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ABSTRACT: Post-installed anchors and reinforcing bars are used to connect equipment or to fasten 

strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate struc-

tural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been 

applied in various fields. According to previous studies, the bending strength of the RC beam and the 

bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of 

post-installed anchors subjected to shear force were predicted using ML. Four algorithms were ap-

plied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural 

network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The 

number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, 

diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set 

at 13.0-35.5 N/mm2 and 13-25 mm, respectively. In this study, one epoxy adhesive and three cement-

based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor 

bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the me-

chanical behavior of the specimen when the parameters were within or close to the training data. 

However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens 

whose parameters were not included in the training data. Nevertheless, the ANN was able to rea-

sonably predict the behavior of these cases. It was concluded that the four algorithms can make good 

predictions when the parameters are within or close to the training data. However, when parameters 

outside the training data were used, the ANN was the best of the four algorithms used in this study. 

 

Keywords: Post-installed anchor; Post-installed reinforcing bar; Machine learning; Me-

chanical behavior; Dowel action 
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1 INTRODUCTION 

To connect equipment or to fasten a structural member to existing concrete struc-

tures, post-installed anchors or reinforcing bars are used. Design engineering is essen-

tial to ensure the safety of the connections. For this reason, methods have been pro-

posed in the design codes [1-5]. In addition, many researchers have investigated the 

bond properties of post-installed anchors and reinforcing bar. Dowel action was first 

studied by Friberg [6]. Vintzēleou and Tassios constructed the famous shear strength 

formula of dowel [7]. Catenary action was introduced to dowel by Sorensen et al. [8] 

Ghayeb et al. reviewed the dowel joints for precast structures [9]. Alhaidary and Al-

tamimi compared post-installed approved anchor with non-approved anchor [10]. 

Mahrenholtz et al. presented the design method of post-installed reinforcing bars [11]. 

Artificial intelligence (AI) or machine learning (ML) are applied to make predictions. 

Studies on AI have been conducted since the 1950s with the development of computers. 

As a result, AI and ML have recently been brought back into focus in many fields. For 

example, ML has been used to predict a default risk of loans [12], daily solar radiation 

[13], protein-protein interactions [14], and rapid chloride penetration resistance of me-

takaolin [15]. AI, which includes ML, can help save labor, reduce human error, and 

provide other benefits. 

Many studies have been conducted on the application of AI in concrete structures. 

For instance, an elastic modulus has been predicted by artificial neural networks 

(ANN) [16] and support vector machine (SVM) learning [17]. In addition, autogenous 

shrinkage of concrete has been predicted using ANN [18] and SVM [19]. Kang et al. 

[20] applied machine learning to predict the compressive and flexural strength of steel 

fiber-reinforced concrete (SFRC), and concluded that XGBoost and gradient boost re-
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gressors could be selected as the most appropriate machine learning methods for pre-

dicting these strengths. However, neural networks were not used in this study. In ad-

dition, the bond strength between concrete and fiber-reinforced polymers (FRPs) was 

predicted using ML algorithms, and, it was reported that ML is feasible and efficient 

for predicting the interfacial bond strength [21]. Olalusi et al. also applied ML to some 

concrete structures. Using Gaussian process regression (GPR) and support vector re-

gression (SVR), the concrete failure of anchors was predicted [22]. As well, the concrete 

breakout capacity in shear was predicted by GPR and SVM [23]. Furthermore, the 

shear capacity of slender RC structures was predicted. [24] 

As mentioned earlier, for the safe use of a post-installed anchor or reinforcing bar, 

structural design is important. For instance, according to ACI-318 [1], the shear 

strength of anchor is calculated by the following equations. 

𝑉𝑠𝑎  = 0.6𝐴𝑠𝑒,𝑉𝑓𝑢𝑡𝑎, (1) 

𝑉𝑏  = 𝑚𝑖𝑛 {(7 (
𝑙𝑒

𝑑𝑎
)

0.2

√𝑑𝑎) 𝜆𝑎√𝑓𝑐′(𝑐𝑎1)1.5, 9𝜆𝑎√𝑓𝑐′(𝑐𝑎1)1.5}, (2) 

where, Vsa and Vb are the nominal strength of an anchor in shear and the basic con-

crete breakout strength, respectively. Ase,V is the effective cross-sectional area of an 

anchor, and futa is the specified tensile strength of anchor and cannot be taken greater 

than the smaller 1.9fy and 125 kpsi. fy is the yield strength of anchor. da is the diameter 

of an anchor, fc’ is the specified concrete compressive strength, ca1 is the distance from 

the center of anchor bolt to the edge of concrete in one direction, le is the load bearing 

length for shear. λa is the modification factor for applications in light-weight concrete. 

In addition, when these are applied to seismic retrofitted structures, consideration of 

a slip is essential to confirm that the extended members are rigidly connected to the 

existing members. According to the Japanese guideline [5], Qa, which is the shear 
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strength formula with considering a slip, is used as per the following equations. 

 𝑄𝑎  = 𝜓 ∙ 𝑚𝑖𝑛(0.7𝑓𝑦, 0.4√𝐸𝑠 ∙ 𝑓𝑐) ∙ 𝐴𝑠 , (3) 

where, Es and fc are Young’s modulus of anchor and compressive strength of concrete, 

respectively. As is the cross-sectional area of anchor. ψ is the coefficient for considering 

a slip; ψ = 0.7 is applied. For the structural design with considering the slip, estimat-

ing the dowel action is important; thus, a mechanical model is useful. Hence, the au-

thors studied the mechanical behavior of post-installed dowel bars. As mentioned 

above, ML was applied to concrete engineering; however, prediction methods for dowel 

action were not studied. Therefore, in this study, the authors proposed a new predic-

tion method with ML. By using the authors’ previous test results of post-installed an-

chors [26-28], the prediction accuracies of the four ML algorithms, which are named 

Random Forest, XGBoost, LightGBM, and an artificial neural network, were investi-

gated. The objective of this study is to investigate whether the dowel action can be 

predicted by ML. The prediction accuracy of the four algorithms was also considered. 

Section 1 describes the introduction and motivation, Section 2 provides the details of 

the test, Section 3 explains the details of ML, which were used in this study, and, 

Section 4 presents the results of the test and training accuracy. Finally, Section 5 dis-

cusses the prediction accuracy and Section 6 provides the conclusions. 
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Nomenclature 

As: cross-section area of dowel bar (mm2) [32] 

Ase,V: effective cross-sectional area of an anchor (in.2) [1] 

ca1: distance from the center of an anchor shaft to the edge of concrete in one 

direction (in.) [1] 

Ec: Young’s modulus of concrete (N/mm2) 

Eg: Young’s modulus of grout (N/mm2) 

Es: Young’s modulus of dowel bar (N/mm2) 

fc: cylinder compressive strength of concrete (N/mm2) 

fc’: specified compressive strength of concrete (psi) 

fg: cylinder compressive strength of grout (N/mm2) 

fgt: tensile strength of grout (N/mm2) 

fy: yield strength of anchor (N/mm2 or psi) 

ft: tensile strength of concrete (N/mm2) 

futa: specified tensile strength of anchor (psi) [1] 

k(x, x’): Kernel function 

l: hyper parameter of Eq. (5) 

le: load bearing length of anchor for shear (in) [1] 

