEL TEST RESULTS AND 

ANALYSIS 

 Introduction 

With the materials, equipment, and procedures presented in the previous Chapter, a 

series of 1g model experiments were performed. Rainfall-only experiments were conducted 

at first until failure occurred at the model embankment. Through comparison of the failure 

phenomenon and measured data, the influence of fine particle content on embankment 

failure mechanism due to rainfall was clarified. In these experiments, the rainfall 

corresponding to the moment when the shear strain reached 6% was set as the total rainfall 

amount R0. In the post-rainfall earthquake experiment, the model embankment was first 

subjected to a rainfall of 0.5R0. After the rainfall stopped, seismic loads were applied. The 

earthquake resistance of the embankment that has been subjected to previous rainfall was 

clarified under different conditions of initial water content and fine particle amount. In 

addition to clarifying the effect of dissipation time, earthquakes were applied at different 

moments as described in Chapter 3. Finally, the post-rainfall earthquake experiments were 

conducted under the same conditions as the post-earthquake rainfall experiments in 

Kawamura et al., (2016) [31]. The comparison is made to highlight the influence of the order 

of external forces on the stability of the volcanic slope. 

 Influence of initial water content and fines content on the stability of volcanic 

embankments under rainfall and earthquake 

Similar to other research by 1g model experiments and conventional approach to 

element testing, the variation in water content in soils during rainfall and earthquake tests in 

this study was depicted by saturation ratio Sr/Sr0, which is the saturation degree Sr 

normalized by its initial value Sr0. Along with that, the reduction in shear strength of the 

embankment was evaluated through the pore water pressure ratio Δu/σv’. In this, the change 

in pore water pressure Δu was normalized by the effective overburden pressure σv’ which 

was updated with the above–mentioned measured water content. 
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4.2.1 Effect of fines content on slope stability during rainfall 

First, rainfall-only experiments were conducted for all three samples with a rainfall 

duration of at least 30 minutes or until slope failure. The influence of fine particle content 

on the mechanical behavior of volcanic embankments during rainfall is discussed below. 

4.2.1.1.Dry cases 

 

 

Figure 4.1 Sieving test areas in this study. 

 

As shown in Figure 2.37, the increment of fine content in the Komaoka volcanic soil 

after rainfall experiments was nearly zero, implying that there is almost no particle breakage 

due to rainfall for this soil. However, because of their lightweight and no cohesion, the fine 

particles easily move in the pores between the coarse particles under the effect of rainwater. 

In this study, an attempt to understand the trend of this migration was made by examining 

the grain size distribution with sieving tests in different parts of the embankments (Areas 1, 

2, 3) and in the washed-out part (Area 4), as shown in Figure 4.1. The results shown in Table 

6 imply that the fine particles in all three types of soil tend to move from Areas 1 to Areas 2 

and 3 because of gravity and rainfall. It can also be seen that the fine particle content of Area 

3 was greater than those of Area 2 in all three cases even though the direction of rainwater 

is towards Area 2 (shown by the movement direction of the wetting front in the next section). 

This may be due to fine particles moving with rainwater due to the piping phenomenon in 

the saturation region from Area 1 to Area 3. When the secondary failure had not yet occurred, 

the soil in Area 4, which was generated by runoff, consisted mainly of fine particles. 

 

Table 4.1 Fines content inside embankment after 30 minutes of rainfall (dry cases) 

Test samples Fc1 (%) Fc2 (%) Fc3 (%) Fc4 (%) m4 (kg) 

K8.5A 5.47 8.61 9.12 12.68 6.22 

Ksoil 24.24 27.34 28.49 38.49 0.84 

K40A 37.07 40.24 41.18 53.33 1.02 
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Figure 4.2 Changes in saturation degree during rainfall tests (A) K8.5A, (B) Ksoil, and (C) 

K40A (dry cases) 

 

The variation in saturation degree during the rainfall tests is shown in Figure 4.2. 

Under the effect of rainfall, the value of each meter started to increase at different moments 

depending on their locations. All three samples showed a similar trend: sm6, sm3, and sm1 

located closest to the surface increased first; then sm5 and sm2 increased, and finally, sm4 

increased. If the meters lie on the same wetted front, their values start to increase together 

and show the same trend, as noted in sm1, sm3, and sm6 or sm2 and sm5. At the time of 

failure corresponding to shear strain reached 6%, the saturation conditions inside the 

embankment in three cases were also similar: sm1, sm3, and sm6 increased to near steady 

values while the other meters remained at the original value. However, as the rainfall 

continued, the different hydraulic conductivity between the three soils caused the difference 

in the speed of the wetting front in the embankment. This difference can be more easily 

observed in the water content distribution shown in Figure 4.3, which was obtained by linear 

interpolation from the six measurements inside the slope and the direct measurements at the 
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boundary of the embankment before and after the experiments. In the figure, sample K8.5A 

showed the highest permeability: after 30 min of rainfall, except for the deepest meter sm4 

which increased to a rather high value, the meters sm1, sm2, sm3, sm5, and sm6 increased 

to their maximum value, as shown by the fact that they were no longer increase when the 

rainfall stopped. For Ksoil, sm4 did not start to increase after 30 min of rainfall. In particular, 

K40A showed the lowest permeability: sm2 and sm5 did not even reach their maximum value. 

The effect of fine particle content on the hydraulic conductivity of volcanic soil in this study 

seems to be more obvious than it was in [7], which can be explained as follows: Under the 

same dry density in [7], the loss of fines content only leads to an increase in the average size 

of pores. However, a decrease in fine particle content directly results in the void ratio under 

the same compaction degree condition in this study. Therefore, the decrease in permeability 

in the latter case was more significant. After the rainfall stopped, sample K8.5A showed the 

fastest drainage rate (sm6 did not decrease because it was exposed after failure), followed 

by Ksoil and the slowest, which was K40A. 
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(C)  

(C)      

        Rain starts     Failure (10 min.)      Rain stops        After 3 hrs. 

Figure 4.3 Water content distribution inside model embankments during and after rainfall 

tests (A) K8.5A, (B) Ksoil, and (C) K40A (dry cases) 

 

 

 

 

Figure 4.4 Change in pore water pressure during rainfall tests (A) K8.5A, (B) Ksoil, and (C) 

K40A (dry cases) 

 

The change in pore water pressure during rainfall is shown in Figure 4.4. In the case 
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Then, flow deformations occurred at the base of the slope when pw3 exceeded 1. For K40A, 

the rate of increase in pore water pressure was lower than that of K8.5A and Ksoil. The values 

at three positions, pw1, pw2, and pw3, were almost the same. When the shear strain reached 

6%, the pore water pressure was quite small compared with the other two cases. Another 

difference in K40A was that the value of pw3 did not decrease for 3 h after the rainfall had 

stopped. The saturation degrees sm4, sm5, and sm6 of K40A also showed an upward trend 

after rainfall instead of decreasing as was the case of K8.5A and Ksoil. This can be explained 

through the movement of fine particles. As mentioned above, the fine content in Area 3 was 

always greater than in Areas 1 and 2. This migration trend led to the concentration of a large 

amount of fine grain at the toe of the slope. Fine particles combined with coarser particles 

made their size larger than the size of the pores, which prevented water and soil from 

continuing to move through that pore. This blocking effect in the basement made it difficult 

to drain and thus increased the groundwater table in the embankment as can be seen in the 

K40A case. 

 

 

Figure 4.5 Change in rainfall-induced shear strain (dry cases) (A) Shear strain changed 

with time (B) Shear strain changed with fines content 

 

The increment of shear strain during rainfall is shown in Figure 4.5, (A) is the change 

of shear strain over time, and (B) is the relationship between shear strain and fine particle 

content. As can be seen in Figure 4.5(A), when the shear strain was less than 6%, these 

relationships were almost linear for all three samples. Failure time for K8.5A and Ksoil was 10 

min and for K40A was 9 min. Since the increase in pore water pressure during this period of 

K40A was smaller, the faster failure rate of this soil sample is considered to be due to its 

smaller shear strength (internal friction angle). Thus, although an increase in fine content 

was shown to reduce soil permeability, it had almost no effect on rain-induced slope failure 

when the shear strain was less than 6%. After the shear strain exceeded 6%, it sharply 

increased at 27 min for the K8.5A embankment along with secondary failure, which was not 
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secondary failure did not occur with K40A. This difference can be explained through the 

failure pattern of K8.5A and K40A shown in Figure 4.6. In the case of K8.5A, along with the 

increment of pore water pressure, the flow deformation that occurred at the base of the 

embankment led to the fast development of a larger slip line. However, the other parts in the 

model slope except for the slip line showed almost no change. In contrast, the K40A 

embankment did not show slip line or gully erosion, but a small local failure appeared on 

the entire slope surface leading to a gradual reduction in size. Even when the pore water 

pressure exceeded 1, the flow deformation did not occur. The surface failure for K40A can be 

attributed to the fine grains migration in the embankment as described above, because fine 

particles play an important role in the construction of K40A’s soil structure, not just filling 

the voids as in the case of K8.5A (see Figure 4.7). When the soil was gradually saturated, the 

flow of water inside the embankment became more difficult, leading to a decrease in the 

movement of fine particles. As a result, the rate of increase in shear strain for K40A was 

reduced. 

 

  

Figure 4.6 Rainfall-induced failure type of model embankments (A) K8.5A and (B) K40A 

(dry cases) 

 

                 

(A)                           (B) 

Figure 4.7 Grains distribution of Komaoka soils (A) K8.5A, (B) K40A 

 

4.2.1.2.Wet cases 

Figure 4.8 shows the changes in pore water pressure during rainfall in wet cases. The 

trend, in these cases, is almost the same as in the dry case. The value and increase of pw1 

were quite much higher than that of pw2 and pw3 in the case of K8.5A and Ksoil, and almost 
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equal to that of pw3 in the case of K40A. When the shear stress reached 6% with K8.5A and 

Ksoil, the pore water pressure ratio was close to 1. While at the failure time of K40A, this ratio 

was still much less than 1. The difference in the changes in pore water pressure between the 

wet cases and dry cases may be only the elapsed time. The growth rate of pore water pressure 

is approximately equal between the two initial water contents in the case of K8.5A. With Ksoil 

and K40A, this speed in the wet cases is slower. 

