
多目的最適化のためのハイブリッド適応進化アルゴ
リズムに関する研究

言語: English

出版者: 

公開日: 2024-05-21

キーワード (Ja): 

キーワード (En): 

作成者: ハン ジャイ

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.15118/0002000219URL



 

Doctoral Dissertation 

 

A Study of Hybrid Adaptive Evolutionary 

Algorithm for Multi-objective Optimization 

 

 

 

Muroran Institute of Technology 

Division of Information and Electronic Engineering 

Han Jiayi 

 

February 2024 



 

2 

 

Contents 
 

 

 

 

 

Chapter 1 Introduction .................................................................................... 5 

1.1 Background of our study ................................................................................. 5 

1.2 Purpose of our study ........................................................................................ 8 

1.3 Structure of this doctor thesis ........................................................................ 10 

 

 

Chapter 2 Related works ............................................................. 11 

2.1 Introduction ................................................................................................... 11 

2.2 Multi-Objective Evolutionary Algorithm                                                 

Based on Decomposition (MOEA/D) ............................................ 12 

2.3 Crossover-based evolution operator ............................................................. 16 

2.4 Estimation of distribution-based evolution operator .................................... 19 

2.5 Inverted Generational Distance indicator ...................................................... 21 

2.6 Hypervolume indicator................................................................................... 22 

 

 

Chapter 3 Evolution operators in MOEA/D framework ........... 23 

3.1 Introduction ................................................................................................... 23 

3.2 Improved Differential Evolution (IDE) in MOEA/D ......................................... 24 



 

3 

 

3.3 Adaptive Differential Evolution with                                                   

Optional External Archive (JADE) in MOEA/D .......................... 28 

3.4 DE-IDEAL ........................................................................................................ 32 

3.4 Covariance matrix adaptation evolution strategy (CMA-ES) in MOEA/D ...... 37 

 

 

Chapter 4 Ensemble Framework based on MOEA/D ................ 41 

4.1 Introduction ................................................................................................... 41 

4.2 Algorithm ....................................................................................................... 43 

4.3 Numerical experiments .................................................................................. 47 

4.3.1 Experimental conditions....................................................................... 47 

4.3.2 Experimental results ............................................................................. 48 

4.4 Summary ........................................................................................................ 51 

 

 

Chapter 5 Hyper-Heuristic Multi-Objective Optimization 

Approach Based on MOEA/D Framework............... 52 

5.1 Introduction ................................................................................................... 52 

5.2 Algorithm ....................................................................................................... 56 

5.3 Numerical experiments .................................................................................. 62 

5.3.1 Experimental conditions....................................................................... 62 

5.3.2 Experimental results of wfg_2D problem ............................................. 64 



 

4 

 

5.3.3 Experimental results of wfg_3D problem ............................................. 69 

5.3.4 Experimental results of wfg_3D problem ............................................. 75 

5.4 Summary ........................................................................................................ 78 

 

 

Chapter 6 Conclusions ................................................................. 80 

6.1 Summary of this research............................................................................... 80 

6.2 Future issues of this research ......................................................................... 81 

 

 

Acknowledgment ......................................................................... 83 

 

References .................................................................................... 84 

 

 

 

 

 

 

 

 

 

 



 

5 

 

Chapter 1 Introduction 

1.1 Background of our study 

The mathematical definition of a multi-objective optimization problem (MOP) [1,2] 

can be expressed as follows: 

Assuming that there is a decision variable vector x = (𝑥1, 𝑥2,  𝑥3, … , 𝑥𝑛), where 𝑥𝑖 

represents the 𝑖th decision variable. The objective function vector is denoted as 

𝐹(x) = ((𝑓1(x),  𝑓2(x),  𝑓3(x), … , 𝑓𝑚(x)), where 𝑓𝑗(x) represents the 𝑗th objective 

function. 

The mathematical formulation of a multi-objective optimization problem is given 

by: 

Minimize (or Maximize) 𝐹(x) = ((𝑓1(x),  𝑓2(x),  𝑓3(x),… , 𝑓𝑚(x)) (1) 

Subject to: x ∈ 𝑋 

Here, 𝑋 is the feasible solution space of the decision variable vector x. 

Starting from the mathematical definition of a multi-objective optimization 

problem, solving such problems requires considering multiple objectives 

simultaneously rather than focusing on a single objective. These types of problems 

are prevalent in the real world, and the multiple objectives involved often exhibit 

inherent conflicts and contradictions.  

In the context of multi-objective optimization, Pareto dominance and Pareto 

optimal solutions are crucial concepts for assessing the relationships and qualities of 

solutions within a solution set. Pareto dominance [3,4] is a method of comparing 

different solutions in a solution set. Given two solutions, 𝐴 and 𝐵, solution 𝐴 Pareto 

dominates 𝐵 if 𝐴 is superior in at least one objective and is not inferior to 𝐵 in any 

other objective. Mathematically, the notation 𝐴 ⪯ 𝐵 is used to represent Pareto 

dominance. This implies that for all objective functions 𝑓𝑗(𝐴) ≤ 𝑓𝑗(𝐵), and there exists.  
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Figure 1: The basic concept of Pareto dominance 

 

at least one 𝑗 such that 𝑓𝑗(𝐴) < 𝑓𝑗(𝐵). The Pareto dominance diagram is illustrated in 

the following Figure 1. 

Pareto optimal solutions are solutions within the solution space that cannot be 

dominated by any other solution in the set. In other words, a Pareto optimal solution 

cannot be improved in one objective without degrading performance in another. In a 

two-dimensional space, for instance, Pareto optimal solutions might lie on the 

boundary of the non-dominated solution set. In general, the goal of a multi-objective 

optimization problem is to identify the Pareto optimal solution set, where no other 

solution in the set outperforms all objectives simultaneously. This reflects the trade-

offs and compromises that may exist among different objectives in a multi-objective 

context.  

The study of multi-objective optimization problems holds significant practical 

importance [3-6]: 

⚫ Engineering Design: In the field of engineering, multi-objective optimization is 

widely applied for design optimization, aiming to balance multiple objectives 

such as cost, performance, and reliability. 
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⚫ Financial Investment: Portfolio optimization represents a multi-objective 

problem, considering the balance between risk and return. Multi-objective 

optimization methods can identify the optimal investment portfolio.  

⚫ Supply Chain Management: In supply chain management, multi-objective 

optimization helps balance inventory costs, production efficiency, and 

customer service levels, enhancing the overall efficiency of the supply chain.  