Le: embedded length of dowel bar (in) [1] 

MAE: mean absolute error 

ｍ(x): mean function 

R2: coefficient of determination 

RMSE: root mean squared error 

rφ: φ/dd 
Q: shear force in the test (N) 

Qa: shear strength of anchor (N) [5] 

Qana: shear force of the analytical results (N) 

Qd: shear strength of dowel bar calculated by the previous model (N) [25-27] 

Qmax: maximum shear force in the test (N) 
rN: tensile ratio 

Vb: concrete breakout strength of an anchor (lb) [1] 

Vsa: nominal strength of an anchor (lb) [1] 

yi: test value of the number i 

�̂�𝑖: prediction value of the number i 

�̅�𝑖: average value of yi 

δ: shear displacement (mm) 
δmax: shear displacement at Qmax (mm) 

λa: modification factor for applications in light-weight concrete [1] 

ρl: ratio of longitudinal bar (%) 

ρt: ratio of transverse bar (%) 

σf: hyper parameter of Eq. (5) 

τa: bond strength of adhesive (N/mm2) 

φ: diameter of drilling hole (mm) 

ψ: coefficient for considering a slip [5] 

 

2 DETAILS OF SHEAR LOADING TEST 

In this section, the details of the shear loading test are presented. The specimen 

shape and loading setup were the same as in previous studies [26-28]; although new 

three test parameters were added. Therefore, the specimen parameters are described 

in detail in this section; and, the loading method is briefly explained. 
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2.1 Test parameters 

Table 1 lists the specimen parameters and the material properties of the dowel bars, 

concrete, grout, and adhesives. The Japanese Industrial Standard [30-32] was applied 

for the material tests.  

The test parameters of the specimens were the type of adhesive, the diameter of 

anchor bolt dd and, the drilling hole φ, the concrete cylinder compressive strength fc, 

and the tensile ratio rN. Here, rN is the ratio of the applied tensile stress to fy. 

In this study, four types of adhesives were used: epoxy adhesive Ep, normal cement-

based adhesive Ce, winter-type cement-based adhesive CeW, and fluidization-type ce-

ment-based adhesive CfW. The water to cement ratio of Ce was 20.3 %. Ce is the Japan 

Construction Anchor Association (JCAA [29])-approved anchor, whereas Ep is a Euro-

pean technical assessment (ETA)-approved anchor [3]. In CeW, lithium nitrite (LiNO3) 

was added to Ce. The consistency of LiNO3 in the water was 14.3 %. Additionally, in 

CfW, half the size of the compound was used compared to Ce to improve fluidization 

for good workability. The rN was set to 0, 0.33, and 0.66, as in previous tests [26-28], 

dd was set to 13, 16, 19, 22, and 25 mm, and fc was set to 13.0–35.5 N/mm2.  

 

Table 1 

Parameters of the shear loading test. The numerical values of the specimen ID indicate dd (φ), fc, 

and rN, respectively. Es (N/mm2) is Young’s modulus of the anchor bolt. Ec (N/mm2) and ft (N/mm2) 

are Young’s modulus and the tensile strength of concrete, respectively. fg (N/mm2), Eg (N/mm2), and 

fgt (N/mm2) are the cylinder compressive strength, Young’s modulus, and tensile strength of grout, 

respectively. τa (N/mm2) is the bond strength of adhesive. Specimens with a check mark in the 

“Train. data set” column were used for training data for ML. 

Specimen ID 
Dowel bar Concrete Grout 

Adhe-
sive rN 

Train. 
data 
set  dd As φ fy Es fc Ec ft fg Eg fgt τa 

Ep-D16(22)-26.1-000 [26,27] 16 198.6 22 376 174 26.1 18.4 1.9 67.3 25.2 3.3 30.2 0.00   

Ep-D16(22)-26.1-033 [26] 16 198.6 22 376 174 26.1 18.4 1.9 67.3 25.2 3.3 30.2 0.33   

Ep-D16(22)-26.1-066 [26] 16 198.6 22 376 174 26.1 18.4 1.9 67.3 25.2 3.3 30.2 0.66  

Ep-D16(22)-20.9-000 [26] 16 198.6 22 387 175 20.9 24.6 1.9 72.0 27.5 3.1 22.6 0.00   

Ep-D16(28)-20.9-000 [26] 16 198.6 28 387 175 20.9 24.6 1.9 72.0 27.5 3.1 24.1 0.00   

Ep-D16(32)-20.9-000 [26] 16 198.6 32 387 175 20.9 24.6 1.9 72.0 27.5 3.1 27.0 0.00   

Ep-D16(22)-35.5-000 16 198.6 22 387 175 35.5 27.0 2.9 69.1 27.4 2.8 26.2 0.00   

Ep-D13(16)-35.5-000 13 126.7 16 385 171 35.5 27.0 2.9 69.1 27.4 2.8 23.8 0.00   

Ep-D19(24)-35.5-000 19 286.5 24 393 176 35.5 27.0 2.9 69.1 27.4 2.8 25.7 0.00   

Ce-D16(20)-13.0-000 [26-28] 16 198.6 20 403 173 13.0 15.6 1.0 63.6 26.5 2.9 20.3 0.00   

Ce-D16(20)-13.0-033 [26-28] 16 198.6 20 403 173 13.0 15.6 1.0 63.6 26.5 2.9 20.3 0.33   

Ce-D16(20)-24.8-000 [26-28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.3 0.00   
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Ce-D16(20)-24.8-033 [26-28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.3 0.33   

Ce-D16(20)-24.8-066 [26-28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.3 0.66   

CeW-D16(20)-13.0-000 [27,28] 16 198.6 20 403 173 13.0 15.6 1.0 63.6 26.5 2.9 20.2 0.00   

CeW-D16(20)-13.0-033 [27,28] 16 198.6 20 403 173 13.0 15.6 1.0 63.6 26.5 2.9 20.2 0.33   

CeW-D16(20)-13.0-066 [27,28] 16 198.6 20 403 173 13.0 15.6 1.0 63.6 26.5 2.9 20.2 0.66   

CeW-D16(20)-24.8-000 [27,28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.2 0.00   

CeW-D16(20)-24.8-033 [27,28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.2 0.33   

CeW-D16(20)-24.8-066 [27,28] 16 198.6 20 403 173 24.8 18.2 1.6 63.6 26.5 2.9 20.2 0.66   

CeW-D16(20)-25.1-000 [27,28] 16 198.6 20 387 175 25.1 21.1 2.3 68.6 27.4 2.8 21.0 0.00   

CeW-D22(28)-25.1-000 [27,28] 22 387.1 28 409 180 25.1 21.1 2.3 68.6 27.4 2.8 17.3 0.00   

CeW-D22(32)-25.1-000 [27,28] 22 387.1 32 409 180 25.1 21.1 2.3 68.6 27.4 2.8 19.5 0.00   

CeW-D25(32)-25.1-000[27,28] 25 507.6 32 426 210 25.1 21.1 2.3 68.6 27.4 2.8 17.0 0.00   