 

 

 

 

Figure 4.8 Change in pore water pressure during rainfall tests (A) K8.5A, (B) Ksoil, and (C) 

K40A (wet cases) 

 

The rate of infiltration of rainwater into the embankment can be seen more clearly 

through the variation of saturation degree shown in Figure 4.9. In the dry cases, at about 9 

to 10 minutes (failure time in dry cases), sm1, sm3, and sm6 of all 3 soil samples were almost 

reaching the stable value. Whereas for the wet cases, these values are still quite low in the 

case of Ksoil and K40A. Sm1, sm3, and sm6 of these two soil samples were only close to the 

steady state at about 14 to 15 minutes, which is also the failure time in wet cases. In contrast, 

the infiltration rate of K8.5A is almost the same in both cases of initial water content. It can 
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be seen that the saturation at the time of shear strain reaching 6% is quite similar for all 3 

soil types in both dry and wet cases. The tendency to decrease permeability as fine particle 

content increases was even more evident in wet cases due to the rather high permeability of 

K8.5A. Based on these results, the tendency to decrease permeability at the same degree of 

compaction as shown in Figure 3.13 is confirmed in the model experiment for Ksoil and K40A. 

These are two types of soil with similar and higher fine grain content than the one used by 

Matsumura (2014) [43] and Dao (2018) [7] in elemental experiments. With K8.5A, the 

infiltration rate is high and almost equivalent independent of the water content at the time of 

compaction. 

 

 

 

 

Figure 4.9 Changes in saturation degree during rainfall tests (A) K8.5A, (B) Ksoil, and (C) 

K40A (wet cases) 
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Figure 4.10 Change in rainfall-induced shear strain (wet cases) (A) Shear strain changed 

with time (B) Shear strain changed with fine content 

 

 

Figure 4.11 Changes in the mechanical and physical behavior of volcanic soils with water 

content (A) dry density, (B) shear Strength, (C) and permeability [30]. 

 

The increase of shear strain over time in rainfall-only experiments of model 

embankments with different fine contents was summarized in Figure 4.10(A). As can be seen 

in Figure 4.10(B), the increment of fines content leads to the slower develop of shear strain 

at any time during rainfall test, that trend is more clear at longer rainfall time. Thus, the rate 

of increase in the shear strain of the model embankment is proportional to the permeability 

of the material in the wet cases. Compared with the dry cases, the failure time of the wet 

cases is shorter with K8.5A and longer with Ksoil and K40A. Hayashi and Kawamura (2019) 

[12] proposed the influence of water content on the dry density, shear strength, and 

permeability of volcanic soil, as shown in Figure 4.11. Comparing the behavior of compacted 

volcanic soils on the dry and wet sides of the optimum water content, the dry density is 

similar but the shear strength and permeability on the dry side show higher values. It can be 

seen that the trend shown in Figure 4.11(A) and 4.11(C) is similar to the results in Figure 3.3 

and Figure 3.13, respectively. As soil moisture increases (e.g., due to rainfall), soil properties 
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follow similar curves. The dry soil becomes wet and the permeability decreases until the soil 

is completely saturated. This may be the reason why the rainfall experiments in this study 

lead to a similar trend when the soil is on the dry and wet sides of the optimum water content. 

Although the shear strength of the volcanic soil compacted on the wet side is lower than it 

is on the dry side as shown in Figure 4.11(B), this only affects the rainfall-induced failure of 

the embankments when the permeability is high enough, as in the case of K8.5A. In the wet 

case of Ksoil and K40A, the increase in the shear stress was suppressed due to their low 

permeability making it difficult to increase the pore water pressure. From the results of the 

dry and wet cases, both the differences in shear strength and permeability have an effect on 

the failure of volcanic embankments under rainfall.  

4.2.2 Failure of embankments with different fine contents under post-rainfall earthquake 

As the fine content varied, the samples in earthquake-only tests of this study showed 

similar mechanical behavior and shear strain (less than 2% after 400 cycles), implying that 

fine particle content had no significant effect on the seismic resistance of compacted volcanic 

soils at a compaction degree of 90%. However, this behavior is no longer correct in the post-

rainfall earthquake experiments presented below. 

The cumulative rainfall up to the time of failure mentioned in Section 4.2.1 was set 

as the total rainfall amount R0: 

In dry cases: 

- For K40A: R0 = 100 mm/h × 9 min = 100 mm/h × 0.15 h = 15 mm; 

- For K8.5A, Ksoil: R0 = 100 mm/h × 10 min = 100 mm/h × 0.17 h = 17 mm.  

In wet cases: 

- For K8.5A: R0 = 100 mm/h × 8 min = 100 mm/h × 0.13 h = 13 mm; 

- For Ksoil: R0 = 100 mm/h × 14 min = 100 mm/h × 0.23 h = 23 mm; 

- For K40A: R0 = 100 mm/h × 15 min = 100 mm/h × 0.25 h = 25 mm. 

In this section, the model embankment was first subjected to the precipitation of R 

equal to 0.5R0. As a result, the rainfall-induced shear strain was 3.88% for K8.5A, 4.69% for 

Ksoil, 3.11% for K40A (dry cases), and 4.70% for K8.5A, 4.37% for Ksoil, 3.89% for K40A (wet 

cases). After the rainfall had stopped for 90 s, seismic loadings were applied when the 

residual pore water pressure was still high. The total number of cycles was 100 and 200, 

divided into five applying times, each time was about 75 seconds apart. 

4.2.1.1.Dry cases 

The response acceleration due to post-rainfall earthquakes at different locations 

inside the model embankment is shown in Figure 4.12. The previous rainfall caused this 

behavior not to retain the periodicity as in the earthquake-only experiment, but the 

acceleration at the upper parts was always higher than that at the lower parts of the slope. 

The maximum values of the acceleration at the crown area in the case of K8.5A, Ksoil, and 

K40A were 5.51, 4.43, and 4.33 (m/s2), respectively. It can be seen that these values were 



73 

 

higher than the value of 3.2 m/s2 in the case of the earthquake-only experiment. This is 

considered to be due to the deformation and the change in soil structure generated by 

previous rainfall. 

 

 

 

 

Figure 4.12 Variation in accelerations during earthquakes at shaking table and basement, 

the crown of embankments subjected to rainfall (A) K8.5A, (B) Ksoil, (C) K40A (dry cases) 

 

The behavior of saturation degree under the post-rainfall earthquake is shown in 

Figure 4.13. As can be seen, the variation during rainfall was similar to that of the beginning 

of the rainfall-only experiment: sm1, sm3, and sm6 started to increase due to the infiltration 

of rainwater but did not yet reach their maximum value while sm2, sm4, and sm5 were 

almost unchanged. When cyclic loadings were applied, a general trend was observed for all 

three samples: sm1, sm3, and sm6 increased while sm2 and sm5 decreased. In which, the 

change in sm1 and sm2 was more obvious than that of sm6 and sm5. Under the effect of 

seismic loadings, the particles rearrange, and the pore size changes, leading to the movement 

of water in the pore. Through the change in the distribution of water content before and after 

the earthquake as shown in Figure 4.14, we can see that the cyclic loadings have the effect 

of pushing water from the inside to the outside of the model embankment. Another point 

worth noting for the K40A case was the difficulty of drainage after earthquakes, which 

occurred not only in the basement but also in the upper parts of the slope. Thus, cyclic 
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loadings can cause a blocking effect due to fine particle concentration at any point in the 

K40A embankment. 

 

 

 

 

Figure 4.13 Changes in saturation degree during post-rainfall earthquake tests (A) K8.5A, 

(B) Ksoil, and (C) K40A (dry cases) 
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(A)  

(A)     

          Rain starts       Rain stops   After earthquakes    After 3 hrs. 

(B)  

(B)     

          Rain starts       Rain stops   After earthquakes    After 3 hrs. 

(C)  

(C)     

          Rain starts       Rain stops   After earthquakes    After 3 hrs. 

Figure 4.14 Water content distribution inside model embankments during and after post-

rainfall earthquake tests (A) K8.5A, (B) Ksoil, and (C) K40A (dry cases) 

 

 

Figure 4.15 Pore water pressure during seismic loadings 
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Figure 4.15 shows the rapid change of pore water pressure during seismic loadings 

of volcanic embankments subjected to rainfall. Similar to the case of earthquake-only 

experiments as shown in Figure 2.11, the pore water pressure changed periodically under 

earthquakes. As the shaking table begins to move, it forces the slope back causing volume 

contraction and a decrease in voids, increasing pore water pressure. When the shaking table 

returns to its original position, the soil on the slope has a large degree of freedom, and the 

pores between the particles increase, so the pore water pressure decreases. The amplitude of 

this periodical change in pore water pressure was greatest in the case of K8.5A. The change 

in pore water pressure during post-rainfall earthquakes is shown in Figure 4.16. Similar to 

the rainfall-only experiment, the measured values at the positions of pw1, pw2, and pw3 

both increased during rainfall, and the difference between them was small. Figure 4.16 

ignored the rapid variations shown in Figure 4.15 and focused on the changing trend of pore 

water pressure after earthquakes. As presented in the above section, earthquakes cause pore 

water to move outwards. Therefore, pw1, pw2, and pw3 placed near the slope surface 

increased together under the effect of cyclic loadings. It can be seen that the increase in pw1 

near the crown of the slope was larger than that of pw2 and pw3. In the case of K8.5A, the 

pore water pressure at pw1 exceeded one at the first time of seismic loading and the flow 

deformation near the crown caused slope failure. During the 4th seismic loading, the pore 

water pressure of pw3 increased suddenly, causing the shear strength to rapidly decrease, the 

two soil sections were separated, creating cracks that were recorded near the basement. Pw1 

in the case of Ksoil reached a value of one at about the 70th cycle, corresponding to the total 

shear strain due to rainfall and earthquake surpassing 6%. In the case of K40A, pw1 was still 

less than one after 100 cycles and only exceeded one at about the 140th cycle. This is because 

the shear strain due to rainfall was smaller in this case. As can be seen in most tests, the point 

of shear strain due to rainfall and earthquake reaching 6% was relatively close to the time 

when the pore water pressure ratio reached one. Thus, the measurement of pore water 

pressure still plays an important role in assessing slope stability. 
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Figure 4.16 Changes in pore water pressure during post-rainfall earthquake tests (A) K8.5A, 

(B) Ksoil, and (C) K40A (dry cases) 

 

 

Figure 4.17 The earthquake-induced shear strain of embankments subjected to previous 

rainfall (dry cases) (A) Shear strain changed with number of cycles (B) Shear strain 

changed with fines content 
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was also the settlement of the entire embankment due to the rearrangement effect of seismic 

loadings while the failure due to flow deformations and cracks was recorded in the case of 

K8.5A as mentioned above. As shown in Figure 4.17(B), the growth rate of shear strain 

decreases sharply when the fine grain content increases from 8.5% to 27% and remains 

almost unchanged when the fine grain content increases from 27% to 40%. Soils with small 

fine particle contents have higher hydraulic conductivity and pore water pressure is easier to 

increase during post-rainfall earthquakes. Meanwhile, high fines content soils, which have a 

small void ratio, increased their density even more during rainfall. Therefore, seismic 

loadings have difficulty rearranging the particles to reduce pore size and increase pore water 

pressure. In addition, the increase in density also makes the stabilizing force due to self-

weight more advantageous than the earthquake-induced destabilizing horizontal force. 