⚫ Energy System Optimization: Multi-objective optimization in energy systems 

considers factors such as energy efficiency, environmental impact, and cost, 

providing effective solutions for sustainable development.  

⚫ Traffic Flow Optimization: In traffic management, multi-objective optimization 

is employed to minimize traffic congestion, reduce travel time, and mitigate 

environmental pollution, thereby improving the efficiency of the transportation 

system.  

With the rise of evolutionary algorithms, such as genetic algorithms and particle 

swarm optimization, there has been remarkable success in addressing multi-objective 

optimization problems, propelling the research in this field. 

The emergence of evolutionary algorithms has significantly advanced the field of 

multi-objective optimization. Algorithms like genetic algorithms [2,7,8] and particle 

swarm optimization have demonstrated exceptional performance in handling the 

complexities associated with optimizing multiple conflicting objectives 

simultaneously. This success has, in turn, stimulated and accelerated the research 

efforts dedicated to tackling multi-objective optimization problems. 

Evolutionary algorithms [9,10], inspired by natural selection and population 

dynamics, offer effective solutions for exploring and exploiting the solution space, 

particularly in scenarios where objectives may be interrelated or in conflict. The 

adaptability and robustness of these algorithms make them well-suited for navigating 

the challenges posed by real-world problems characterized by diverse and competing 

goals. 
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In essence, the ascendancy of evolutionary algorithms has played a pivotal role in 

driving advancements in the study of multi-objective optimization, providing 

powerful tools to find optimal solutions in complex decision-making environments. 

 

1.2 Purpose of our study 

Evolutionary algorithms draw inspiration from the natural evolution of living 

organisms, encompassing fundamental operations such as genetic encoding, 

population initialization, crossover and mutation operators, and selection 

mechanisms. Compared to traditional calculus-based methods and exhaustive 

approaches, evolutionary computation stands out as a mature, highly robust, and 

widely applicable global optimization technique. It exhibits self-organization, self-

adaptation, and self-learning characteristics, allowing it to effectively handle complex 

problems that traditional optimization algorithms struggle to address, irrespective of 

the nature of the problem. With the increasing participation of researchers, solving 

both single-objective and multi-objective optimization problems through 

evolutionary computation has become mainstream in recent years. Our research 

focus is on employing evolutionary computation methods to efficiently tackle multi-

objective optimization problems.  

Since evolutionary algorithms simulate the evolutionary process of organisms in 

nature, the evolution of individuals carrying information is crucial in evolutionary 

computation. The strategy for generating new individuals determines the algorithm's 

performance. In our research, we emphasize the study of individual generation 

operators based on CX (crossover-based) [11-14] and ED (Estimation of Distribution-

based) [15-17] strategies.  

On the other hand, as mentioned earlier, multi-objective optimization problems are 

more complex compared to single-objective optimization problems, requiring a 

systematic approach to addressing them. Currently, more advanced frameworks for 

solving multi-objective optimization problems include dominance-based (NSGA-II, 



 

9 

 

e.g.) [3], indicator-based (Inverted Generational Distance, e.g.) [18,19], and 

decomposition-based (MOEA/D, e.g.) [20] approaches. We specifically focus on the 

MOEA/D framework.  

However, in our attempts to enhance the overall efficiency of the algorithm by 

designing new operators or modifying classical operators, we have observed that a 

single individual operator cannot handle all search situations. The search capability of 

operators is often described in terms of exploration and exploitation [21]. Exploration 

is the process of visiting entirely new regions of a search space, while exploitation is 

visiting those regions within the neighborhood of previously visited points. according 

to the ‘‘No Free Lunch’’ theory [22,23], it is difficult for one operator to exhibit both 

exploitation and exploration capabilities. Therefore, to overcome the aforementioned 

issue and enhance the search efficiency of the algorithm, it is essential to combine 

multiple operators with distinct search characteristics into a hybrid algorithm. 

Through an adaptive operator-switching mechanism, operators are selected based on 

varying search conditions.  

Additionally, the adaptability of operators within the framework is also crucial. For 

most evolutionary computation operators, their design is originally intended to mimic 

the evolution of organisms in the natural world. In other words, many classical 

evolutionary operators did not initially consider addressing more complex multi-

objective optimization problems. We focus on the MOEA/D framework because one 

of its most significant features is the ability to transform a multi-objective 

optimization problem into multiple subproblems through scalar function 

decomposition, with each subproblem treated as a single-objective optimization 

problem. Based on this characteristic, with necessary modifications, most classical 

evolutionary operators can be introduced into the MOEA/D framework. Furthermore, 

the MOEA/D framework introduces the concept of subproblem neighborhoods, 

which is another important feature. Individuals within the neighborhood are closely 

connected, and during the evolution process, information among subproblems 

(individuals) within the neighborhood is shared. Therefore, considering the distinctive 
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features of the MOEA/D framework, our research goal is to extend classical 

evolutionary operators for addressing multi-objective optimization problems. 

 

1.3 Structure of this doctor thesis 

This doctoral thesis will comprise six main chapters, and the outline for each 

chapter is as follows:  

⚫ Chapter 1 describes the background and purpose of the study. 

⚫ Chapter 2 serves as an introduction and review of fundamental concepts 

relevant to this research, encompassing detailed insights into the MOEA/D 

framework and foundational concepts of classical evolutionary operators.  

⚫ Chapter 3 discusses the adaptation of evolutionary operators within the 

MOEA/D framework. It covers the details of necessary modifications to 

evolutionary operators to align them with the unique characteristics of the 

MOEA/D framework.  

⚫ Chapter 4 introduces a hybrid model named Ensemble Framework based on 

MOEA/D (MOEA/D-EF). Its primary feature involves dividing the iterative 

process into distinct phases and adaptively selecting suitable evolutionary 

operators through a priori means. 

⚫ Chapter 5 introduces a Hyper-Heuristic multi-objective optimization approach 

based on MOEA/D framework (MOEA/D-HH) [24]. Its main characteristic is the 

integration of different types of evolutionary operators into the MOEA/D 

framework, adaptively selecting evolutionary operators that align with the 

current search state through an efficiency-based operator selection 

mechanism. 

⚫ Chapter 6 presents the conclusions of this doctor thesis and discusses future 

issues.  
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Chapter 2 Related works 

2.1 Introduction 

To enhance the clarity and comprehensibility of our research, we can broadly 

divide the application of evolutionary algorithms to solve multi-objective 

optimization problems into two main components: the framework and the 

evolutionary operators.  