CfW-D16(20)-25.1-000-1[28] 16 198.6 20 387 175 25.1 21.1 2.3 68.6 27.4 2.8 19.8 0.00   

CfW-D19(24)-25.1-000 [28] 19 286.5 24 434 190 25.1 21.1 2.3 68.6 27.4 2.8 18.8 0.00  

CfW-D22(28)-25.1-000 [28] 22 387.1 28 409 180 25.1 21.1 2.3 68.6 27.4 2.8 17.8 0.00   

CfW-D25(32)-25.1-000[28] 25 507.6 32 426 210 25.1 21.1 2.3 68.6 27.4 2.8 16.8 0.00   

CfW-D16(20)-25.1-000-2[28] 16 198.6 20 387 175 25.1 21.1 2.3 70.0 26.4 3.9 19.8 0.00   

CfW-D16(20)-25.1-033[28] 16 198.6 20 387 175 25.1 21.1 2.3 70.0 26.4 3.9 19.8 0.33   

CfW-D16(20)-25.1-066[28] 16 198.6 20 387 175 25.1 21.1 2.3 70.0 26.4 3.9 19.8 0.66   

CfW-D16(28)-25.1-000[28] 16 198.6 28 387 175 25.1 21.1 2.3 70.0 26.4 3.9 19.8 0.00  

 

2.2 Shear loading test 

2.2.1 Details of the specimens 

Fig. 1 shows the details of the specimen [26,27]. The specimen consisted of concrete 

and grout blocks. The dimensions of the concrete and grout block specimens were 440 

mm × 460 mm × 250 mm and 375 mm × 200 mm × 190 mm, respectively. Since the 

concrete was cast vertically, the surfaces of the joint sides had a smooth finish with 

plywood as the formwork. In addition, the surface was greased; thus, the friction on 

the surface was insignificant. The ratios of the longitudinal bar pl and the transverse 

bar pt in the concrete block were 0.74 % and 0.28 %, respectively, whereas the ratios of 

the grout block were 0.75 % and 0.76 %, respectively. After the concrete block was air-

dried for 28 d, a hole was bored at the center of the top of the block using a diamond 

core drill. Subsequently, the dowel bar was adhered using an epoxy or cement-based 

adhesives. After adhering dowel bar, the reinforcing bars and the formwork of the 

grout block were set. The premixed cementitious grout was then cast. After 14 d, the 

formworks were removed; moreover, after more 14 d of moist curing, the specimens 

were tested. 
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Fig. 1 Characteristics of specimens for shear loading tests. The embedded length Le was 10dd. 

2.2.2 Loading and measurement setup 

Figs. 2 and 3 show the loading setup and the measurement setup for displacement, 

respectively, which are the same as those used in previous tests [26,27]. In the loading 

setup shown in Fig. 2, two 150 kN screw jacks and a 500 kN hydraulic jack were used. 

By controlling the two screw jacks, the loading beams moved parallel to the surface 

during shear loading. A static cyclic shear load was applied to the specimen at a load-

ing rate of 0.02–0.04 mm/s. The loading cycle was ±0.25, ±0.50, ±1.0, ±1.5, ±2.0, ±3.0, 

±4.0, ±6.0, and ±8.0 mm. During shear loading, the surface was moved horizontally and 

vertically; therefore, the slip δ and the opening of the surface were measured using the 

four displacement sensors shown in Fig. 3. 
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Fig. 2 Loading setup for the shear loading test [26]. 

 

 

 
Fig. 3 Setup for measuring displacement [26]. 

2.3 Bond-slip test 

Although the training data are explained in Section 3.6, the bond strength was used 

for the training data. Therefore, in this section, the outlines of bond-slip test are briefly 

explained. The maximum bond stresses, τa, are listed in Table 1. 

Fig. 4 shows the outlines for the bond-slip test. [26] The specimen parameters and 
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manufacturing procedures were the same as those in the shear loading test. Moreover, 

the bond-slip test was performed at the same time as the shear loading tests. The 

specimens were rectangular; and fifteen anchor bolts were adhered to each specimen. 

To investigate the bond strength, Le was set to 4.5 dd; and, to prevent concrete cone 

failure, a reaction plate was used. Tensile force was applied using a 320 kN hydraulic 

center-hole jack; then, the tensile force was applied manually at a loading rate of 

0.005–0.02 mm/s. A monotonic tensile force was applied to the anchors.  

 

3 OUTLINES OF MACHINE LEARNING APLLIED IN THIS STUDY 

Fig. 5 shows an image of the machine learning models used in this study. As shown 

in Fig. 5, four types of machine learning were used, Random Forest (RF), XGBoost 

(XB), LightGBM (LG), and an ANN. RF, XB, and LG are categorized by the type of 

decision tree. Whereas, the structure of the ANN is similar to that of the human brain. 

This section provides an overview of the machine learning used in this study.  

 

(b) Loading and measurement method. 
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Fig. 5 Image of the machine learning used in this study. 

3.1 Random Forest 

RF was proposed by Breiman in 2001 [33] and is a learning model based on a deci-

sion tree. An ensemble learning is applied to RF. For this reason, overfitting is a major 

problem in ML; therefore, to solve this problem, many decision trees are constructed 

in parallel in RF, as shown in Fig. 5 (a). Moreover, in ensemble learning, “bootstrap 

aggregation” is applied so that the same data can be repeatedly used for many decision 

trees. The prediction results are then determined by a majority decision. This im-

proved the prediction accuracy.  

3.2 XGBoost (eXtream Gradient Boosting ) 

In RF, many decision trees are built using bootstrap aggregation. Gradient boosting 

and decision trees (GBDT) are also popular algorithms for ML. XB was proposed by 

Chen and Guestrin in 2016 [34]. XB is based on the GBDT; thus, when multiple deci-

sion trees are constructed, weighting coefficients for weak classification are applied to 

the next decision tree so that the loss is gradually reduced. There are two types of 
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trees: classification and regression trees. In this study, a regression tree was used. 

For the decision tree, the level-wise tree method is applied; therefore, the decision 

tree grows with each layer. Moreover, based on the GBDT, the final outputs are deter-

mined by the average of the outputs of several trees. XB has been used in several 

studies [12,15]. 

3.3 LightGBM（Light Gradient Boosting Machine） 

LG is also based on GBDT as well as XB. In general, the larger the number of train-

ing data, the lower are the efficiency and accuracy. To solve this problem, gradient-

based one-side sampling (GOSS) and exclusive feature bundling (EFB) were applied 

to the LG. Large datasets can be used by GOSS. Moreover, many data features are 

managed by EFB. In addition, the leaf-wise tree is applied; i.e., the decision trees grow 

with each leaf, as shown in Fig. 5 (c). Based on these techniques, it was reported that 

the learning time was 20 times shorter than that of the conventional GBDT algorithm 

with the same accuracy [35]. 