However, the characteristics that increase this resistance to seismic loadings in Ksoil and K40A 

are similar. This explains the relationship between shear strain and fine particle content 

shown in Figure 4.17(B). As the fine content increases and exceeds a certain limit, its effect 

diminishes because fine particles occupy most of the voids in the soil. For these reasons, the 

earthquake resistance of compacted volcanic soil is subjected to previous rainfall increases 

with the increase in fine particle content. However, this strength does not increase further 

after the fine particle content exceeds a certain threshold of about 27% in this study. 

4.2.1.2.Wet cases 

Figures 4.18 and 4.19 show the behavior of pore water pressure and saturation degree 

of model embankments during post-rainfall earthquakes in wet cases. As shown in Figure 

4.18, the development of pore water pressure in wet cases was faster compared with those 

in dry cases for all 3 soil samples. In the dry cases, only the pore water pressure of K8.5A 

suddenly increases when facing cyclic loadings (pw1 in the first loading and pw3 in the 

fourth loading) while the other value shows a gradual increase. In the wet cases, the ratio of 

pw3 near the basement of the slope in K8.5A increases rapidly and exceeds the value of 1 in 

the first loading. The same is shown on the fourth loading for pw1 near the crown of K40A. 

The pw1 ratio Ksoil also spiked suddenly and exceeded 1 on the third loading although it 

dropped after that. 
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Figure 4.18 Changes in pore water pressure during post-rainfall earthquake tests (A) K8.5A, 

(B) Ksoil, and (C) K40A (wet cases) 

 

With the change of saturation degree shown in Figure 4.19, the trend is similar to dry 

cases: when seismic loadings were applied; values of meters near the slope surface (sm1, 

sm3, and sm6) showed an increasing trend while those in meters inside the slope (sm2, sm4, 

and sm5) tended to stay the same or decrease. Thus, the tendency of seismic loadings to 

move water from the inside to the outside of the embankment is observed in both cases of 

the initial water content. The difference is that the change of saturation degree in each 

shaking of the wet cases is more obvious and stronger than that of the dry cases, similar to 

the variation of pore water pressure. 
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Figure 4.19 Changes in saturation degree during post-rainfall earthquake tests (A) K8.5A, 

(B) Ksoil, and (C) K40A (wet cases) 

 

 

Figure 4.20 The earthquake-induced shear strain of embankments subjected to previous 

rainfall (wet cases) (A) Shear strain changed with number of cycles (B) Shear strain 

changed with fines content 

 

The change of shear strain due to cyclic loadings in wet cases of model embankments 

subjected to rainfall is shown in Figure 4.20. Both the relationship between shear strain and 

cyclic numbers in Figure 4.20(A) and the relationship between shear strain and fine grain 
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content in Figure 4.20(B) show the same trends as dry cases behaved in Figure 4.17: The 

increase in shear strain of K8.5A is the fastest, followed by Ksoil, and the slowest is K40A. The 

failure types of K8.5A and K40A are shown in Figure 4.21. As can be seen, the K8.5A also 

showed the flow deformation near the basement and the crack near the crown (see Figure 

4.21(A)). However, the slope failure of Ksoil and K40A is more serious than dry cases. The 

liquefaction was observed near the crown of the slope at the cycle when the pore water 

pressure ratio of pw1 exceeded 1, as shown in Figure 4.21(B). The rapid and severe failure 

in the wet cases compared with the dry cases may be attributed to the influence of the 

decreasing trend in shear strength shown in Figure 4.11(B). This trend is only shown for 

K8.5A in the case of rainfall-only but is shown for all 3 soil types when model embankments 

were subjected to lateral driven forces in seismic loadings. Another reason is that 

embankments in the wet cases were subjected to longer periods of rainfall than in the dry 

cases. Although the post-rainfall shear strain of the two cases was relatively equal, the longer 

precipitation period may cause a greater effect on the soil texture and reduce the shear 

strength. This has led to a rapid increase in shear strain when the embankment is subjected 

to cyclic loadings. 

 

      

Figure 4.21 Earthquake-induced failure type of model embankments subjected to rainfall 

(A) K8.5A, (B) K40A (wet cases) 

 

 Effect of dissipation time between rainfall and earthquake 

Since natural earthquakes can occur at any time after the rainfall stops, we applied 

seismic loadings to the model slope according to 3 typical cases corresponding to 3 

moments: 

- Case (i): pw1 is higher than pw2; 

- Case (ii): pw1 and pw2 reach the lowest value; 

- Case (iii): pw2 is higher than pw1. 

Where pw1 and pw2 are the pore water pressure at the crown and the basement of the 

embankment, respectively. 

Figure 4.22 shows the change in the pore water pressure ratio in the case of (i). 

(A) (B) 
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Because of seepage, the pore water pressure inside the embankment rises immediately when 

the rain begins. After reaching a certain value, this increase slows down. After the rainfall 

had stopped for about 60 to 100 seconds, seismic loadings were applied when the residual 

pore water pressure was still high. As can be seen in Figure 4.22, the pore water pressure of 

pw1 suddenly increased (compared to before the earthquake) and exceeded 1 in both cases 

due to the response characteristics and rapid seismic loadings. On the other hand, the pore 

water pressure of pw2 shows 2 different trends when subjected to 20 cycles: an increase in 

the wet case and a decrease in the dry case. This is presumed to be due to the development 

of negative excess pore water pressure under the effects of unsaturation and dilatancy. 

Similar to the pore water pressure, the saturation degree also showed a rapid change at the 

time of seismic loadings. The front view camera confirmed flow deformation at the crown 

of the slope in both initial water content. 

 

 

 

Figure 4.22 Changes in pore water pressure and saturation degree in the case of (i) (A) 

Dry case (B) Wet case 

 

Next, in case (ii), the failure did not occur under an acceleration of 2.8 m/s2 as in (i) 

and (iii) for both initial water contents. Therefore, the change in pore water pressure in the 

embankment upon failure under case (ii) was studied with an acceleration of 3.2 m/s2, as 

shown in Figure 4.23. Similar to case (i), the values of pw1 and pw2 decreased with the time 

from the end of rainfall. When the dissipation time was extended to about 10-15 minutes, 

the pore water pressure at both locations decreased to zero, and then the seismic loading tests 

were carried out. Although both pw1 and pw2 in both initial water content cases had been at 

 

 
 
 
 
 
 

pw1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

pw2 

 

 
 
 
 
 
 

pw1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

pw2 



83 

 

the lowest value before earthquakes, they changed immediately and showed an increasing 

trend after 20 cycles. The pw1 value exceeded 1, and flow deformation in the upper area was 

observed. A difference from case (i) is the appearance of transverse cracks near the crown of 

the slope. Regarding the saturation degree when seismic loadings were applied, the dry case 

showed a small change, while the wet case showed almost no change. 

 

 

 

Figure 4.23 Changes in pore water pressure and saturation degree in the case of (ii) (A) 

Dry case (B) Wet case 

 

Finally, Figure 4.24 shows the change in pore water pressure in case (iii). In more 

than 2 hours after the end of the rainfall, the pore water pressure decreased as in case (ii) and 

then increased again because the water penetrates the bottom of the embankment and the 

consolidation of the soil occurs over time. At that time, pw2 showed a higher value compared 

with pw1 in both cases of initial water content. This may be due to the drainage process 

making the water move from the inside of the embankment to the crown. When seismic 

loadings were applied, both excess pore water pressure ratios of pw1 and pw2 exceeded 1 

and showed greater values than cases (i) and (ii). Flow deformation was confirmed almost 

simultaneously in both the upper and lower parts of the slope. The cracks caused by seismic 

loading were longer than in case (ii) and appeared both at the crown and the upper part of 

the slope. Focusing on the degree of saturation, a trend is common for both initial water 

content: sm1 sharply increases and sm2 sharply decreases right after being subjected to the 

seismic loadings. 
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Figure 4.24 Changes in pore water pressure and saturation degree in the case of (iii) (A) 

Dry case (B) Wet case 

 

Phenomenologically, when seismic loadings were applied to the soil that was still 

wet due to rainfall in case (i), failure occurred, but cracks did not appear. On the contrary, in 

cases (ii) and (iii), the soil has become drier, so the response of the embankment to seismic 

loadings is similar to that in the case without rainfall. Moreover, the length, width, and 

density of the cracks in cases (ii) and (iii) were larger than those in the case of earthquakes 

only. The failure type of model slope is shown in Figure 4.26 with flow deformations and 

cracks highlighted in cyan and yellow, respectively. When the slope in the dry cases was 

subjected to the seismic without previous rainfall, the pore water pressure changed 

periodically. After the end of the loadings, it did not accumulate but returned to its original 

value. Thus, the slope still works within the elastic limit. In contrast, in the case of rainfall 

before the earthquake, accumulation in pore water pressure immediately occurred. It can be 

seen that the rainfall caused the soil structure to separate and the soil to be plastically 

deformed. In the case of earthquake-only tests with w0 higher than optimum water content, 

the pore water pressure ratio exceeded 1, but the slope did not collapse after 20 cycles, which 

shows the cyclic mobility of the slope. Compared with the case of rainfall before seismic 

loadings, when the pore water pressure ratio exceeded 1, the slope collapsed. 
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Figure 4.25 Model embankment at failure (A) case (i) (B) case (iii). 