As mentioned in the first chapter, our research is centered around the MOEA/D 

framework. Therefore, in this chapter, we will delve into an in-depth review of 

MOEA/D [20]. This review aims to provide a comprehensive understanding of 

MOEA/D's structure, key components, and unique features that distinguish it as a 

powerful tool for addressing multi-objective optimization challenges.  

In our research, we employed two distinct types of evolutionary operators: 

crossover-based and distribution estimation-based operators. These two categories 

of operators are typical and exhibit markedly different search characteristics. 

Crossover operators are fundamental evolutionary components that mimic genetic 

recombination processes in nature. They involve the combination of genetic 

information from two or more parent solutions to generate new offspring solutions. 

Crossover-based operators promote exploration by blending genetic material and 

creating diverse solutions that inherit traits from multiple parents. These operators 

are known for their ability to explore the solution space broadly. 

Distribution estimation-based operators, on the other hand, focus on modeling the 

probability distribution of promising solutions in the population. These operators 

typically involve statistical techniques to estimate the underlying distribution of high-

quality solutions. By emphasizing exploitation, distribution estimation-based 

operators guide the search toward regions of the solution space where better 

solutions are likely to be found. They leverage probabilistic models to exploit 

promising areas efficiently.  

Additionally, incorporating specific performance metrics to quantify the disparity 
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and distribution of the solution set generated by an algorithm compared to the true 

Pareto front is a common practice in the study of multi-objective optimization 

problems. Performance metrics serve as valuable tools for not only explicitly 

assessing the algorithm's performance but also providing insights into the evolution 

direction of the population during the algorithm's iterative process. In this chapter, 

we will review two widely used performance metrics. 

 

2.2 Multi-Objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) 

Before the introduction of the MOEA/D algorithm, the majority of multi-objective 

genetic optimization methods did not rely on a decomposition strategy. They did not 

decompose Multi-Objective Optimization Problems (MOP) [1,2], meaning that each 

individual solution did not correspond to a single-objective optimization problem. In 

contrast, MOEA/D decomposes one MOP into 𝑁 subproblems using scalarization 

function [20,25-27], where each subproblem can be treated as a single-objective 

optimization problem. Through the evolution of the population, MOEA/D 

concurrently optimizes these subproblems. In each iteration, the algorithm retains the 

current optimal solution for each subproblem in the population. 
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Figure 2 Schematic of MOEA/D. Uniformly generated weight vectors w decompose one MOP into 

several subproblems. 

 

In the MOEA/D framework, there exists a neighborhood relationship among the 

subproblems, determined by their aggregation coefficients. The optimal solutions of 

two neighboring subproblems are guaranteed to be similar. Therefore, each 

subproblem only needs to optimize based on the information from its neighboring 

subproblems.  

Figure 2 is used to demonstrate the basic concepts of MOEA/D. It is built upon the 

following idea: in the objective space, a set of weight vectors originating from 

reference point will inevitably intersect with the true Pareto front. If this set of weight 

vectors is uniformly distributed in the objective space, the intersections between the 

weight vectors and the true Pareto front will also be uniform. Therefore, if the 

population explores new individuals around the directions given by these weight 

vectors, the final result will be a good approximation of the true Pareto front.  
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Figure 3 The Basic Flowchart of MOEA/D framework. 

 

The scalarization function transforms the approximate optimization of the true 

Pareto front into a series of single-objective optimization problems, essentially 

achieving the decomposition of one MOP. The scalarization function establishes a 

connection between individuals and weight vectors. More specifically, through the 

computation of the scalarization function, we can evaluate the quality of individuals 

in a particular weight vector subproblem. For each weight vector subproblem, the 

optimal solution is retained in each iteration and carried over to the next iteration. 

This process enables individuals to search new solutions along the directions 

provided by the weight vectors.  
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The Basic Flowchart of MOEA/D framework is shown as Figure 3. Currently, there 

are various scalarization functions, but in our research, we primarily employed the 

penalty boundary (PBI) [20, 28] method, mathematically defined as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔𝑏𝑖𝑝(𝑥|𝜆, 𝑧∗) = 𝑑1 + 𝜃𝑑2 (2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ Ω 

where 

𝑑1 =
||(𝑧∗ − 𝐹(𝑥))

𝑇
𝜆||

||𝜆||
(3) 

𝑑2 = ||𝐹(𝑥) − (𝑧
∗ − 𝑑1𝜆)|| (4) 

𝜆 is weight vector, 𝑧∗ = (𝑧1
∗, … , 𝑧𝑚

∗ )𝑇 is reference point. For 𝑖 = 1,… ,𝑚, usually 

definite 𝑧𝑖
∗ = max {𝑓𝑖(𝑥)|𝑥 ∈ Ω}. 𝜃 > 0 is a preset penalty parameter. 𝑑1 is the length 

of the projection of obtained solution 𝐹(𝑥) onto the current weight vector (current 

subproblem), 𝑑2 is the distance from 𝐹(𝑥) to the current weight vector. 

The flow of MOEA/D is in the following Algorithm1: 

 

Input:  

⚫ MOP. 

⚫ A stopping criterion. 

⚫ 𝑁: the number of the subproblems considered in MOEA/D. 

⚫ A uniform spread of 𝑁 weight vectors: 𝜆1, … , 𝜆𝑁 . 

⚫ 𝑇: the number of the weight vectors in the neighborhood of each weight 

vector. 

⚫ An external population (EP), which is used to store non-dominated solutions 

found during the search. 

Output: EP 
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Algorithm 1: Standard MOEA/D framework with PBI decomposition 

Step 1) Initialization: 

Step 1.1) Set EP=∅. 

Step 1.2) Compute the Euclidean distances between any two weight vectors and 

then work out the  𝑇 closest weight vectors to each weight vector. For each 𝑖 =

1,… ,𝑁, set 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇}, where 𝜆𝑖1 , … , 𝜆𝑖𝑇 are the 𝑇 closest weight vectors to 𝜆𝑖. 

Step 1.3) Generate an initial population 𝑥1, … , 𝑥𝑁 randomly or by a problem-

specific method.  

Step 1.4) Initialize reference point z = (𝑧1, … , 𝑧𝑚)
𝑇. 

Step 2) Update: 

For 𝑖 = 1,… ,𝑁, do 

Step 2.1) Reproduction: Randomly select two indexes 𝑘, 𝑙 form 𝐵(𝑖), and then 

generate a new solution 𝑦 from 𝑥𝑘 and 𝑥𝑙 by using genetic operators. 