3.4 Artificial Neural Network 

An ANN is a mathematical model that resembles the human brain and consists of 

an input layer, hidden layer, and an output layer. There are neurons in each layer; 

moreover, one neuron is connected to the next neuron by convolutions. In this study, 

the number of input layer nodes was eight, similar to the input items described in 

Section 3.6, and the number of hidden layers was two. In addition, the layers had 64 

and 32 nodes. The number of nodes for the output layers was one, which represented 

the shear load. Furthermore, a normalized linear function is used for effective learning. 
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3.5 Other algorithms 

As mentioned in Section 1, SVM, SVR, and GPR were also used in the previous 

studies; moreover, it was reported that these algorithms were applicable to predict the 

strengths of RC structures. In SVM and SVR, response variables are classified into 

two groups by a support vector, and a linear or polynomial Kernel functions are em-

ployed. Whereas, in GPR, Kernel function is based on Gaussian distribution. For in-

stance, the following equations are used. 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)), (4) 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2𝑒𝑥𝑝 (−

(𝑥 − 𝑥′)2

2𝑙2
), (5) 

where, GP is Gaussian process, m(x) is the mean function, σf and l are the hyper pa-

rameters. Generally, applying these algorithms to high dimension and large-scale data 

sets is difficult because a matrix size of Kernel function is n × n; where, n is the number 

of a data set. Therefore, in the previous studies, these algorithms were used for pre-

dicting a simple response variable such a strength. In other words, these were not 

applied to complicated variables. Whereas, the load – defection curves of RC beam 

were predicted using ANN [36]. Hence, in this study, RF, XB, LG, and ANN, which can 

predict complicated phenomena, were employed. 

3.6 Training data set 

In this study, Python 3.8 was used for ML. Table 2 lists an example of training data. 

In this study, Q is the response value and fc, fg, As, rφ, fy, τa, rN, and δ are the training 

data. Here, rφ = φ /dd. The value of As was determined based on the Japanese standard 

[32]. These values were extracted from all the test data and summarized in a CSV file, 

as shown in Table 2. The number of lines in the test data was 7,950. 80 % of the train-

ing data was randomly selected and then used for learning. The remaining 20 % was 
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used to test the training accuracy. As shown in Table 1, the number of the specimens 

with dd = 16 mm is 22 out of 32; therefore, the balance of dd is not good. However, RF, 

XB, LG, and ANN can predict the objective variables with each training item sepa-

rated. Hence, in this study, the specimens with various dd were used for the data set. 

 

Table 2 

Example of the training data. 
fc fg As rφ fy τa rN δ Q 

26.1 67.3 198.6 1.375 376 30.2 0.00 0.000436 1.591754 

26.1 67.3 198.6 1.375 376 30.2 0.00 0.000799 1.846615 

26.1 67.3 198.6 1.375 376 30.2 0.00 0.002047 2.133334 

26.1 67.3 198.6 1.375 376 30.2 0.00 0.003540 2.451910 

| | | | | | | | | 

25.1 70.0 198.6 1.25 387 19.8 0.66 7.975880 23.07971 

25.1 70.0 198.6 1.25 387 19.8 0.66 8.014048 22.84077 

 

Table 3 lists an example of the validation and prediction data. In these data, the 

training items were selected; however, Q was removed because it was predicted. The 

values of δ for the test results were random, as listed in Table 2. However, random 

data are not known for prediction. Therefore, regular values were used as δ, as shown 

in Table 3. 

 

Table 3 

Example of the data used for validation and prediction. 
fc fg As  rφ fy τa rN δ 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 0.00 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 0.01 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 0.02 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 0.03 

| | |  | | | | | 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 7.99 

26.1 67.3 198.6  1.375 375.8 30.2 0.66 8.00 

4 TEST RESULTS AND TRAINING ACCURACY 

4.1 Loading test results 

4.1.1 Failure mode 

Figs. 6 (a) and (b) show the failure modes for the bond-slip and shear loading tests, 

respectively.  
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As shown in Fig. 6 (a), the anchors failed at the surface between the anchor bolt and 

the adhesive. Concrete breaks were observed around the hole, but no cracks were ob-

served. Therefore, it can be concluded that the main failure mode was bond failure. 

Subsequently, Fig. 6 (b) focuses on the shear loading test. Although a small concrete 

fracture was confirmed around the hole due to bearing stress, no noticeable cracks 

were observed on the concrete surface. Therefore, based on the test results, a pure 

dowel action could be considered. 

 

4.1.2 Maximum shear load 

Table 4 lists the test results for all specimens. The validation results, which are 

explained in Section 5.1, are also listed in Table 4. For the dowel action of the post-

installed anchors, the shear force Q increases with increasing δ. Moreover, for the safe 

use of post-installed anchors, the shear displacement should be small during the de-

sign strength. Therefore, the behavior up to δ = 8 mm was used for the investigation 

in this test. Due to this condition, Qmax was the maximum shear load up to δ = 8 mm 

Fig.6 Failure modes of the test. 

(a) bond-slip test 

(b) shear loading test 
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in this study. δmax denotes the shear displacement at Qmax.  

Table 4 shows that for some specimens, namely Ep-D16(32)-20.9-000, Ce-D16(20)-

24.8-033, and CeW-D16(20)-13.0-033, the δmax value is small, approximately 1 mm. In 

contrast, for Ep-D16(22)-20.9-000, Ce-D16(20)-13.0-000, CeW-D16(20)-13.0-066, CeW-

D22(32)-25.1-000, and CfW-D16(20)-25.1-000-1 to CfW-D25(32)-25.1-000, the δmax 

value is large, approximately 8 mm, therefore, Q increases after δ = 8 mm. Except for 

these specimens, the values of δmax are in the range of 2–6 mm. 

Subsequently, Fig. 7 examines the relationship between Qmax and test parameters. 

To normalize, the ratio rφ between φ and dd is used. As shown in Fig. 7, as fc and rφ 

increase, Qmax increases. As rN increases, Qmax decreases. According to the Qmax–rN 

relationships, Qmax was smaller for the cement-based anchors than for the epoxy ad-

hesive anchors. These features were mentioned in a previous study [26-28]. 

 
Fig.7 Relationship between Qmax and the parameters. 

 

Table 4 

Test and validation results. δmax is the shear displacement during Qmax. 