 

In this study, besides the rainfall amount of R=0.5R0, we also performed other rainfall 

tests such as 0.3R0, 0.6R0, and 0.7R0 to get different shear strains with the model slope. 

After that, seismic loadings were applied and the different failure times were confirmed. 

Figure 4.25 shows the relationship between failure time caused by seismic loadings and the 

rainfall-induced shear strain under different conditions of pore water pressure. The seismic 

failure time in Figure 4.25 was normalized by Equation 4.1. 

 

𝑅𝑓𝑡
𝑟→𝑠 =

𝑇𝑓𝑠

𝑇𝑓𝑠0
 (4.1) 

 

where Tfs is the failure time due to seismic loadings of model embankments that were 

subjected to previous rainfall, while Tfs0 is the failure time due to seismic loadings only. From 

Figure 4.25, it can be seen that the seismic failure time decreases inversely proportional to 

the shear strain due to rainfall in all 3 cases. In both cases of initial water content, at the same 

shear strain, the failure time was the longest in case (ii), followed by that in case (iii), and 

the shortest failure time was in case (i). The difference is more obvious in dry cases. Since 

the dissipation time in case (iii) is longer than in case (ii), the impact of the previous rainfall 

on the earthquake resistance of model embankments is assumed to be smaller. However, the 

failure time of case (iii) is shorter and the increase of pore water pressure is higher than that 

of case (ii). This implies that it is necessary to add drainage pipes on the embankment body 

because drainage when concentrated in one location can also lead to risks. As mentioned 

above, the effect of dissipation or the residual pore water pressure existing in the slope cannot 

be ignored. 

 

(A) (B) 
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Figure 4.26 Relationship between seismic failure time ratio and rainfall-induced shear 

strain in different conditions of pore water pressure (Dry case)  

 

 Effects of different orders of rainfall and earthquakes on slope failures 

In this section, the result of this study will be compared with the case where seismic 

loadings were applied before rainfall in Kawamura et al., (2016) [31]. Due to the difficulty 

in equally evaluating the effect of rainfall and seismic loadings, the failure time in the case 

of earthquake→ rainfall will be normalized by Equation 4.2 in the same way as the above 

section. 

 

𝑅𝑓𝑡
𝑠→𝑟 =

𝑇𝑓𝑟

𝑇𝑓𝑟0
 (4.2) 

 

where Tfr is the failure time due to rainfall of model slopes that were subjected to previous 

seismic loadings, while Tfr0 is the failure time due to rainfall only. In general, when a research 

object is firstly affected by event A and then is collapsed by event B, the failure time ratio is 

calculated as follows: 

 

𝑅𝑓𝑡
𝐴→𝐵 =

𝑇𝑓𝐵

𝑇𝑓𝐵0
 (4.3) 

 

where TfB is the event B-induced failure time of the research object that was subjected to 

event A in the past, while TfB0 is the failure time due to only event B. The smaller the value 

of the failure time ratio 𝑅𝑓𝑡
𝐴→𝐵, the greater the effect of event A on the resistance to failure 

due to event B of the research object. 

Figure 4.27 presents the relationship between failure time ratio and shear strain 

caused by previous external force in the 2 initial water content cases (data for 

rainfall→earthquake are taken according to case (i)). When seismic loadings are applied first, 

the model slopes with the dryer and wetter initial water content show 2 different trends. The 
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failure time decreases as the shear strain generated by seismic loadings increases in the dry 

case. In the wet case, when the shear strain increases, the failure time still increases until γ 

reaches 4% and after that, it decreases. When rainfall is applied first, 2 initial water content 

model slopes show the same trend, and the failure time is shorter compared with the case of 

earthquake→rainfall for the same shear strain generated. This difference can be explained 

as follows. In the case of a post-rainfall earthquake, the volumetric weight of the soil is 

increased by rainfall, which leads to the increase of the vertical driving forces in the slope. 

After that, seismic loadings will create horizontal driving force and further decrease the shear 

strength because the generated instantaneous pore water pressure superimposes the pore 

water pressure caused by the seepage flow. On the other hand, when seismic loadings are 

applied first, although they increase the pore water pressure, they also increase soil density 

due to the compaction effect. This will cause subsequent rainfall to take a longer time to 

loosen the soil structure to destabilize the slope. These results mentioned above lead to a 

need for appropriate evaluation of embankments under complex disasters taking into account 

the order of effects of external forces. 

 

 

 

Figure 4.27 Relationship between failure time ratio and shear strain generated by previous 

external forces (A) Dry cases (B) Wet cases 

 

However, the above results may change with variations in soil materials, tests, and 
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measuring equipment, as well as inherent errors such as the scale effect. In any case, further 

discussions in this direction will be required. 

 Summary 

A series of rainfall and seismic tests were carried out on model embankments made of 

Komaoka volcanic coarse-grained soil. The soil samples were generated with three different 

fine particle concentrations (K8.5A, Ksoil, and K40A), with the starting water content set at 

0.9 (dry cases) and 1.1 (wet cases) of optimal water content. In the post-rainfall earthquake, 

seismic loadings were applied at three distinct pore water pressure situations inside the 

embankments. The findings of this investigation were compared to the post-earthquake 

rainfall test in Kawamura et al., (2016) [31]. From that, the following results were found: 

(1) The rainfall-induced residual pore water pressure and water retention condition 

inside the slope play an important role in evaluating the stability of embankments under 

subsequent earthquakes.  

(2) The fine particle content has a great influence and must be taken into account when 

studying the stability of the volcanic embankment under the independent or combined effects 

of rainfall and earthquake. At the same degree of compaction, the permeability of volcanic 

soils decreases with the increase in the fine grain content.  

(3) The earthquake resistance of the compacted volcanic embankment subjected to 

previous rainfall increases as the fine content increases. Even so, this increment in seismic 

strength is not significant when the fines content was higher than 27%; 

(4) The permeability of the compacted soil on the wet side of the optimum moisture 

content is less than it is on the dry side when the fine grain content of the soil is sufficiently 

large. In contrast, embankments compacted on the wet side exhibit less resistance to 

subsequent earthquakes under the same shear strain due to previous rainfall. 

(5) In studying the slope under complex hazards, even if the previous shear strain 

induced is similar, the stability of the slope may change due to the different order of rainfall 

and seismic loadings. 
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DISCUSSIONS ON STABILITY 

EVALUATION OF VOLCANIC SLOPES 

5.1 Introduction 

In this Chapter, the experimental results in Chapter 4 will be discussed and compared 

with studies using elemental experiments as well as disaster reports. Based on the behavior 

of the water content of the soil during experiments, a simple method to evaluate the stability 

of the volcanic embankment is also proposed. Next, the field observations of the Komaoka 

volcanic soil were analyzed. Based on that, pore water pressure prediction based on historical 

data is carried out by applying machine learning techniques. In addition, the prediction of 

water content based on soil images is also studied with deep learning models. 

5.2 Model test results in comparison with previous research 

Using the same material as this study, Matsumura (2014) [43] investigated the effect 

of increment of fine content due to particle breakage on cyclic shear behavior through a 

series of cyclic undrained triaxial tests on compacted Komaoka volcanic soil with different 

fine content samples. The author found that as the fine particle content increases, the 

relationship between cyclic strength and dry density is proportional until the fine content is 

less than a certain threshold, after which it changes to inversely proportional. This fine 

content threshold was likely to be water content dependent: The higher the water content of 

the specimen, the lower the threshold of the fine content. When the soil moisture is equal to 

that of the model experiments in this study, the threshold suggested in [43] is around 32%, 

and the declining behavior of cyclic strength appears to be weak after that. The elemental 

experiments apply many ideal conditions, and the saturation progress in the triaxial 

experiments is not the same as the natural process. Therefore, it is necessary to verify these 

results with experiments that are closer to the field conditions. In the case that the increase 

in soil moisture was due to rainfall in the model tests in this study, the influence of fine 

particle content on cyclic strength confirmed a similar trend with Matsumura (2014) [43].  

As mentioned above, the area selected for sampling in this study is one of the sites that 

experienced many major earthquakes including the 2018 dual disaster [21, 32, 83]. As 
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described in Chapter 1, Ishikawa et al., (2021) [21] reported the road cracks and subsidence 

in Sapporo City caused by the 2018 earthquake (magnitude of M6.7), which was not 

recorded in the 2003 Tokachi-oki earthquake (magnitude of M8.0). The authors suggested 

that one of the reasons for the difference in the damage situation between these two severe 

earthquakes was the rainfall from Typhoon Jebi that preceded the 2018 earthquake. The rise 

of the groundwater level, which was reported in [21], may also be due to the blocking effect 

similar to that behavior of volcanic soils with high fine particles in the model experiment in 

this study. In the above-mentioned liquefaction disaster in the Satozuka district, the 

topography was formed by the pumice sand from the crater of Shikotsu Lake filling the old 

valleys. Watabe and Nishimura (2020) [83] performed element tests on samples generated 

by real conditions before the earthquake to offer credible scenarios of the recorded disaster. 

The results of undrained cyclic triaxial tests showed that in spite of high fine content (more 

than 40%), the volcanic soils compacted on the wet side of optimum water content were still 

quite prone to be liquefied. The reason is considered to be the loose condition of the soil 

although compacted on the wet side of optimum water content. The presented microscopic 

photographs showed the loose soil structure created with the aggregates formed by fine 

particles and an inter-pore network between these aggregates. The high angularity of these 

aggregates creates friction resulting in the need for a higher compaction effort to densify the 

soil. Therefore, the authors also suggested that if the fill material had been sufficiently 

compacted, the earthquake would not have caused liquefaction over such a wide area. The 

earthquake-only model experiments in this study partially proved this suggestion by 

recording the high cyclic strength of the compacted volcanic soils at a compaction degree of 

90%. Furthermore, the effect of previous rainfall, which was only included as a potential 

factor in the disaster scenario in [83], was confirmed in this study. It can be seen that the 

conclusions from the model test results in this study are similar to the previously published 

elemental experiment results or disaster reports for the same soil material. Moreover, an 

additional note raised by this study is that groundwater table lowering should be provided 

special attention in volcanic soils with a high fine-grained content of about 40% or more. In 

contrast, embankments with a sharp reduction in fine particle content due to the washing 

effect of rainfall should also be assigned a higher warning level. From the results of model 

tests, increasing the fine particle content of the volcanic soil was shown to reduce the 

hydraulic conductivity as well as the rate of increase in the shear strain of the embankment 

under rainfall and earthquake. Therefore, the selection of the filling material with high fine 

content soil or a mixture of sand and fine grain is proposed in this study as a solution for 

engineering design in mitigating the impacts of dual disasters. For economic purposes, it is 

necessary to provide a reasonable threshold for this increase. Furthermore, volcanic soils 

with a high fine-grained content of 40% exhibited some negative behaviors in this study such 

as difficulty in drainage and blocking effects which may cause an increase in the 
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groundwater table. Based on the analysis performed in Chapter 4, a fine particle content of 

27% is recommended as a reference value for the design of embankments constructed by 

cohesionless soil materials such as Komaoka volcanic soil. 