Step 2.2) Improvement: Apply a problem-specific repair/improvement heuristic 

on 𝑦 to produce 𝑦′. 

Step 2.3) Update of reference point: For each 𝑗 = 1,… ,𝑚, if 𝑧𝑗 < 𝑓𝑗(𝑦′), then set 

𝑧𝑗 = 𝑓𝑗(𝑦`). 

Step 2.4 Update of Neighboring Solutions: For each index 𝑗 ∈ 𝐵(𝑖), if 

𝑔𝑏𝑖𝑝(𝑦′|𝜆𝑗, z) ≤ 𝑔𝑏𝑖𝑝(𝑥𝑗|𝜆𝑗, z), then set 𝑥𝑗 = 𝑦′.  

Step 2.5) Update of EP: Remove form EP all the vectors dominated by 𝐹(𝑦′). 

Add 𝐹(𝑦′) to EP if no vectors in EP dominate 𝐹(𝑦′). 

Step 3) Stopping Criteria: If stopping criteria is satisfied, then stop and output EP. 

Otherwise, go to Step 2. 

 

MOEA/D provides a simple yet efficient way of introducing decomposition 

approaches into multi-objective evolutionary computation. A decomposition 

approach, often developed in the community of mathematical programming, can be 

readily incorporated into evolutionary algorithms in the framework MOEA/D for 

solving MOPs. Another point worth noting is that, within the framework of MOEA/D, 

all evolution revolves around the concept of a neighborhood. This aspect is crucial for 

our subsequent research. 

 

2.3 Crossover-based evolution operator  

Crossover-based evolutionary operators refer to operators in evolutionary 

algorithms that primarily rely on the concept of crossover. Crossover is a genetic 

operator inspired by the natural process of genetic recombination. It involves 

combining genetic information from two or more parent solutions to generate new 

offspring solutions. 
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In the context of evolutionary algorithms, especially genetic algorithms, crossover 

is a fundamental mechanism for exploring the solution space by creating diverse 

solutions. The crossover-based evolutionary operators contribute to the exploration 

phase of the algorithm by blending genetic material and generating novel solutions 

that inherit traits from multiple parents. 

These operators are contrasted with other evolutionary operators, such as mutation 

or selection, which serve different purposes in guiding the evolution of the 

population. The combination of various evolutionary operators, including crossover-

based operators, aims to strike a balance between exploration and exploitation, 

enhancing the algorithm's ability to discover high-quality solutions in the search 

space.  

The Differential Evolution (DE) [11,29] algorithm is one of the most representative 

and widely used crossover-based evolutionary operators. It primarily consists of three 

main strategies: mutation, crossover, and selection. The pseudo code of basic DE 

algorithm is shown in Algorithm2. 

 

Algorithm2: Basic DE algorithm (with DE/rand/1/bin) 

Generate a uniformly distributed random initial population including 𝑁𝑃 solutions 

that contain 𝐷 variables according to X𝑖,𝑗
0 = X𝑗

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) ∙ (X𝑗
𝑚𝑎𝑥 − X𝑗

𝑚𝑖𝑛) (𝑖 ∈

[1, 𝑁𝑃], 𝑗 ∈ [1,𝐷]) 

while termination condition is not satisfied 

for 𝑖 = 1 to 𝑁𝑃 

Generate three random indexes 𝑟1, 𝑟2 and 𝑟3 with 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 //mutation 

V𝑖
𝐺 = X𝑟1

𝐺 + 𝐹 ∙ (X𝑟2
𝐺 − X𝑟3

𝐺 ) //end mutation 

𝑗𝑟𝑎𝑛𝑑 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑑(1, 𝐷) //crossover 

for 𝑗 = 1 to 𝐷 

if 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 or 𝑗 == 𝑗𝑟𝑎𝑛𝑑 

U𝑖,𝑗
𝐺 = V𝑖,𝑗

𝐺  

𝐞𝐥𝐬𝐞 

U𝑖,𝑗
𝐺 = X𝑖,𝑗

𝐺  

end if 

end for                      //end crossover 

if 𝑓(U𝑖
𝐺) ≤ 𝑓(X𝑖

𝐺)      //selection 

X𝑖
𝐺+1 = U𝑖

𝐺 

𝐞𝐥𝐬𝐞 

X𝑖
𝐺+1 = X𝑖

𝐺           //end selection 

end for 

end while 
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DE adopts the mutation operator to generate the mutant vector (also called donor 

vector) V𝑖
𝐺 = (𝑣𝑖,1

𝐺 , 𝑣𝑖,2
𝐺 , … , 𝑣𝑖,𝐷

𝐺 ) with respect to each individual X𝑖
𝐺 (called target vector), 

where 𝐷 is the number of decision variables, 𝐺 is the generation time. 

In order to distinguish among these schemes, the notation DE/𝑥/𝑦/𝑧 [30] is used, 

where 𝑥 represents the vector (also called basic vector) to be perturbed, 𝑦 denotes 

the number of difference vectors considered for perturbation and 𝑧 is the crossover 

scheme. Some well-known mutation strategies are listed as follows [31]: 

    

DE1 DE/rand/1:V𝑖
𝐺 = X𝑟1

𝐺 + 𝐹 ∙ (X𝑟2
𝐺 − X𝑟3

𝐺 ) (5) 

 DE2  DE/rand/2:V𝑖
𝐺 = X𝑟1

𝐺 + 𝐹 ∙ (X𝑟2
𝐺 − X𝑟3

𝐺 ) + 𝐹 ∙ (X𝑟4
𝐺 − X𝑟5

𝐺 ) (6) 

DE3  DE/best/1: V𝑖
𝐺 = X𝑏𝑒𝑠𝑡

𝐺 + 𝐹 ∙ (X𝑟1
𝐺 − X𝑟2

𝐺 ) (7) 

DE4  DE/rand − to − best/1: V𝑖
𝐺 = X𝑟1

𝐺 + 𝐹 ∙ (X𝑏𝑒𝑠𝑡
𝐺 − X𝑟2

𝐺 ) (8) 

DE5  DE/current − to − rand/1: V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑟1
𝐺 − X𝑖

𝐺) + 𝐹 ∙ (X𝑟2
𝐺 − X𝑟3

𝐺 ) (9) 

DE6  DE/current − to − best/1: V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑏𝑒𝑠𝑡
𝐺 − X𝑖

𝐺) + 𝐹 ∙ (X𝑟1
𝐺 − X𝑟2

𝐺 ) (10) 

where 𝐹 is the mutation scaling factor which is generally restricted in the range (0, 1], 

X𝑏𝑒𝑠𝑡
𝐺  is the best individual in current generation 𝐺, 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 are randomly 

selected from the current population, and 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑟5 ≠ 𝑖. Generally, 

different mutation strategies have distinct characteristics, which have the advantages 

for solving certain kinds of problems. 