Specimen ID 
Pred. Test RF XB LG ANN 

Qmax δmax Qmax δmax Qmax δmax Qmax δmax Qmax δmax 

Ep-D16(22)-26.1-000 A 47.72  6.01  47.34  5.82  48.33  5.91  48.67  5.96  46.36  8.00  

Ep-D16(22)-26.1-033 A 40.02  5.92  39.76  5.81  40.08  5.86  40.62  5.96  39.28  5.77  

Ep-D16(22)-26.1-066 B 33.43  3.07  36.87  5.89  30.82  5.91  30.80  5.96  34.66  5.83  

Ep-D16(22)-20.9-000 A 43.17  8.00  43.03  7.95  43.23  7.97  43.18  8.00  43.18  8.00  

Ep-D16(28)-20.9-000 A 49.90  1.91  49.71  1.91  49.82  1.89  49.82  1.96  49.39  1.67  

Ep-D16(32)-20.9-000 A 51.73  1.01  51.27  0.98  51.53  1.00  52.18  0.99  51.13  1.34  

Ep-D16(22)-35.5-000 A 48.87  5.93  48.78  5.91  48.84  5.91  48.75  5.86  48.07  5.83  

Ep-D13(16)-35.5-000 A 34.72  5.15  34.24  5.15  34.51  5.98  34.20  5.96  33.59  3.45  

Ep-D19(24)-35.5-000 A 70.23  5.88  70.08  5.91  70.82  5.98  70.29  5.86  70.44  5.85  

Ce-D16(20)-13.0-000 A 41.48  7.96  41.39  7.94  41.41  7.95  41.38  7.91  40.57  8.00  

Ce-D16(20)-13.0-033 A 33.88  5.96  33.80  5.90  33.72  5.91  33.70  5.89  30.68  0.92  

Ce-D16(20)-24.8-000 A 42.88  5.92  42.73  7.80  43.08  5.98  42.68  5.89  42.83  8.00  

Ce-D16(20)-24.8-033 A 33.84  0.98  33.77  0.98  33.84  1.00  33.68  0.96  29.96  0.59  

Ce-D16(20)-24.8-066 A 24.39  5.71  23.97  5.74  23.96  5.91  23.66  5.96  22.99  8.00  

CeW-D16(20)-13.0-000 A 40.14  6.00  40.02  5.93  40.14  5.93  39.91  5.89  40.53  8.00  

CeW-D16(20)-13.0-033 A 33.02  0.97  32.87  0.95  32.95  1.00  33.63  0.99  30.71  0.95  

CeW-D16(20)-13.0-066 A 22.54  7.96  22.48  7.96  22.55  5.93  22.38  7.94  22.21  8.00  

CeW-D16(20)-24.8-000 A 43.91  5.94  43.70  5.83  43.85  5.98  43.65  5.78  42.97  8.00  
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CeW-D16(20)-24.8-033 A 31.04  5.90  31.08  6.01  31.09  7.95  31.01  5.78  30.03  8.00  

CeW-D16(20)-24.8-066 A 23.19  7.84  23.08  7.83  23.17  7.95  23.10  7.96  23.17  8.00  

CeW-D16(20)-25.1-000 A 42.13  5.92  41.05  5.92  41.60  5.98  41.42  5.96  41.16  5.80  

CeW-D22(28)-25.1-000 A 79.56  7.60  79.49  7.61  79.84  7.72  79.52  7.66  82.14  8.00  

CeW-D22(32)-25.1-000 A 95.06  7.99  91.59  7.82  91.72  7.80  91.35  7.48  92.01  8.00  

CeW-D25(32)-25.1-000 A 114.11  6.00  113.16  5.63  113.28  5.98  112.94  5.96  111.04  8.00  

CfW-D16(20)-25.1-000-1 A 46.13  7.96  45.99  7.95  46.06  7.96  46.13  7.96  43.99  8.00  

CfW-D19(24)-25.1-000  B 62.75  7.97  86.09  5.64  59.35  5.98  64.54  5.86  63.20  6.00  

CfW-D22(28)-25.1-000  A 84.69  7.78  84.17  7.72  84.25  7.72  83.88  7.66  85.48  8.00  

CfW-D25(32)-25.1-000 A 104.95  7.91  104.85  7.87  104.89  7.91  104.65  7.84  109.56  8.00  

CfW-D16(20)-25.1-000-2 A 41.86  5.85  41.56  5.89  42.06  7.96  42.36  6.00  43.57  8.00  

CfW-D16(20)-25.1-033 A 32.88  2.02  32.68  1.97  32.92  1.99  33.00  1.96  30.29  1.83  

CfW-D16(20)-25.1-066 A 27.93  1.97  27.74  1.87  27.79  1.99  27.46  1.87  26.58  5.76  

CfW-D16(28)-25.1-000 B 43.69  5.61  43.99  5.94  42.94  5.86  43.38  7.84  44.33  8.00  

4.2 Training accuracy 

Fig. 8 shows the training accuracy. The results shown in Fig. 8 contains 20 % of the 

training data set described in Section 3.6. The root mean squared error (RMSE) and 

the coefficient of determination (R2) are used to examine the accuracy. 

RMSE =√
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

, (6) 

𝑅2 =1 −

1
𝑁

∑ (𝑦𝑖 − �̂�𝑖)2𝑁
𝑖=1

1
𝑁

∑ (𝑦𝑖 − �̅�𝑖)2𝑁
𝑖=1

, (7) 

where yi and �̂�𝑖 are the test and predicted values of the number i, respectively. �̅�𝑖 is 

the average value of yi. 

Four ML models were used, and their R2 was 0.98 or 0.99. These values are almost 

identical to those reported in previous studies [14,21]. Moreover, the RMSE of RF, XB, 

and LG ranged from 0.80 to 0.93; thus, the differences were small. The RMSE of the 

ANN was 3.24, which was greater than that of the other algorithms. 



18 

 

 

Fig. 8 Training accuracy. 

5 DISCUSSION 

5.1 Validation accuracy of Qmax and δmax 

The validation accuracies are listed in Table 4. The “Pred.” column in Table 4 indi-

cates whether the specimens were used for learning. The specimens of Pred. A were 

used for this purpose, whereas those of Pred. B were not used. Figs. 9 and 10 show the 

relationships between the predicted and tested values for Qmax and δmax, respectively. 

In these figures, the red squares represent the specimens of Pred. B. 

The mean absolute error (MAE) was used to examine the validation accuracy. 

MAE =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1
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 As can be seen in Fig.9, most of the maximum shear loads were well predicted by 

all models. In RF, the accuracy was poor for one specimen. Table 4 shows that this 

specimen was CfW-D19(24)-25.1-000. This specimen was classified as a Pred. B; there-

fore, Qmax could not be accurately predicted. Nevertheless, the MAE of RF is smaller 

than that of the ANN; thus, the prediction accuracy of the decision tree-based algo-

rithm was better than that of the ANN. Subsequently, Fig. 10 focuses on the compari-

son of the accuracies of δmax, which were low for all algorithms. In particular, the δmax 

of Pred. B could hardly be predicted. In addition, as well as Qmax, the MAE of the ANN 

was the worst. From these results, prediction for δmax was difficult. 

  
Fig. 9 Validation accuracy of maximum shear 

load Qmax. 

Fig. 10 Validation accuracy of shear displace-

ment during maximum shear load δmax. 

 

5.2 Envelope curve of the test specimens 

In this section, the prediction accuracy of the envelope curves is discussed. Fig. 11 

shows the validation and test results of the Q–δ curves. Tables 5 and 6 list the MAE 

of each specimen and the average MAE, respectively. 

Although cyclic shear loads were applied to the specimens, envelope curves were 
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used for this investigation. Therefore, the test results waved based on the loading cy-

cles. Focusing on the results of RF, XB, and LG in all figures, the prediction results for 

Pred. A are in good agreement with the test results. Tables 5 and 6 show that the range 

of MAE for the three algorithms is 0.09 to 0.86, and that of the average values of each 

algorithm is 0.22–0.39. 