5.3 Stability evaluation method 

From Figures 4.2 and 4.9, the variation in the saturation degree during rainfall tests 

obtained in this study is typified as shown in Figure 5.1. On the other hand, Figure 5.2 shows 

the change in soil infiltration capacity during rainfall presented by Horton (1939) [17]. It can 

be seen from these two figures that the water content in the soil gradually increases while 

the permeability gradually decreases. When the soil is completely saturated and cannot hold 

any more water, the saturation degree converges while the infiltration capacity reaches its 

minimum value. This relationship implies that changes in saturation degree over rainfall time 

can be expressed similarly to that of infiltration. The formula corresponding to the diagram 

in Figure 5.2 which determines the infiltration capacity of soil f(t) over rainfall time t is 

shown in Equation 5.1 [17]. 

 

𝑓(𝑡) = 𝑓𝑐 + (𝑓0 − 𝑓𝑐)𝑒−𝑘𝑡 (5.1) 

 

where f0 is the initial infiltration capacity, fc is the final infiltration capacity, and k is the shape 

coefficient. 

 

 

Figure 5.1 Typical variation in the saturation degree during rainfall tests in this study. 

 

 

Figure 5.2 Diagram of soil infiltration capacity during rainfall based on Horton’s concept 

(Horton (1939) [17]). 
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With the above-mentioned similarity, the same way was used to illustrate the time-

dependent change in water content w(t) as shown in Equation 5.2: 

 

{
𝑤(𝑡) = 𝑤0                    when 𝑡 < 𝑡0

𝑤(𝑡) = 𝑤𝑓 + (𝑤0 − 𝑤𝑓)𝑒−𝑛(𝑡−𝑡0)  when 𝑡 ≥ 𝑡0
 (5.2) 

 

where w0 and wf are the water content at the initial and failure conditions, respectively; while 

n is the shape coefficient of the curve. The time t0 is added as the starting moment of the rise 

in water content to account for the difference in position in the slope. Based on the behavior 

of saturation degree obtained from the experiments, t0 is assumed to depend on the distance 

to the slope surface and the soil permeability. The interesting point is that the coefficient n 

seems to be independent of k and equal to 0.008 (sm1, sm3, sm6) or 0.005 (sm2, sm5) in this 

study for all three soil samples of K8.5A, Ksoil, and K40A. Thus, the remaining unknown of the 

above equation is the water content at failure wf which is investigated in the following section. 

From the model test results, the relationship between initial water content w0 and water 

content at failure wf is summarized and illustrated in Figure 5.3. In addition to the results of 

the model tests in this study (dashed line), the data for the same material of Komaoka 

volcanic coarse-grained soil in Kawamura et al., (2021) [33] (solid line) were added for 

comparison purposes. As shown in the figure, the results of all three soil samples lie on the 

same curve in both the rainfall-only experiments and the post-rainfall earthquake 

experiments. The effect of dual disasters is demonstrated by the fact that the water content 

at failure in the case of seismic loadings is smaller. Moreover, the “rainfall-only” curve in 

this study is close to the “no freeze-thaw action” curve in [34] while the “post-rainfall 

seismic loadings” curve in this study is close to the “freeze-thaw action” curve in [34]. As 

can be seen, despite the different failure mechanisms, the failure point of slope in some 

specific cases (such as earthquake after rainfall and freeze-thaw action) is still similar. The 

relationship between both water contents in this study can also be expressed by a power 

function, similar to [34], as follows: 

 

𝑤𝑓 = 𝛽𝑤0
𝛾
 (5.3) 

 

where values of coefficients β and γ are shown in Table 5.1. These values combined with 

Equation 5.3 can be considered a simple method to evaluate slope stability in practice with 

the measured water content as the object of assessment.  
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Figure 5.3 Relationship between water content at initial and failure conditions for 

Komaoka volcanic soil. 

 

Table 5.1 Values of β and γ in this study 

wf = βw0
γ β γ 

Rainfall only 5.15 0.70 

Post-rainfall earthquake 1.50 0.96 

 

The framework for that evaluation of slope stability can be summarized as follows: 

(1) based on the reason that may cause a slope failure, estimate the line of water 

content in Figure 5.3. 

(2) Investigate the initial water content w0 at the setting positions of measurement 

instruments such as soil moisture meters. 

(3) Use Equation 5.3 to calculate predicted water content at failure wf. 

(4) Monitor the change in water content w such as increase during rainfall. 

(5) Evaluate the condition of slope based on the relationship between measured water 

content w and the curve provided by w0, wf, and Equation 5.2. 

(6) If the monitoring data of water content reaches the predicted value, the failure of 

the slope will be predicted. 

(7) Finally, evaluate slope stability by taking the geometric conditions of slopes into 

account. 

In this way, it is possible to evaluate slope stability if such a relation can be obtained 

for an in-situ slope, and slope failure can be predicted if the water retention capacity in a 

slope is estimated by monitoring water content. 
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5.4 Prediction of water retention characteristic of Komaoka soil 

5.4.1 Pore water pressure forecasting 

Forecasting is the practice of creating predictions based on evidence from the past and 

present. Prediction is a related but broader phrase. Risk and uncertainty are fundamental to 

forecasting and prediction; it is generally accepted that indicating the degree of uncertainty 

associated with projections is a good practice. Forecasting may be done in two ways: 

qualitatively or quantitatively. Qualitative forecasting approaches are subjective, relying on 

the opinions and judgments of customers and experts; they are useful when historical data is 

unavailable. They are typically used for mid to long-term choices. Quantitative forecasting 

models, on the other hand, are used to anticipate future data as a function of previous data. 

They are acceptable for usage when historical numerical data is available and it is plausible 

to infer that some of the data patterns will persist into the future. These strategies are typically 

used for making short- or intermediate-term choices. Different methods may lead to a 

different level of forecasting accuracy. In any case, the data must be up to date so that the 

forecast can be as accurate as possible. 

5.4.1.1 Evaluation metric of prediction 

In statistical modeling, regression analysis is a set of statistical processes for 

estimating the relationships between a dependent variable and one or more independent 

variables. Thus the prediction task in this section is a regression analysis. The essential step 

in any model such as machine learning models is to evaluate the accuracy of the model. The 

metrics commonly used to evaluate the performance of the model in regression analysis are 

listed as follows. In a test or valid dataset with n elements, the element i has the value yi and 

is predicted by the model to be ypi. 

Mean absolute error: known as the average of the absolute difference between the 

dataset's actual and anticipated values. It calculates the dataset's residuals' average. 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑝𝑖|

𝑁

𝑖=1

 (5.4) 

 

It is easy to see that MAE is a non-differentiable function in the general case. 

Therefore, we need to use a differentiable function that makes it easier to perform 

mathematical operations than MAE. Mean Squared Error: known as the mean of the squared 

difference between the data set's original and forecasted values. It calculates the residuals' 

variance. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑝𝑖)

2
𝑁

𝑖=1

 (5.5) 
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When a measure with the same units as the variable is needed, RMSE is used instead 

of MSE. Root Mean Squared Error: known as the square root of Mean Squared error. It 

calculates the standard deviation of residuals. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑝𝑖)

2
𝑁

𝑖=1

 (5.6) 

 

The coefficient of determination or R-squared: known as the percentage of the 

dependent variable's variation that the regression model can explain. Since the score is scale-

free, it will always be less than one regardless of how big or tiny the numbers are. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑝𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 (5.7) 

 

where �̅� is the mean value of yi: 

 

�̅� =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

 (5.8) 

 

The lower value of MAE, MSE, and RMSE implies higher accuracy of a regression 

model. However, a higher value of R square is considered desirable. In addition, to ensure 

accuracy in the general case, models need to avoid overfitting which is defined in 

mathematical modeling as the creation of an analysis that correlates too closely or perfectly 

to a specific set of data and may thus fail to fit additional data or predict future observations 

correctly. 

5.4.1.2 Monitoring of full-scale cut slopes and embankments 

The purpose of in-situ testing is to clarify the slope failure mechanism of embankments 

constructed by volcanic soil in cold regions such as Hokkaido. Full-scale embankments and 

a cut slope were constructed by Komaoka volcanic coarse-grained soils at a testing site in 

Sapporo city, Japan (North latitude: 42o57’13”, East longitude: 141o21’46”), which is similar 

to the sampling site of material for model tests in previous Chapters. Figure 5.4 shows a 

whole view of the testing site while figure 5.5 shows the measurement device for cut slopes. 
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Figure 5.4 Full-scale cut slopes and embankments 

 

 

Figure 5.5 Locations of monitoring instruments of cut slopes 

 

The full-scale embankment FE-2011 and the cut slope CS were constructed in 
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September 2011 for the purpose of in-situ measurement. The results and discussion of 

monitoring and the rainfall-induced slope failure phenomenon that actually occurred on FE-

2011 have been revealed by Kawamura and Miura (2014b) [30] and Kawamura et al., (2013) 

[28]. Thus, because the FE-2011 embankment led to some slope failures, a new embankment 

FE-2012 was constructed using the same soil material next to FE-2011 in October 2012. The 

field monitoring of FE-2012 can be found in Kawamura et al., (2021) [33]. The measured 

data for the cut slope is shown in Figure 5.6. There are 2 phases of measurement, phase 1 is 

from 2011 to July 2012 and Phase 2 is from November 2012 to January 2014. It can be seen 

that each year pore water pressure increases sharply on two occasions: during the thawing 

and rainy seasons. This is typical behavior of soil in cold regions like Hokkaido. It can be 

seen that pore water pressure is highly dependent on season and weather. 