After mutation, a trial vector U𝑖
𝐺 = (𝑢𝑖,1

𝐺 , 𝑢𝑖,2
𝐺 , … , 𝑢𝑖,𝐷

𝐺 ) is obtained according to a 

binomial crossover strategy on X𝑖
𝐺 and V𝑖

𝐺 as follow: 

U𝑖,𝑗
𝐺 = {

V𝑖,𝑗
𝐺    if (𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) ≤ 𝐶𝑅 or 𝑗 == 𝑗𝑟𝑎𝑛𝑑)

X𝑖,𝑗
𝐺                                                       otherwise

(11) 

where 𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) is a uniformly distributed random real number in [0,1] and 𝑗𝑟𝑎𝑛𝑑 is 

a uniformly distributed random integer in [1, 𝐷]. 𝐶𝑅 is the crossover rate. If the 𝑗th 

variable U𝑖,𝑗
𝐺  of the trial vector U𝑖

𝐺 violates the boundary constraints, it will be reset as 

follows: 

U𝑖,𝑗
𝐺 = {

min{X𝑗
max, 2X𝑗

min − U𝑖,𝑗
𝐺 }  if  U𝑖,𝑗

𝐺 < X𝑗
mix

max{X𝑗
min, 2X𝑗

max − U𝑖,𝑗
𝐺  }  if  U𝑖,𝑗

𝐺 > X𝑗
max

(12) 
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By simulating the rule of natural evolution, selection operator will keep the better 

one from the target vector X𝑖
𝐺 and the trial vector U𝑖

𝐺 . This chosen vector will survive 

and enter the next evolutionary generation. Without loss of generality, for a 

minimization problem, the vector with better fitness value is selected as follows: 

X𝑖
𝐺+1 = {

U𝑖
𝐺   if  𝑓(U𝑖

𝐺) ≤ 𝑓(X𝑖
𝐺)

X𝑖
𝐺         otherwise        

(13) 

It is noted that when the trial vector U𝑖
𝐺 is better than or equal to the parent X𝑖

𝐺, it 

is called a successful update (or successful replacement). Otherwise, it is marked as an 

unsuccessful update.  

 

2.4 Estimation of distribution-based evolution operator 

The concept of distribution estimation algorithms was initially proposed by 

Mühlenbein in 1996 [32]. The main idea is to integrate natural evolutionary algorithms 

with constructive mathematical analysis methods to guide an effective search in the 

problem space. 

Distribution estimation algorithms are fundamentally a novel type of evolutionary 

algorithm based on probability models, combining genetic algorithms with statistical 

learning. It represents another typical implementation pattern in natural computation. 

These algorithms guide the search space for the next step by establishing a 

probability model based on the current set of relatively optimal individuals. New 

individuals are then sampled from the probability distribution function obtained from 

the distribution of relatively optimal solutions. 

By describing the distribution of candidate solutions in the space through a 

probability model, distribution estimation algorithms use statistical learning methods 

to establish a probabilistic model describing the distribution of solutions from a 

macroscopic perspective. The algorithm then stochastically samples from this 

probability model to generate a new population. This process is repeated iteratively, 

facilitating the evolution of the population until termination conditions are met 

(Modeling-Sampling-Modeling-Sampling loop). The concept of comparison between 

genetic algorithm and distribution estimation algorithm is shown in Figure 4. 

 

 

 

 

 

 

 



 

20 

 

 

Figure 4 Comparison of flow between genetic algorithm and distribution estimation algorithm. 

 

The general process of distribution estimation algorithms is illustrated in 

Algorithm3 as follows: 

Input:  

⚫ population size 𝑁𝑃  

⚫ the number of selected individuals 𝑘 (top k individuals) 

Output: the best individual and its fitness 
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2.5 Inverted Generational Distance indicator 

IGD (Inverted Generational Distance) [18] is a metric used to evaluate the 

performance of multi-objective optimization algorithms, providing a simultaneous 

assessment of both convergence and diversity. IGD involves uniformly sampling 

points from the true Pareto front. For each point on the real front, the algorithm 

identifies the nearest point on the obtained Pareto set, computes the distances 

between these pairs, and calculates the average. The mathematical definition is as 

follows: 

𝐼𝐺𝐷 =
1

|𝑃|
∑ min𝑧∈𝑍𝑑(𝑝, 𝑧)

𝑝∈𝑃
(14) 

where |𝑃| is the cardinality of the true Pareto front, 𝑃 is the set of points on the true 

Pareto front, 𝑍 is the obtained Pareto set from the algorithm, 𝑑(𝑝, 𝑧) is the distance 

metric (e.g., Euclidean distance) between a point 𝑝 on the true Pareto front and its 

nearest neighbor 𝑧 on the obtained Pareto set.  

In the context of IGD (Inverted Generational Distance), a smaller value indicates 

better performance of the algorithm in multi-objective optimization. The IGD metric 

measures the average distance between the points on the true Pareto front and their 

nearest counterparts in the obtained Pareto set generated by the algorithm. 

Therefore, a lower IGD value implies that the algorithm's solutions are closer to the 

true Pareto front, indicating better convergence and accuracy in approximating the 

Pareto front for multi-objective optimization problems. 

 

 

Algorithm3: Basic estimation of distribution algorithms 

Step 1) Initialization: Randomly initialize the population. 

while the termination criteria are not satisfied  

Step 2) Ranking: Sort the population in descending order based on fitness and 

select the 𝑘 (𝑘 < 𝑁𝑃) best individuals as the optimal ones. 

Step 3) Modeling: Estimate the probability distribution of the population 

according to the selected individuals. 

Step 4) Sampling: Sample new individuals according to the estimated 

distribution. 

Step 5) Update: Combine the sampled individuals and the old population to 

create a new population with 𝑁𝑃 individuals. 

end while 
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2.6 Hypervolume indicator 

Hypervolume (HV) is one of the commonly used performance evaluation metrics in 

multi-objective optimization problems, initially proposed by Zitzler et al [33]. It 

represents the volume of the hypercube formed by the individuals in the solution set 

and a reference point in the objective space. Hypervolume is utilized to measure the 

coverage and distribution of the Pareto front. The evaluation method of the 

Hypervolume metric is Pareto-compliant, meaning that if one solution set 𝑆 is 

superior to another solution set 𝑆′, then the Hypervolume metric of S will be greater 

than that of 𝑆′. 