The prediction results of the Pred. B are shown in Figs. 11 (c), (z) and (af); the pre-

diction accuracies were not good as the range of MAE was from 1.22 to 22.55, and the 

average RF for Pred. B was 9.04, which is 41 times greater than 0.22, the average RF 

for Pred. A. In the decision tree-based algorithm, the prediction output is selected from 

the learning data, and it is difficult to make predictions for parameters that were not 

used in the training data. 

However, the behavior of the ANN was not as good as that of the other algorithms. 

Nevertheless, the ANN can accurately predict the test results of both Pred. A and Pred. 

B, and The MAEs of both predictions were 0.78–5.37 and 1.21–2.47, respectively. Ad-

ditionally, the average values of both predictions were 1.63 and 1.97, respectively; thus, 

there is no significant difference observed. For an ANN, the output does not always 

match the training data because it is obtained from complex calculations based on 

neurons. Therefore, the ANN can make good predictions for unknown parameters. 
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Fig. 11 Envelope curves of validation results. 

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

(a) Ep-D16(22)-26.1-000

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

(b) Ep-D16(22)-26.1-033

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

(c) Ep-D16(22)-26.1-066

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

(d) Ep-D16(22)-20.9-000

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

(e) Ep-D16(28)-20.9-000

(f) Ep-D16(32)-26.1-000 (g) Ep-D16(22)-35.5-000 (h) Ep-D13(16)-35.5-000 (i) Ep-D19(24)-35.5-000 (j) Ce-D16(20)-13.0-000

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

20

40

60

80

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

Pred. A Pred. A Pred. B Pred. A Pred. A

(k)  Ce-D16(20)-13.0-033 (l) Ce-D16(20)-24.8-000 (m) Ce-D16(20)-24.8-033 (n) Ce-D16(20)-24.8-066 (o) CeW-D16(20)-13.0-000

(p) CeW-D16(20)-13.0-033 (q) CeW-D16(20)-13.0-066 (r) CeW-D16(20)-24.8-000 (s) CeW-D16(20)-24.8-033 (t) CeW-D16(20)-24.8-066

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

(u) CeW-D16(20)-25.1-000 (v) CeW-D22(28)-25.1-000 (w)CeW-D22(32)-25.1-000 (x) CeW-D25(32)-25.1-000 (y)  CfW-D16(20)-25.1-000-1

(z)  CfW-D19(24)-25.1-000

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

25

50

75

100

0 2 4 6 8

Q
(k

N
)

d (mm)

0

25

50

75

100

0 2 4 6 8

Q
(k

N
)

d (mm)

0

30

60

90

120

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

25

50

75

100

0 2 4 6 8

Q
(k

N
)

d (mm)
(aa)  CfW-D22(28)-25.1-000 (ab)  CfW-D25(32)-25.1-000 (ac)  CfW-D16(20)-25.1-000-2 (ad)  CfW-D16(20)-25.1-033

0

25

50

75

100

0 2 4 6 8

Q
(k

N
)

d (mm)

0

30

60

90

120

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

(ae)  CfW-D16(20)-25.1-066 (af)  CfW-D16(28)-25.1-000

0

10

20

30

40

0 2 4 6 8

Q
(k

N
)

d (mm)

0

15

30

45

60

0 2 4 6 8

Q
(k

N
)

d (mm)

: Test results

: RF

: XB

: LG

: ANN
Pred. A Pred. B

Pred. A Pred. A Pred. A Pred. A Pred. A

Pred. A Pred. A Pred. A Pred. A Pred. A

Pred. A Pred. A Pred. A Pred. A Pred. A

Pred. A Pred. A Pred. A Pred. A Pred. A

Pred. B Pred. A Pred. A Pred. A Pred. A



22 

 

Table 5 

MAE (kN) of the validation results. 
Specimen ID Pred. RF XB LG ANN 

Ep-D16(22)-26.1-000 A 0.44 0.56 0.51 1.03 
Ep-D16(22)-26.1-033 A 0.34 0.53 0.42 0.89 
Ep-D16(22)-26.1-066 B 3.35 4.30 5.20 2.47 
Ep-D16(22)-20.9-000 A 0.15 0.30 0.22 1.05 
Ep-D16(28)-20.9-000 A 0.18 0.31 0.24 1.26 
Ep-D16(32)-20.9-000 A 0.15 0.25 0.21 1.00 
Ep-D16(22)-35.5-000 A 0.13 0.26 0.21 0.78 
Ep-D13(16)-35.5-000 A 0.12 0.23 0.18 0.98 
Ep-D19(24)-35.5-000 A 0.18 0.38 0.24 1.05 
Ce-D16(20)-13.0-000 A 0.15 0.27 0.21 1.31 
Ce-D16(20)-13.0-033 A 0.16 0.33 0.24 1.74 
Ce-D16(20)-24.8-000 A 0.14 0.31 0.20 1.29 
Ce-D16(20)-24.8-033 A 0.25 0.53 0.25 1.82 
Ce-D16(20)-24.8-066 A 0.13 0.24 0.19 1.10 
CeW-D16(20)-13.0-000 A 0.26 0.34 0.32 2.31 
CeW-D16(20)-13.0-033 A 0.18 0.29 0.22 1.72 
CeW-D16(20)-13.0-066 A 0.09 0.23 0.18 0.79 
CeW-D16(20)-24.8-000 A 0.18 0.39 0.23 1.15 
CeW-D16(20)-24.8-033 A 0.17 0.42 0.22 2.03 
CeW-D16(20)-24.8-066 A 0.19 0.35 0.22 1.19 
CeW-D16(20)-25.1-000 A 0.20 0.31 0.20 0.88 
CeW-D22(28)-25.1-000 A 0.21 0.48 0.37 3.72 
CeW-D22(32)-25.1-000 A 0.37 0.50 0.46 1.23 
CeW-D25(32)-25.1-000 A 0.51 0.86 0.70 3.32 
CfW-D16(20)-25.1-000-1 A 0.24 0.36 0.26 1.49 
CfW-D19(24)-25.1-000  B 22.55 1.82 4.25 2.23 
CfW-D22(28)-25.1-000  A 0.23 0.43 0.38 1.51 
CfW-D25(32)-25.1-000 A 0.20 0.36 0.35 5.37 
CfW-D16(20)-25.1-000-2 A 0.48 0.63 0.54 2.76 
CfW-D16(20)-25.1-033 A 0.15 0.29 0.22 1.24 
CfW-D16(20)-25.1-066 A 0.21 0.29 0.28 1.26 
CfW-D16(28)-25.1-000 B 1.22 1.99 1.64 1.21 

 

Table 6 

Average values of MAE for each classification. 
 Classification RF XB LG ANN 

pred. A 0.22 0.38 0.29 1.63 
pred. B 9.04 2.70 3.70 1.97 
Epoxy adhesive anchors 0.56 0.79 0.83 1.17 
Cement based anchors 1.24 0.52 0.53 1.85 
All anchors 1.05 0.60 0.61 1.66 

5.3 Prediction results of the parametric analysis 

In this section, the authors perform a parametric analysis using fc, rφ, and rN. Table 