 

(A)  

(B)  
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(C)  

(D)  

(E)  

Figure 5.6 Measured data of cut slope (A) Air temperature (B) Rainfall amount (C) Snow 

depth (D) Water content (E) Pore water pressure 

 

In this section, the forecasting task will be introduced step by step on pore water 

pressure data in phase 2 of the cut slope. The dataset covers 445 days from November 9, 

2012, to January 27, 2014. The dataset will be divided by 80% (356 days) for the training 
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set and 20% (corresponding to 89 days) for the testing set (see Figure 5.7). 

 

 

Figure 5.7 Train-Test split 

 

5.4.1.3 Data Characteristics 

In this section, the characteristics of pore water pressure data are examined accordingly 

based on the components of Time series data as shown in Figure 5.8. 

 

 

Figure 5.8 Time series data components 

 

a. Trend 

A trend component of time series shows a long-term shift in the mean of series that 

increases or decreases with time. The trend is the slowest-moving element of a series, 

signifying the most important time scale. The moving average plot can demonstrate the type 

of trend that a time series has. The average of the data inside a sliding window of some set 

width was used to compute a moving average of a time series. Each point on the graph 

reflects the average of all series values that fall inside the window on each side. The goal is 

to smooth out any short-term swings in the series, leaving just the long-term changes. A 

change must occur over a longer length of time than seasonal fluctuations in order to be 

considered a component of the trend. To display a trend, we use an average over a longer 

time than any seasonal period in the collection. In Figure 5.19, the moving average trend of 
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pore water pressure (blue line) was plotted with a sliding window of 365 days. With the input 

of the time feature (time index: day), that trend was tried to be simulated by linear regression 

as shown in the green line. 

Linear regression: a method that predicts future occurrences by establishing a linear 

connection between an independent variable and a dependent variable. It is a statistical 

approach used for predictive analysis in data science and machine learning. 

One note is that the linear trend is shown in Figure 5.9 only because it produces a 

smaller error than the nonlinear trend and not because the nonlinear trend cannot be 

regressed. Every time linear regression was used in this study, the output variable can depend 

on its previous values with an order different than 1. The word "linear" in "linear regression" 

can be misleading in that the value being regressed can only be linearly dependent on the 

variables. However, if you take the example of adding more variables of zk equal to xk
2, it is 

possible to obtain a value that has a quadratic dependency with the variable. 

 

 

Figure 5.9 Moving average plot of pore water pressure data 

 

b. Seasonality 

Seasonality occurs when the mean of a time series changes on a regular, periodic 

basis. Seasonal changes often follow the clock and calendar, with repeats occurring 

throughout a day, a week, or a year. Seasonality is driven by natural world cycles or societal 

behavior standards, depending on the source of data. Figure 5.10 depicts the yearly 

seasonality of pore water pressure when data is shown in relationship with the day of the 

year. 
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Figure 5.10 Seasonal plot of pore water pressure data 

 

Similar to the previous section, the seasonality was tried to simulate by linear 

regression. For the input, there are two kinds of features that model seasonality: indicator 

and Fourier. 

Seasonal indicator: If days of a year were used as 365 features, the model would 

obviously be overfitted when forecasting. Figure 5.11 shows the regressive result when the 

month indicator was used as 11 features, the coefficient of determination was 0.7308 

 

 

Figure 5.11 Seasonality regressed by Month indicator 
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(A)  

(B)  

(C)  

Figure 5.12 Seasonality regressed by Fourier features (A) 16 features (B) 4 features (C) 2 

features 

 

Fourier: Fourier characteristics are pairs of sine and cosine curves, one pair for each 

season's potential frequency, beginning with the longest. Rather than developing a feature 

for each date, Fourier features are used to try to capture the general form of the yearly curve 
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with a few features. The objective is to incorporate periodic curves with the same frequency 

as the seasonality in Figure 5.12 in the training data. The curves utilized are the sine and 

cosine trigonometric functions. 

Figures 5.12(A), (B), and (C) show the Seasonality regressed by 16, 4, and 2 Fourier 

features, respectively. The coefficient of determination is 0.8895 for 16 features, 0.7588 for 

4 features, and 0.6325 for 2 features. The increase in features raises the accuracy but also 

increases the overfitting risk. The number of Fourier pairs can be chosen through the 

periodogram as shown in Figure 5.13. The periodogram shows the strength of the 

frequencies in a time series. Specifically, the value on the y-axis of the graph is (a2 + b2)/2, 

where a and b are the coefficients of the sine and cosine at that frequency (as in the Fourier 

Components plot above). Since the pore water pressure increases twice a year as described 

above, the periodogram reaches its highest value at semiannual. From left to right, the 

periodogram drops off after Quarterly, four times a year. Therefore, four Fourier pairs can 

be chosen to model the annual season as in Figure 5.12(B). 

 

 

 

Figure 5.13 Periodogram of pore water pressure 

 

Comparing Figures 5.11 and 5.12, the difference between the 2 above-mentioned 

features can be derived. The first kind, indicators, is best for a season with few observations, 

like a weekly season of daily observations. The second kind, Fourier features, is best for a 

season with many observations, like an annual season of daily observations, where indicators 

would be impractical. 

c. Serial Dependence 

The serial dependency of time series data cannot be demonstrated by time series 

visualization, but rather by using lag plots, as seen in Figure 5.14. In which the link between 

pore water pressure value and its lag characteristic was demonstrated. Lag features were 
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created by reversing the value in its index in one or more steps. These lag graphs show that 

there is a substantial and seemingly linear link between present pore water pressure and 

historical pressure. The numbers in the charts represent the most generally used measure of 

serial dependency, known as autocorrelation, which is essentially the correlation between a 

time series and one of its lags. Pore water pressure has an autocorrelation of 0.99 at lag 1, 

0.98 at lag 2, and so on. 

 

 

Figure 5.14 Lag plots of pore water pressure 

 

It is often not necessary to include every lag with a high autocorrelation when 

selecting lags to utilize as features. In Figure 5.14, the autocorrelation at lag 2 might be 

completely due to "decayed" information from lag 1, or it could be a correlation carried over 

from the previous stage. If lag 2 does not provide anything new, there is no purpose to include 

it if lag 1 already exists. The number of lag features to employ may be determined by 

visualizing the partial autocorrelation, also known as a correlogram, as seen in Figure 5.15. 

The partial autocorrelation describes the correlation of a lag after accounting for all 

preceding lags, as well as the amount of "new" correlation that the lag provides. Because 

delays 1 through 4 in the picture are outside the intervals of "no correlation" (in blue), we 

might use them as features for pore water pressure data. 

 

 

Figure 5.15 Partial Autocorrelation plot of pore water pressure 



105 

 

 

5.4.1.4 Forecasting results and discussion 

a. Long-term forecasting 

First, the forecasting for all dates in the test set will be discussed. This will provide a 

long-term view of the behavior of pore water pressure over a long period of time. Based on 

the properties of the pore water pressure data analyzed above, regression models can be built 

to forecast future values with self-values. Each of those models will forecast the value at a 

single point or step in time. To produce the forecast for multiple target steps, four common 

strategies can be used: 

Multioutput model: Use a model that naturally provides numerous outputs. This 

method is simple and efficient, however, it is not applicable to all algorithms. 

Direct strategy: Train a separate model for each step: one model forecasts one step 

ahead, another two steps ahead, and so on, thus having a different model anticipate each step 

might assist. The disadvantage is that training a large number of models can be 

computationally costly. 

Recursive strategy: Train a single one-step model and use its forecasts to update the 

lag features for the following step. We feed a model's 1-step forecast back into that same 

model to utilize as a lag feature for the following forecasting step using the recursive 

technique. We only need to train one model, but because mistakes spread from step to step, 

projections for extended horizons may be erroneous. 

DirRec strategy: A hybrid of the direct and recursive techniques in which a model is 

trained for each step and forecasts from prior stages are used as fresh lag features. Each 

model is gradually given an extra lag input. The DirRec technique can capture serial 

dependency better than Direct since each model always has an up-to-date set of lag 

characteristics, but it can also suffer from error propagation like Recursive. 

In the following section, some well-known pre-built models based on recursive 

strategy were applied. The results are shown in Figure 5.16 with the red line representing the 

true value and the blue line representing the predicted value. 

Naïve approach: One of the simplest methods, produces projections that are equal to 

the most recently observed value. If the time series is thought to be seasonal, the seasonal 

naive method may be more suited when projections are equal to the previous season's value. 

This approach works well for economic and financial time series, which frequently feature 

patterns that are difficult to anticipate regularly and precisely. Simple forecasts can also serve 

as a baseline against which more advanced models can be compared (see Figure 5.16(A)). 

AutoRegressive (AR): employs linear regression to generate one prediction at a time 

and feeds the results back into the model. The sequence of the dependencies between the 

output value and the input variable - its past values (lags) at earlier time steps - is specified 

in AR-X(p). When establishing the model, the number of steps or lag duration must be given. 
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The results are shown in Figure 5.16(B). 

MA (Moving Average): a strategy to model univariate time series, eliminating all 

seasonality but maintaining patterns in time series data. This is written as MA(q), where q is 

the trend's order. In the results shown in Figure 5.16(C), the order of the trend is set to 1. 

AutoRegressive Moving Average (ARMA): AutoRegression (AR) and Moving 

Average (MA) models are combined. This is known as the ARMA(p,q) model, where p 

represents the order of the AR portion and q represents the order of the MA part. The results 

are depicted in Figure 5.16(D) 

AutoRegressive Integrated Moving Average (ARIMA): has the following three 

components: 

(i) AR(p), the autoregressive component. 

(ii) The integrated component (I) denotes that the data has been replaced with the 

difference between the current observation and the prior time step. 

(iii) MA(q), or moving average. 

ARIMA(p, d, q) represents this model, where p, d, and q determine the order of the 

AR(p), I(d), and MA(q) models, respectively. Figure 5.16(E) depicts the findings. 

Despite the fact that ARIMA models are quite strong, optimizing the proper 

parameters for ARIMA models can be time-consuming. Auto ARIMA similar is a common 

implementation for solving this problem. 

Auto ARIMA: Discover the best order for an ARIMA model automatically. The 

auto-ARIMA approach aims to find the best parameters for an ARIMA model before settling 

on a single-fitted ARIMA model. The results are depicted in Figure 5.16(F). 