The accuracy of calculating the Hypervolume metric depends on the choice of the 

reference point. Different choices of reference points for evaluating the same solution 

set can lead to different computation results. The computation of Hypervolume is 

based on the points on the Pareto front, and these points should ideally have 

objective values that are as close to or better than a chosen reference point. 

Mathematically, the calculation of Hypervolume is expressed as: 

𝐻𝑉 = ∫ ∫ …∫ 𝑉(𝑧)𝑑𝑧
𝑓𝑚
∗

−∞

𝑓2
∗

−∞

𝑓1
∗

−∞

(15) 

where m is the number of objective functions, 𝑓𝑖
∗ is the reference point for the 𝑖th 

objective function, 𝑉(𝑧) represents the hypervolume of a point 𝑧 on the Pareto front. 
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Chapter 3 Evolution operators in MOEA/D framework 

3.1 Introduction 

As introduced in Chapter1, the purpose of our research is to develop efficient 

algorithms for solving multi-objective optimization problems by integrating various 

evolutionary operators with different characteristics into the MOEA/D framework. 

Therefore, in addition to the fundamental operators discussed in Chapter2, we 

explore several advanced operators. However, many evolutionary operators were 

initially designed for single-objective optimization problems. Some advanced 

operators cannot be directly applied to multi-objective optimization problems, and 

others, while applicable, may exhibit reduced efficiency compared to solving single-

objective optimization problems. Given these challenges, our research focuses 

extensively on the MOEA/D framework. 

As described in Chapter2, a significant characteristic of MOEA/D is its ability to 

decompose one MOP into multiple subproblems, each of which can be treated as a 

single-objective optimization problem. Therefore, introducing operators designed for 

single-objective optimization problems into the MOEA/D framework is both 

appropriate and natural. Another feature of the MOEA/D framework is that all 

evolution is conducted within the neighborhoods of subproblems. Hence, when 

incorporating operators into the MOEA/D framework, careful consideration must be 

given to this characteristic, necessary adaptive modifications to operators.  

In this chapter, we will discuss several evolutionary operators that are prominently 

utilized in our research: Improved Differential Evolution (IDE) [34], Adaptive 

Differential Evolution with Optional External Archive (JADE) [35], DE-IDEAL, and 

Covariance matrix adaptation evolution strategy (CMA-ES) [36-37]. Among them, IDE 

and JADE were originally designed for solving single-objective optimization problems. 

Through adaptive modifications, we have extended and introduced them into the 

MOEA/D framework for addressing multi-objective optimization problems. DE-IDEAL 

is an original operator developed in our research, characterized by the use of the 

"vector pool" concept, which retains, and leverages vectors generated during the 

evolution process, containing information relevant to the correct evolution direction 

to some extent. CMA-ES is a distribution estimation-based operator, and its logic for 

generating new individuals differs from the other three operators, resulting in distinct 

search characteristics. We will delve into the details of these operators in the 

following. 
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3.2 Improved Differential Evolution (IDE) in MOEA/D 

In the original DE, every individual generates new solutions in the same way by 

crossover and mutation. Since the way of generating a new solution is fixed and not-

flexible, individuals tend to be gathered and are difficult to promote their search in 

the stagnation situation. To overcome this problem, original IDE uses two different 

approaches for generating new solutions according to the quality of individuals. The 

cores of IDE's approach are individual-dependent parameter (IDP) setting and 

individual-dependent mutation (IDM) strategy. To balance the possibility of each 

individual in the current generation for generating new individual, the IDP setting 

firstly ranks individuals in ascending order according to their fitness values. 

For example, assuming that individual 𝑥𝑖 is the 𝑖th most superior one. The mutation 

factor (scale factor) 𝐹𝑖 and crossover probability (crossover rate) 𝐶𝑅𝑖 can be set as: 

𝐹𝑖 = 𝐶𝑅𝑖 =
𝑖

𝑁
(16) 

Obviously, individuals who rank poorly are given relatively large parameter values. 

More reasonable, a random algorithm based on normal distribution is used to 

improve IDP further. Denote a random number is created from a normal distribution 

by 𝑟𝑎𝑛𝑑𝑛(mean, std) [35], then the IDP setting can be modified as follows: 

𝐹𝑖
′ = 𝑟𝑎𝑛𝑑(𝐹𝑖 , 0.1) (17) 

𝐶𝑅𝑖
′ = 𝑟𝑎𝑛𝑑(𝐶𝑅𝑖 , 0.1) (18) 

It has been wildly known that different evolutionary operators have different 

characteristics. For example, mutation strategies with two difference vectors can 

increase the diversity in comparison with the case of using a single vector. Also, 

mutation strategies using the best individual as the base vector can strengthen 

exploitive search and achieve high-speed convergence. In IDM, all individuals are 

divided into two groups: Superior group (𝑆) and Inferior group (𝐼). These groups use 

different parameter values of the mutation and the methods of crossover operations 

for generating new individuals. Different group has different purpose: The superior 

group takes the role of exploiting their neighborhoods. The inferior group tries to 

explore the further area. Parameter 𝑝𝑠 is used as the size of ratio between superior 

and inferior groups. This parameter is calculated by the following equation: 

𝑝𝑠 = 0.1 + 0.9 × 105(𝑔/𝑔max−1) (19) 

where 𝑔 is the number of the current iteration and 𝑔max is the number of the terminal 

iteration. 

Further, Linxin Tang and etc. [38] also analyzed the Fitness Error, Diversity Indicator 

and Success Rate (SR) of the original DE algorithm. Generally, when iteration index 

reaches threshold 𝑔𝑡  , the SR decline toward to 0, and the diversity of 

individuals also decline dramatically. This means that the other mutation operator  
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Table 1 Mutation strategy in IDE 

Generation 

Index 

The group of  

target individual 

Mutation Operator 

𝑔 ≤ 𝑔𝑡 superior DE/current − to − rand/1(p) 

𝑔 > 𝑔𝑡 inferior DE/current − to − better/1(p) 

𝑔 ≤ 𝑔𝑡 superior DE/rand/2(p) 

𝑔 > 𝑔𝑡 inferior DE/rand − to − better/1(p) 

 

should be replaced by the current operation, because it is difficult to generate better 

solutions now. Based on the above idea, IDM divides the entire iterations into two 

stages: earlier stage and later stage. IDM assigns different mutation operators for 

individuals of two groups in different stages. As same as original DE algorithm, IDM 

strategy can be denoted by a four-parameter notation: DE/base/differ/cross. The 

following Table 1 shous detail settings of mutation operators in IDE 

After understanding the basic logic of IDE, we attempted to modify and introduce 

it into the MOEA/D framework. However, a challenge we needed to confront was the 

requirement for a sufficient number of individuals to participate in the IDE process. 