7 and Fig. 12 show the conditions of the parametric analysis and the prediction results 

of the four algorithms, respectively. fc, rφ, rN are set to 10–40, 1.0–2.2, and 0.20–0.80, 

respectively. The other parameters are set to values that are within the training data 

and different from the training data. 
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Table 7 

Conditions of parametric analysis. 
ID fc fg As rφ fy τa rN 

Sm-fc10 10 65 198.6 1.375 400 25 0.00 

Sm-fc20 20 65 198.6 1.375 400 25 0.00 

Sm-fc30 30 65 198.6 1.375 400 25 0.00 

Sm-fc40 40 65 198.6 1.375 400 25 0.00 

Sm-ra10 24 65 198.6 1.0 400 25 0.00 

Sm-τa14 24 65 198.6 1.4 400 25 0.00 

Sm-τa18 24 65 198.6 1.8 400 25 0.00 

Sm-τa22 24 65 198.6 2.2 400 25 0.00 

Sm-rN02 24 65 198.6 1.375 400 25 0.20 

Sm-rN033 24 65 198.6 1.375 400 25 0.33 

Sm-rN04 24 65 198.6 1.375 400 25 0.40 

Sm-rN06 24 65 198.6 1.375 400 25 0.66 

Sm-rN066 24 65 198.6 1.375 400 25 0.20 

Sm-rN08 24 65 198.6 1.375 400 25 0.80 

 

 
Fig. 12 Prediction results of the parametric analysis. 

As shown in Fig. 12 (a), the prediction results of RF, XB, and LG were almost iden-
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tical, although fc was different. However, The ANN showed different behavior depend-

ing on the degree of fc. In the training data, although fc was set to 13.0–35.5 N/mm2, 

the amount of data was considered insufficient. Therefore, the mechanical behaviors 

were almost the same when the decision tree-based algorithm was used. However, the 

ANN could predict the behavior by considering the difference in fc. 

Fig. 12 (b) shows that in the prediction results of RF, XB, and LG, when rφ is larger, 

Q is slightly larger. For the ANN, with rφ is larger, Q is significantly larger. Finally, 

Fig. 12 (c) is focused on. The results of RF, XB, and LG are classified into two values, 

whereas the ANN can predict the behavior based on rN. In the training data, rN was 

only set to 0.33 and 0.66; therefore, the results of RF, XB, and LG were classified into 

two patterns. As mentioned earlier, when the parameters are close to the training data, 

RF, XB, and LG can predict the mechanical behavior well. However, when they are not 

close to the training data, these algorithms do not predict the behavior well. Therefore, 

ANN is useful for predicting dowel action when the training data are limited. 

6 CONCLUSION 

In this study, the shear loading test results of post-installed anchors were predicted 

using RF, XB, LG, and ANN. The 32 test results were used. The values for fc and dd 

were set at 13.0-35.5 N/mm2 and 13-25 mm, respectively, and epoxy and cement-based 

adhesives were applied. The findings of this study are as follows: 

1) The training accuracies of the four algorithms agreed well with test results, because 

R2 = 0.98 or 0.99. In addition, Qmax could be well estimated by the four algorithms; 

however, some δmax values could not be reasonably estimated. 

2) The decision tree-based algorithms accurately predicted the Q–δ curves, which were 

used for the training data (the specimens of Pred. A). The waved behavior based on 
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the loading cycle was also tracked by using these algorithms. However, the predic-

tion accuracy was lower for specimens that were not used for the training data (the 

specimens of Pred. B). 

3) When the ANN was used, although the ANN could reasonably predict the test re-

sults for Pred. A, MAE was bigger than that of RF, XB, and LG. However, the test 

results for Pred. B can also be accurately predicted. No significant difference was 

found in the average MAE between Pred. A and Pred. B. 

4) Parametric analysis was performed using the parameters fc, rφ, and rN. When RF, 

XB, and LG, were used, the Q–δ curves did not differ in some cases, although the 

parametric values varied. However, when the ANN was used, the Q–δ curves dif-

fered as a function of the parameters. Therefore, when the training data are limited, 

the ANN is useful for predicting the dowel action of the post-installed anchors. 

To consider the shear displacement on structural designs, a mechanical model must 

be estimated; hence, for estimating mechanical behaviors of post-installed anchors, a 

complex modelling [25-27] or finite element analysis [37] were required. However, ac-

cording to the result of this study, the mechanical behaviors could be easily estimated 

using ANN. In addition, future studies will focus on predicting cyclic behavior and 

other failure modes; for instance, concrete break failure. 

Acknowledgments 

This study was partially supported by the Japan Society for the Promotion of Science 

KAKENHI (grant number: JP19K04684). 

 

References 



26 

 

[1] ACI 318–14. Building code requirements for structural concrete. Am Conc Inst, 

Farmington Hill, Michigan, 2014. 

[2] AISC 360–16. Specifications for structural steel buildings. Am Inst Steel Const, 

Chicago, Illinois, 2019 

[3] ETAG 001, Metal anchors for use in concrete, Part 5 Bonded anchors. Euro Org 

Tech Asses, Brussels, Belgium, 2012. 

[4] EOTA TR069, Design method for anchorage of post–installed reinforcing bars(re-

bars) with improved bond–splitting behavior as compared to EN 1992–1–1. Euro 

Org Tech Asses, Brussels, Belgium, 2019.  

[5] JBDPA. Eternal seismic retrofitting manual for existing reinforced concrete build-

ing. Japan Build Disast Prev Assoc, Minato, Tokyo, 2002. 

[6] Friberg BF. Design of dowels in the transverse joints of concrete pavements. Proc 

Am Soc Civ Eng 1938;64(9):1809–28.  

[7] Vintzēleou EN, Tassios TP. Mathematical models for dowel action under monotonic 

and cyclic conditions, Mag Conc Res 1986;38(134):13–22. 

(https://doi.org/10.1680/macr.1986.38.134.13) 

[8] Sorensen JH, Hoang LC, Olesen JF, Fischer G. Testing and modeling dowel and 

catenary action in rebars crossing shear joints in RC. Eng Struct 2017;145:234–45. 

(https://doi.org/10.1016/j.engstruct.2017.05.020) 

[9] Ghayeb HH, Razak HA, Sulong NHR. Performance of dowel beam–to–column con-

nections for precast concrete systems under seismic loads: A review, Const Build 

Mater 2020;237:117582. (https://doi.org/10.1016/j.conbuildmat.2019.117582) 

[10] Alhaidary H, Al–Tamimi AK. Importance of performance certification for post–

installed anchors: an experimental assessment. Struct 2021;29:273–85. 

(https://doi.org/10.1016/j.istruc.2020.11.005) 

[11] Mahrenholtz C, Eligehausen R, Reinhardt H. Design of post–installed reinforcing 

bars as end anchorage or as bonded anchor. Eng Struct 2015;100:645–55. 