Seasonal AutoRegressive Integrated Moving Average (SARIMA): an extension 

of the ARIMA model that allows for seasonal AR, I, and MA modeling. Seasonal ARIMA 

models are designated as ARIMA(p,d,q)(P, D, Q)m, where m is the number of seasons and 

P, D, Q (uppercase) are the autoregressive, differencing, and moving average components 

for the seasonal element of the ARIMA model. The results are shown in Figure 5.16(G). 
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(A) Naïve approach 

 

(B) AutoRegressive 

 

(C) Moving Average 
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(D) AutoRegressive Moving Average  

 

(E) AutoRegressive Integrated Moving Average  

 

(F) Auto ARIMA 
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(G) Seasonal AutoRegressive Integrated Moving Average 

Figure 5.16 Results in long-term forecasting 

 

Thus, it can be seen that the models can work effectively when predicting many steps. 

As mentioned above, new values need to be constantly updated to improve the accuracy of 

the model. This work will be discussed in the next section. 

b. Forecasting with daily updated data 

Using lag features as input and current pore water pressure value as output, the dataset 

now looks like a supervised learning problem for machine learning. In addition to a linear 

regressor, some machine learning models were introduced to use in this section: 

- Ridge regressor: a technique for calculating the coefficients of multiple-regression 

models where the independent variables are highly correlated. It has been applied in 

a variety of domains such as econometrics, chemistry, and engineering [41]. 

- Lasso regressor (least absolute shrinkage and selection operator): a regression 

analysis approach that conducts variable selection as well as regularization to 

improve the predictability and interpretability of the final statistical model [9]. 

- Extreme Gradient Boosting (XGBoost): an open-source software package that 

provides a framework for regularizing gradient boosting. It has lately acquired a lot 

of attention and popularity as the algorithm of choice for many winning teams in 

machine learning contests [5]. 

- Random Forest (random decision forests): an ensemble learning approach for 

classification, regression, and other problems that works by building a large number 

of decision trees during training. For classification problems, the random forest 

output is the class chosen by the majority of trees. The mean or average forecast of 

the individual trees is returned for regression tasks. Random decision forests 

compensate for decision trees' tendency to overfit their training set. In general, 

random forests outperform choice trees. However, data features might have an 



110 

 

impact on their performance [2]. 

- Elastic Net: a regularized regression approach in statistics that linearly integrates the 

L1 and L2 penalties of the lasso and ridge methods in the fitting of linear or logistic 

regression models [91]. 

- Support vector machines: supervised learning models with related learning 

algorithms that examine data. Given a set of training examples, each labeled as 

belonging to one of two categories, an SVM training method builds a model that 

assigns new instances to one of two categories, making it a non-probabilistic binary 

linear classifier. In order to maximize the distance between the two categories, SVM 

converts training instances to points in space. Then, new instances are categorized in 

that same space by which side of the gap they fall after being mapped into it. [14]. 

Although machine learning models can fully meet the prediction requirements. A deep 

learning model is also introduced in this section that aims to be applied to more complex 

problems. 

- Artificial neural networks: computer systems based on the biological neural 

networks that make up animal brains. An ANN is made up of linked neurons that are 

often aggregated into layers. The connections between neurons, known as edges, can 

send a signal - a real number determined by some non-linear function of the sum of 

preceding neurons - to the next neuron. Neurons and edges usually have a weight 

that changes as learning progresses [78]. 

The prediction results are shown in Figure 5.17 and the errors of the models are 

summarized in Table 5.1. It can be seen that the models have improved accuracy markedly 

compared with those in the previous condition. With the above-mentioned deep serial 

dependency, it is easy for the models to learn the relationship between the lag feature and 

the target and use it to make accurate predictions. These results confirm that new data must 

be continuously updated to improve the performance of the model. This problem poses a 

requirement for the application of technologies such as IoT to sensors and measurement 

systems in the field for pore water pressure and soil moisture. 
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Table 5.2 Case definition and results 

Table 5.2a. Case definition 

Parameters Case 1 Case 2 Case 3 

Definition 

Historical pore water 

pressure data is daily 

updated 

Historical pore water pressure 

data is daily updated combined 

with climate data 

Forecasting 

with only 

climate data 

Input Lag features 

Lag features 

Time features 

Air temperature 

Rainfall amount 

Snow depth 

Time features 

Air temperature 

Rainfall amount 

Snow depth 

Table 5.2b. RMSE of machine learning models 

Model Case 1 Case 2 Case 3 

Linear regressor 0.365 0.328 3.094 

Ridge regressor 0.365 0.328 3.094 

Lasso regressor 0.391 0.349 3.019 

XGBoost 0.633 0.414 2.102 

Random forest 0.589 0.375 1.934 

Elastic Net 0.390 0.374 3.015 

SVM 0.366 1.850 2.272 

ANN 0.401 0.546 2.482 

 

 

(A) Linear regressor 
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(B) Ridge regressor 

 

(C) Lasso regressor 

 

(D) XGBoost 
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(E) Random Forest 

 

(F) Elastic Net 

 

(G) SVM 
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(H) ANN 

Figure 5.17 Forecasting results with daily updated data 

 

c. Forecasting with daily update data and climate data 

It is easy to see that with the model based only on previous values, the prediction was 

only following these data. In addition to the lag feature in the previous section, we add 

weather data as input to the models. Added features include: 

- Time features; 

- Air temperature; 

- Rainfall amount; 

- Snow depth. 

The forecasting results are shown in Table 5.1 and Figure 5.18. Because the pore water 

pressure data was strongly related to the climate data, the performance of models was once 

more time improved. Moreover, compared with the previous case, the prediction has shown 

the initiative to the change of weather. However, the SVM and ANN models generate more 

errors than in the previous case. These overfit of the models can be attributed to the small 

number of training sets. After training, the XGB and Random Forest models evaluated the 

importance of features as shown in Table 5.2. It can be seen that the lag feature is still the 

main input data used. 

 

Table 5.3 Feature importance of forecasting with daily update data and climate data 

Feature XGB Random Forest 

Lag features 97.22% 98.36% 

Time features 0.75% 0.61% 

Air temperature 0.16% 0.20% 

Rainfall amount 1.21% 0.54% 

Snow depth 0.66% 0.29% 
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(A) Linear regressor 

 

(B) Ridge regressor 

 

(C) Lasso regressor 
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(D) XGBoost 

 

(E) Random Forest 

 

(F) Elastic Net 
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(G) SVM 

 

(H) ANN 

Figure 5.18 Forecasting results with daily update data and climate data 

 

d. Forecasting with only climate data 

The presumptive condition in this section is that the data collected in the past is 

incomplete. We will remove the lag feature and let models forecast based solely on weather 

data. The results are shown in Figure 5.19. It can be seen that the models can still work, but 

the efficiency has decreased markedly. The importance of features is shown in Table 5.3. 

Time features were the most important input for both the XGB and Random Forest models. 
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(A) Linear regressor 

 

(B) Ridge regressor 

 

(C) Lasso regressor 
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(D) XGBoost 

 

(E) Random Forest 

 

(F) Elastic Net 
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(G) SVM 

 

(H) ANN 

Figure 5.19 Forecasting results with only climate data 

 

Table 5.4 Feature importance in the case of Forecasting with only climate data 

Feature XGB Random Forest 

Time features 64.13% 49.29% 

Air temperature 3.96% 23.73% 

Rainfall amount 1.78% 1.96% 

Snow depth 30.13% 25.02% 
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5.4.2 Water content prediction based on soil images 

 

 

(A)                             (B) 

Figure 5.20 Komaoka volcanic soil (A) Wet condition (B) Dry condition 

 

Figures 5.20 (A) and (B) show the original Komaoka volcanic soil at natural water 

content and after oven-drying for 24 hours, respectively. Komaoka volcanic soil is composed 

of particles that vary in grain size, which turn whitish after drying. Although different 

particle sizes have different shapes and colors, the color of the soil is highly dependent on 

the color of the fine particles that surround the coarse grains due to their high content. When 

the water is poured on any material like cloth, sand, or concrete; their colors will change 

(they become darker). The reason is the refractive index of the material and water is different. 

When the light falls on the surface of wet material, very little light is reflected compared 

with dry material. In the case of soils, the amount of organic matter, and the types of minerals 

present in a soil affect its color. Which, iron minerals can impart many colors to soils, which 

change in color as they become wet or dry out. It can be seen that there are many reasons for 

volcanic soils to change color as their moisture changes. This implies using images of soils 

to predict their water content. This section will examine the feasibility and accuracy of 

applying artificial intelligence in this work 

5.4.2.1 Methods 

When the working object is images instead of numbers, applying the ANN network 

as above will lead to a huge amount of computation as well as overfitting. This led to the 

need to adopt a convolutional neural network (CNN), a specially designed network for 

processing pixel data. 

Convolutional neural networks: multilayer perceptrons that have been regularized. 

Multilayer perceptrons are typically completely connected networks, which means that each 

neuron in one layer is linked to all neurons in the following layer. These networks' "full 

connectivity" renders them prone to data overfitting. Regularization, or preventing 

overfitting, is commonly accomplished by punishing parameters during training (such as 
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weight decay) or cutting connectivity (skipped connections, dropout, …) [59]. 

 

 

Figure 5.21 Artificial Neural Networks (ANN) and Convolutional Neural Networks 

(CNN) 

 

However, deep learning networks are often quite massive in size. Training from 

scratch can take weeks to get the weights that make the model work effectively. That is the 

motivation for transfer learning. 

Transfer learning: a machine learning research subject that focuses on preserving 

information obtained while addressing one problem and applying it to another but a similar 

challenge. In practice, reusing or transferring knowledge from previously learned tasks for 

the learning of new tasks has the potential to dramatically increase a reinforcement learning 

agent's sampling efficiency [90]. 

 

 

Figure 5.22 Transfer learning mechanism for deep learning in this study. 

 

The transfer learning used for deep learning in this study can be explained in Figure 

5.22. The source task is the classification task for ImageNet, a dataset containing more than 

14 million training images across 1,000 object classes. Then the model with weights obtained 

from the source task will work as a feature extractor in the source task – Water content 

prediction. In this section, 3 following pre-trained models were used: 

VGG16: one of the VGG models or VGGNet, a 16-layer CNN model initially 

introduced by Simonyan and Zisserman (2014) [66]. Figure 5.23 depicts the design of 

VGG16. VGG16 is a pretty large network with 138 million parameters and 16 layers, 

including three fully linked and 13 convolutional ones. The simplicity of the VGGNet16 
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design, on the other hand, is its key selling point. 