When IDE is used to solve single-objective optimization problems, all individuals in 

the population are divided into Superior group and Inferior group. However, in the 

MOEA/D framework, the individuals available for optimizing a subproblem are only 

those within the neighborhood 𝐵 of that current subproblem [31,44]. We typically 

consider the neighborhood size 𝑇 not to be too large (less than or equal to 10% of 

the number of subproblem 𝑁) because subproblems within the neighborhood should 

have sufficiently high correlation. It is evident that when dealing with a small 

population size for a multi-objective optimization problem, relying solely on the 

existing individuals within the neighborhood cannot guarantee that both the Superior 

group and Inferior group have a sufficient number of individuals. 

To address this issue, a straightforward and effective modification strategy is to 

increase the number of individuals in the population. In the original MOEA/D, the 

number of subproblems is usually equal to the population size. When introducing the 

IDE operator, we allocate more individuals for each subproblem. IDE operator in 

MOEA/D framework works as follows: 
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Input: 

⚫ A randomly generated population. 

⚫ Termination conditions. 

⚫ 𝑁: The number of subproblems. 

⚫ 𝑇: The size of neighborhood. 

⚫ 𝑀: The size of solution magnification. 

Output: EP 

Algorithm4: IDE operator in MOEA/D framework 

Step 1) Initialization: 

Step 1.1) Initialize solution: Generate 𝑀 ×𝑁 individuals randomly as initial 

solutions 𝐼𝑆 . 

Step 1.2) Initialize the reference point z = (𝑧1, … , 𝑧𝑚)
𝑇. 

Step 1.3) Distributing:  

set 𝑖 = 𝑁 

while 𝑖 > 0 do: 

Randomly select index 𝑘 ∈ 𝑖, calculate 𝑌 = 𝑔𝑏𝑖𝑝(𝑦|𝜆𝑘 , z) (𝑦 ∈ 𝐼𝑆), sort 𝑌 from 

largest to smallest, assign 𝑦1, … , 𝑦𝑀 to subproblem 𝑘; 

𝑖 − 1; 

Step 2) Update: 

Step 2.1) Parameter calculation: Calculate the value of 𝑝𝑠, determine the size 

of superior(S) group and inferior (I) group in current generation 𝑔. 

for 𝑖 = 1 to 𝑁: 

Step 2.2) Recombination: Extract 𝑇 ×𝑀 individuals in 𝐵(𝑖) as current sub-

solution 𝑇𝑀, calculate 𝑌′ = 𝑔𝑏𝑖𝑝(𝑦′|𝜆𝑖, z) (𝑦′ ∈ 𝑇𝑀), sort 𝑌′ from largest to 

smallest, divide 𝑌′ into 𝑆 and 𝐼 according to 𝑝𝑠 value, calculate parameter 𝐹𝑦′
′  

and 𝐶𝑅𝑦′
′ . 

for 𝑘 in 𝑇𝑀: 

Step 2.3) Mutation: 

V𝑘
𝑔
= X𝑘

𝑔
+ {
𝐹𝑘 ∙ (X𝑟1

𝑔
− X𝑘

𝑔
) + 𝐹𝑘 ∙ (X𝑟2

𝑔
− DI

𝑔
)     𝑘 ∈ 𝑆

𝐹𝑘 ∙ (X𝑆
𝑔
− X𝑘

𝑔
) + 𝐹𝑘 ∙ (X𝑟2

𝑔
−DI

𝑔
)     𝑘 ∈ 𝐼

                                  𝑔 ≤ 𝑔𝑡 

 

V𝑘
𝑔
= X𝑘

𝑔
+ {
𝐹𝑘 ∙ (X𝑟1

𝑔
− X𝑟2

𝑔
) + 𝐹𝑘 ∙ (X𝑟3

𝑔
− X𝑟4

𝑔
) + 𝐹𝑘 ∙ (X𝑟5

𝑔
− DI

𝑔
)   𝑘 ∈ 𝑆

𝐹𝑘 ∙ (X𝑆
𝑔
− X𝑟1

𝑔
) + 𝐹𝑘 ∙ (X𝑟2

𝑔
− DI

𝑔
)                                       𝑘 ∈ 𝐼

      𝑔 ≤ 𝑔𝑡 

𝑘 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑟5 ≠ 𝑆 

Step 2.4) Crossover: As same as original DE in Algorithm2. 

Step 2.5) Update of reference point: As same as Step 2.3 in Algorithm1. 

Step 2.6) Update of 𝑻𝑴: As same as Step 2.4 in Algorithm1. 

Step 2.7) Update of EP: As same as Step 2.5 in Algorithm1. 

Step 3) Stopping Criteria: As same as Step 3 in Algorithm1. 
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In Step 2.2, X𝑆
𝑔
 represents a randomly selected individual from group 𝑆. DI𝑔 is a 

disturbed individual derived from the current population with possible elements 

randomly taken from the entire solution space which determined in the following: 

DI𝑗 = {
L𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∙ (U𝑗 − L𝑗)            if (0,1) < 0.1 × 𝑝𝑠

X𝑟
𝑗
                              otherwise

(20) 

where 𝑗 ∈ (1,𝐷) represents decision variables, U𝑗 and L𝑗 are the lower and the upper 

bound values of the 𝑗th decision variables. X𝑟
𝑗
 is as same as X𝑟1

𝑔
 or X𝑟2

𝑔
, represents a 

randomly selected individual in 𝑇𝑀. 

The results of numerical experiments indicate that the aforementioned extension of 

IDE in the MOEA/D framework is effective, especially when the population size is 

small, and the neighborhood size is also small (𝑁 ≤  100, 𝑇 ≤  10). However, 

MOEA/D-IDE still exhibits noticeable limitations. It is evident that, compared to the 

original DE operator, to ensure the stable operation of IDE in the MOEA/D framework, 

𝑀 times more individuals need to be simultaneously maintained (updated). This 

directly results in IDE's evaluation cost being 𝑀 times higher than the original DE 

operator. When the population size is small enough, individuals assigned to the 

inferior group 𝐼 have a probability of generating new solutions that could be superior 

for other subproblems. Some losses in evaluation costs are acceptable. However, 

when the population size is large (e.g., 𝑁 >  300, 𝑇 >  20), the likelihood of this 

scenario occurring becomes negligible. In other words, a significant amount of 

evaluation cost is wasted on maintaining inferior individuals without hope. This 

significantly reduces the overall search efficiency of MOEA/D-IDE.  