(https://doi.org/10.1016/j.engstruct.2015.06.028) 

[12] Ma X, Sha J, Wang D, Yu Y, Yang Q, Niu X. Study on a prediction of P2P network 

https://doi.org/10.1680/macr.1986.38.134.13
https://doi.org/10.1016/j.engstruct.2017.05.020
https://doi.org/10.1016/j.conbuildmat.2019.117582
https://doi.org/10.1016/j.istruc.2020.11.005
https://doi.org/10.1016/j.engstruct.2015.06.028


27 

 

loan default based on the machine learning LightGBM and XGboost algorithms 

according to different high dimensional data cleaning. Elect Com Res Appl 

2018;31:24-39. (https://doi.org/10.1016/j.elerap.2018.08.002) 

[13] Fan J, Wang X, Wu L, Zhou H, Zhang F, Yu X, Lu X, Xiang Y. Comparison of sup-

port vector machine and extreme gradient boosting for predicting daily global solar 

radiation using temperature and precipitation in humid subtropical climates: A 

case study in China. Ener Conve Manag 2018;164:102-11. 

(https://doi.org/10.1016/j.enconman.2018.02.087) 

[14] Chen C, Zhang Q, Mac Q, Yu B. LightGBM-PPI: Predicting protein-protein inter-

actions through LightGBM with multi-information fusion. Chem Intel Labo Syst 

2019;191:54-64. (https://doi.org/10.1016/j.chemolab.2019.06.003) 

[15] Alabdullah AA, Iqbal M, Zahid M, Khan K, Amin MN, Jalal FE. Prediction of rapid 

chloride penetration resistance of metakaolin based high strength concrete using 

light GBM and XGBoost models by incorporating SHAP analysis. Const Build Ma-

ter 2022;345:128296. (https://doi.org/10.1016/j.conbuildmat.2022.128296) 

[16] Demir F. Prediction of elastic modulus of normal and high strength concrete by 

artificial neural networks. Const Build Mater 2008;22:1428-35. 

(https://doi.org/10.1016/j.conbuildmat.2007.04.004) 

[17] Yan K, Shi C. Prediction of elastic modulus of normal l and high strength concrete 

by support vector machine. Const Build Mater 2010;24:1479-85.    

(https://doi.org/10.1016/j.conbuildmat.2010.01.006)  

[18] Nehdi ML, Soliman AM. Artificial intelligence model for early-age autogenous 

shrinkage of concrete, ACI Mater J 2012;109 (3):353–62. 

[19] Liu J, Yan K, Zhao X, Hu Y. Prediction of autogenous shrinkage of concretes by 

support vector machine. Int J Pavem Res Tech 2016;9:169–77. 

(https://doi.org/10.1016/j.ijprt.2016.06.003) 

[20] Kang MC, Yoo DY, Gupta R. Machine learning-based prediction for compressive 

and flexural strengths of steel fiber-reinforced concrete. Const Build Mater 

2021;266:121117. (https://doi.org/10.1016/j.conbuildmat.2020.121117) 

https://doi.org/10.1016/j.elerap.2018.08.002
https://doi.org/10.1016/j.enconman.2018.02.087
https://doi.org/10.1016/j.chemolab.2019.06.003
https://doi.org/10.1016/j.conbuildmat.2022.128296
https://doi.org/10.1016/j.conbuildmat.2007.04.004
https://doi.org/10.1016/j.conbuildmat.2010.01.006
https://doi.org/10.1016/j.conbuildmat.2020.121117


28 

 

[21] Su M, Zhong Q, Peng H, Li S. Selected machine learning approaches for predicting 

the interfacial bond strength between FRPs and concrete. Const Build Mater 

2021;270:121456. (https://doi.org/10.1016/j.conbuildmat.2020.121456) 

[22] Spyridis P, Olalusi OB. Predictive Modelling for concrete failure at anchorages 

using machine learning techniques. Mater 2021;14:62. 

(https://doi.org/10.3390/ma14010062) 

[23] Olalusi OB, Panagiotis S. Machine learning-based models for the concrete 

breakout capacity prediction of single anchors in shear, Advan Eng Soft 2020; 

147;102832. (https://doi.org/10.1016/j.advengsoft.2020.102832) 

[24] Olalusi OB, Awoyera PO. Shear capacity prediction of slender reinforced concrete 

structures with steel fibers using machine learning. Eng Struct 2021;227:111470. 

(https://doi.org/10.1016/j.engstruct.2020.111470) 

[25] Takase Y. Testing and modeling of dowel action for a post–installed anchor sub-

jected to combined shear and tensile forces. Eng Struct 2019;195:551–8. 

(https://doi.org/10.1016/j.engstruct.2019.05.086) 

[26] Matsunaga K, Takase Y, Abe T. Modeling of dowel action for cast–in and post–

installed anchors considering bond property. Eng Struct 2021;245:112773. 

(https://doi.org/10.1016/j.engstruct.2021.112773) 

[27] Matsunaga K, Takase Y, Abe T, Orita G, Ando S. Property of cement based adhe-

sive anchor constructed below zero and estimation of mechanical behavior. J Struct 

Const Eng 2022;87(796):556-66. (in Japanese) (https://doi.org/10.3130/aijs.87.556) 

[28] Takase Y, Abe T, Orita G, Ando S. Anchorage Property of cement-based adhesive 

anchor with frost resist acceleration for cold weather construction. Conc J 

2022;60(6):525-32. (in Japanese)  

[29] Japan Construction Anchor Assessment. https://www.anchor-jcaa.or.jp/certifica-

tion/system.html (2022.8.23 accessed) 

[30] Japanese Industrial Standards: JIS 1108, Method of test for compressive strength 

of concrete, 2018. 

[31] Japanese Industrial Standards: JIS Z 2241, Metallic materials – Tensile testing – 

https://doi.org/10.1016/j.conbuildmat.2020.121456
https://doi.org/10.3390/ma14010062
https://doi.org/10.1016/j.advengsoft.2020.102832
https://doi.org/10.1016/j.engstruct.2020.111470
https://doi.org/10.1016/j.engstruct.2019.05.086
https://doi.org/10.1016/j.engstruct.2021.112773
https://doi.org/10.3130/aijs.87.556
https://www.anchor-jcaa.or.jp/certification/system.html
https://www.anchor-jcaa.or.jp/certification/system.html


29 

 

Method of test at room temperature, 2011. 

[32] Japanese Industrial Standards: JIS G 3112, Steel bars for concrete reinforcement, 

2010. 

[33] Breiman L: Random Forests, Mach Learn 2001;45(1):5-32. 

(https://doi.org/10.1023/A:1010933404324) 

[34] Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proc of 22nd ACM 

SIGKDD Int Conf Know Disco Data Min 2016;785-94. 

[35] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. LightGBM: a highly 

efficient gradient boosting decision tree. 31st Conf Neu Info Proce Syst NIPS 

2017;3146-54. 

[36] Krishna BM, Reddy VGP, Shafee M, Tadepalli T. Condition assessment of RC 

beams using artificial neural networks. Struct 2020;23:1-12. 

(https://doi.org/10.1016/j.istruc.2019.09.014) 

[37] Ishida Y, Sakata H, Takase Y, Maida Y, Shirai Y, Sato T. FEM Analysis of Post-

installed anchors under combined stress. Comput Model Conc Struct 2018;963-72. 

(http://dx.doi.org/10.1201/9781315182964-111) 

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.istruc.2019.09.014
http://dx.doi.org/10.1201/9781315182964-111