 

 

Figure 5.23 VGG16 architecture 

 

Residual Neural Network (ResNet): He et al., (2015) [13] introduced a deep learning 

model for computer vision applications that can handle hundreds or thousands of 

convolutional layers. Previous CNN designs encountered the "vanishing gradient" problem 

while attempting to enhance performance by adding more layers. Skip connections" is 

ResNet's creative solution to this problem. ResNet stacks several identity mappings 

(convolutional layers that do nothing at first), skips those levels, and reuses the prior layer's 

activations. By condensing the network into fewer layers, skipping speeds up initial training. 

The network is then retrained, and all layers are enlarged, allowing the leftover elements of 

the network, known as residual parts, to explore more of the feature space of the input 

picture. 

 

 

Figure 5.24 Resnet architecture 

 

Inception Network: Szegedy et al., (2014) [69] introduce a deep neural network with 

an architectural design that comprises repeated components referred to as Inception modules. 

The researchers' key assumption while creating the Inception network was that highly 
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performant deep neural networks needed to be vast, with numerous additional layers and 

units inside these levels. Convolutional neural networks gain from extracting features of 

different sizes to do this. Figure 5.25 depicts the architecture of the Inception network. 

 

 

Figure 5.25 Inception architecture 

 

5.4.2.2 Results and discussions 

Komaoka volcanic coarse-grained soils were prepared at different water contents from 

0% to 50%, with the water content of each sample spaced by 5%. 100 photos will be taken 

with each sample. The deep learning models will be applied to three cases as shown in Table 

5.1. In the case of A, the models will be used for classification, a familiar task of computer 

vision. A special point in this problem is that the labels are numeric (“0”, “5”, …, “50”), 

which suggests the application of regression as defined in the previous section. Therefore, 

case B has been proposed with the same settings as case A but regression procedures were 

used instead of classification procedures. The number of images in each soil type will be 

divided by 80% for training and 20% for testing. Similar to case B, case C applies regression 

procedures but tries to predict intermediate water content. This is the case of simulating the 

condition when the image data is incomplete. The model is only trained with soil images at 

0%, 10%, …, and 50% moisture and then tested with 5%, 15%, …, and 45% images. The 

training process of the models is shown in Figure 5.26. 
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Table 5.5 Test conditions 

Parameters Case A Case B Case C 

Type Classification Regression Regression 

Training data: 

Label [quantity of image] 

0%[80], 5%[80], 

10%[80], 15%[80], 

20%[80], 25%[80], 

30%[80], 35%[80], 

40%[80], 45%[80], 

50%[80] 

0%[80], 5%[80], 

10%[80], 15%[80], 

20%[80], 25%[80], 

30%[80], 35%[80], 

40%[80], 45%[80], 

50%[80] 

0%[100], 10%[100], 

20%[100], 30%[100], 

40%[100], 50%[100] 

    

Testing data: 

Label [quantity of image] 

0%[20], 5%[20], 

10%[20], 15%[20], 

20%[20], 25%[20], 

30%[20], 35%[20], 

40%[20], 45%[20], 

50%[20] 

0%[20], 5%[20], 

10%[20], 15%[20], 

20%[20], 25%[20], 

30%[20], 35%[20], 

40%[20], 45%[20], 

50%[20] 

5%[100], 15%[100], 

25%[100], 35%[100], 

45%[100] 

 

 

(A)  

(B)  

(C)  

Figure 5.26 Training process (A) Case A (B) Case B (C) Case C  
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In the case of A, model VGG16 performed quite impressively and quickly reached 

an accuracy of 94% after 5 epochs. However, even if the accuracy reaches 100%, for the 

error of water content to be within 1%, we need to collect images of the soil at all moisture 

1% apart. In the case of B, RMSE is 1.59 and R2 is 0.94. Thus, it can be seen that the deep 

learning model can also perform a regression task on the image similar to the classification 

task. However, similar to case A, to be able to apply case B in practice, the number of images 

required for training is very large. In the case of C, RMSE is 1.95 and R2 is 0.85. Thus, it 

can be seen that the models can completely predict the intermediate moisture. However, the 

error is still relatively high. This may be because lighting conditions greatly affect the color 

of soils in images. 

The results of the test set of different models are shown in Table 5.1. The VGG16 

model gives the smallest error, followed by ResNet and Inception for the largest error. In the 

original task of these pre-trained models - the Imagenet dataset, InceptionV3 has the highest 

accuracy of 78.95%, followed by ResNet-152 with 75.57% accuracy, and VGG-16 with 

74.40% [19]. This leads to the conclusion that the performance of the models is different for 

different problems. In the problem of soil moisture prediction, the images are relatively 

similar, the difference is mainly in color. Therefore, it is possible that the models with multi-

branch architecture like ResNet and Inception are more easily overfit and produce large error 

results. 

Figure 5.27 summarizes the results of the VGG16 model when applying different 

dimensions for the input image. It can be seen that in both cases B and C, the prediction error 

decreases sharply when the input image size is from 32x32 to 128x128, reaches the smallest 

value when the input image is 256x256, and increases in the case of 512x512. Thus, 

importing a larger image does not always give a smaller error. This should be noted because 

working with large images consumes more resources and time. 

Some examples of prediction results in case C with the VGG16 model are shown in 

Figure 5.28. Actual and predicted moisture in Figures 5.28(A), (B), (C), and (D) are 5% and 

6.21%; 15% and 14.45%; 25% and 22.72%; 35% and 33.82%, respectively. It can be seen 

that the average error is 1.95%, but the difference between the images is quite large. Some 

images have an error of less than 1%, but some images have an error of more than 3%. So 

even if the average error is low, we still need to pay attention to the maximum error. In 

general, deep learning models need much improvement to be able to be applied to the 

prediction of soil moisture in practice. 
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Table 5.6 Test results in different models 

Metrics VGG16 Resnet Inception 

MAE 2.00792 2.74027 3.25524 

MSE 5.30935 10.91262 15.84919 

RMSE 2.30420 3.30343 3.98110 

R- Squared 0.78735 0.56292 0.36520 

 

 

Figure 5.27 Test results in different input image dimensions 

 

  

(A)                                  (B) 

  

(C)                                  (D) 

Figure 5.28 Example of prediction results 

(A) w = 5% (B) w = 15% (C) w = 25% (D) w = 35% 
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5.5 Summary 

Based on the change in soil infiltration capacity, a simple method to evaluate slope 

stability in practice with the measured water content as the object of assessment was 

proposed. Pore water pressure data may be predicted using machine learning techniques. 

Daily data updates enhance forecast accuracy greatly. Climate data can also help to reduce 

prejudice. In contrast to the positive findings obtained when using artificial intelligence to 

anticipate pore water pressure from time series data, the use of computer vision for the 

prediction of volcanic soil moisture from photographs found several problems. The models 

need to be improved further in order to match the needs given out in reality. 
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CONCLUSIONS AND SUGGESTIONS 

6.1 Introduction 

This chapter presents the findings obtained from this study and some suggestions for 

further research. 

6.2 Conclusions 

A series of rainfall and earthquake experiments on model embankments constructed 

by Komaoka volcanic coarse-grained soil was conducted. The soil samples were prepared 

with 3 different amounts of fine particle contents (K8.5A, Ksoil, K40A) while the initial water 

content was chosen at 0.9 (dry cases) and 1.1 (wet cases) of optimum water content. In post-

rainfall earthquakes, the seismic loadings were applied at 3 different conditions of pore water 

pressure inside the embankments. The results of this study were compared with the test of 

post-earthquake rainfall in Kawamura et al., (2016) [31]. The physical model test results 

were also compared with previous research including element tests and disaster reports. 

Besides, modern techniques of artificial intelligence were applied to predict the water 

retention characteristics of volcanic slopes. There are some conclusions obtained from the 

research results as follows: 

(1) The previous rainfall plays an important role in evaluating the stability of 

embankments under subsequent earthquakes through water retention conditions inside the 

slope such as rainfall-induced residual pore water pressure and saturation degree. 

(2) The fine particle content has a great influence and must be taken into account when 

studying the stability of the volcanic embankment under the independent or combined effects 

of rainfall and earthquake. At the same degree of compaction, the permeability of volcanic 

soils decreases with the increase in the fine-grained content. The earthquake resistance of 

the compacted volcanic embankment subjected to previous rainfall increases as the fine 

content increases. Even so, this increment in seismic strength is not significant when the 

fines content was higher than 27%; 

(3) Initial water content has a great influence on the mechanical behavior, infiltration 

characteristics, and failure phenomenon of embankments due to rainfall and/or earthquakes. 

The permeability of the compacted soil on the wet side of the optimum moisture content is 
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less than it is on the dry side when the fine grain content of the soil is sufficiently large. In 

contrast, embankments compacted on the wet side exhibit less resistance to subsequent 

earthquakes under the same shear strain due to previous rainfall. 

(4) When embankments are subjected to dual disasters, the slope stability may be 

various for different orders of earthquake and rainfall even though the preceding received 

shear strain is similar. This leads to a need for appropriate evaluation of embankments under 

complex disasters taking into account the order of effects of external forces. 

(5) A simple method to evaluate slope stability in practice with the measured water 

content as the object of assessment was proposed based on the change in soil infiltration 

capacity. 

(6) Machine learning models can be applied to predict pore water pressure data. Daily 

data updates significantly improve prediction accuracy. Climate data can also contribute to 

reducing bias. In contrast to the promising results in applying artificial intelligence to time 

series data forecasting of pore water pressure, the application of computer vision to the 

prediction of volcanic soil moisture from images encountered many difficulties. The models 

need more improvement to enhance their performance to meet the requirements set out in 

reality. 

6.3 Suggestions for future research 

In further studies, it is recommended that consideration is given to: 

- Investigate the influence of fines content on the mechanical behavior of volcanic coarse-

grained soils in the same condition of coefficient of uniformity (K8.5B, K40B soil in [16]. 

- Integrate the procedure of model test with the use of an X-ray CT scanner and PIV 

method to increase the understanding of fines particle movement and shear strain 

observation. 

- Use the results of physical model tests to verify the results obtained from numerical 

simulation with embankment constructed by volcanic coarse-grained soils. 

- Studying the forecasting with a longer dataset of pore water pressure and water content, 

in combination with specified techniques for time series data like RNN, LSTM 
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