To address the aforementioned issue, when incorporating the IDE operator in the 

hybrid algorithm, there is no longer a deliberate generation of 𝑀 times more 

individuals. Instead, additional populations generated by other operators in the 

hybrid algorithm (such as sampling points generated by the CMA-ES operator) are 

utilized to ensure a sufficient number of individuals for the IDE to function properly. 

Simultaneously, when using the IDE operator, not all individuals involved in IDE 

calculations are maintained. Only individuals with the best fitness for a specific vector 
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are retained. 

Another important insight brought by the IDE operator is the concept of grouping. 

In the original DE operator, X𝑟1
𝐺 , X𝑟2

𝐺  or X𝑟3
𝐺  are randomly selected. This means that the 

direction of the difference vector is also random, implying that the difference vector 

could represent either the correct evolutionary direction or its opposite. If we follow 

the IDE approach of sorting and grouping the populations involved in the calculation 

by fitness, then the X𝑆
𝐺 selected from the 𝑆 group and the X𝐼

𝐺 selected from the 𝐼 

group will definitely form a difference vector with information pointing towards the 

evolutionary direction, not its opposite. Therefore, in the hybrid algorithm, we 

retained the grouping aspect inspired by IDE. 

 

3.3 Adaptive Differential Evolution with Optional External Archive 

(JADE) in MOEA/D 

Adaptive Differential Evolution with Optional External Archive which named as 

JADE for short, initially developed by Zhang and Sanderson [35], is a simple yet 

efficient DE variants. DE/rand/1 is the first mutation strategy developed for DE and is 

said to be the most successful and widely used scheme in the literature [29, 39, 40]. 

However, [41] indicates that DE/best/2 may have some advantages over DE/rand/1, 

and [42] favors DE/rand/1 for most technical problems investigated. Also, the 

authors of [43] argue that the incorporation of best solution information is beneficial 

and use DE/current − to − best/1 in their algorithm. Compared to DE/rand/𝑘, greedy 

strategies such as DE/current − to − best/𝑘 and DE/best/𝑘 benefit from their fast 

convergence by incorporating best solution information in the evolutionary search. 

However, the best solution information may also cause problems such as premature 

convergence due to the resultant reduced population diversity. In view of the fast but 

less reliable convergence performance of existing greedy strategies DE/current −

to − best/1 and DE/best/1, a new mutation strategy, named DE/current − to −

𝑝best/1 (without archive) with optional archive, is proposed to serve as the basis 



 

29 

 

mutation strategy in of the adaptive JADE shown as follows: 

V𝑖,𝑔 = X𝑖,𝑔 + 𝐹𝑖 ∙ (Xbest,𝑔
𝑝

− X𝑖,𝑔) + 𝐹𝑖 ∙ (X𝑟1,𝑔 − X𝑟2,𝑔) (21) 

where Xbest,𝑔
𝑝

 is randomly chosen as one of the top 100𝑝% individuals in the current 

population with 𝑝 ∈ (0,1], and 𝐹𝑖 is the mutation factor that is associated with X𝑖 and 

is re-generated at each generation by the adaptation process (details of 𝐹𝑖 will be 

introduced later). DE/current − to − 𝑝best/1 is indeed a generalization of DE/

current − to − best/1. Any of the top 100𝑝% solutions can be randomly chosen to 

play the role of the single best solution in DE/current − to − best/1. 

Recently explored inferior solutions, when compared to the current population, 

provide additional information about the promising progress direction. Denote 𝑨 as 

the set of archived inferior solutions and 𝑷 as the current population. In DE/current −

to − 𝑝best/1 with archive, a mutation vector is generated as follows: 

V𝑖,𝑔 = X𝑖,𝑔 + 𝐹𝑖 ∙ (Xbest,𝑔
𝑝

− X𝑖,𝑔) + 𝐹𝑖 ∙ (X𝑟1,𝑔 − X̃𝑟2,𝑔) (22) 

where X𝑖,𝑔, X𝑟1,𝑔 and Xbest,𝑔
𝑝

 are selected from 𝑷 in the same way as in DE/current −

to − 𝑝best/1 (without archive), while X̃𝑟2,𝑔 is randomly chosen from the union, 𝑷 ∪ 𝑨, 

of the  current population and the archive.  

The archive operation is made very simple to avoid significant computation 

overhead. The archive is initiated to be empty. Then, after each generation, the parent 

solutions that fail in the selection process are added to the archive. If the archive size 

exceeds a certain threshold (|𝑨| ≤ 𝑁𝑃, 𝑒. 𝑔.), then some solutions are randomly 

removed from the archive to keep the archive size. 

At each generation 𝑔, the crossover probability 𝐶𝑅𝑖 of each individual X𝑖 is 

independently generated according to a normal distribution of mean 𝜇𝐶𝑅 and 

standard deviation 0.1 and then truncated to [0, 1], as shown as follows: 

𝐶𝑅𝑖 = randn𝑖(𝜇𝐶𝑅 , 0.1) (23) 

 

 

 



 

30 

 

Denote 𝑆𝐶𝑅 as the set of all successful crossover probabilities 𝐶𝑅𝑖’s at generation 𝑔. 

The mean 𝜇𝐶𝑅 is initialized to be 0.5 and then updated at the end of each generation 

as: 

𝜇𝐶𝑅 = (1 − 𝑐) ∙ 𝜇𝐶𝑅 + 𝑐 ∙ mean𝐴(𝑆𝐶𝑅) (24) 

where 𝑐 is a positive constant between 0 and 1 and mean𝐴(∗) is the usual arithmetic 

mean.  

Similarly, at each generation 𝑔, the mutation factor 𝐹𝑖 of each individual X𝑖 is 

independently generated according to a Cauchy distribution with location parameter 

𝜇𝐹 and scale parameter 0.1 and then truncated to be 1 if 𝐹𝑖 ≥ 1 or regenerated if 𝐹𝑖 ≤

0, as shown as follows: 

𝐹𝑖 =  randc𝑖(𝜇𝐹 , 0.1) (25) 

Denote 𝑆𝐹 as the set of all successful mutation factors in generation 𝑔. The location 

parameter 𝜇𝐹 of the Cauchy distribution is initialized to be 0.5 and then updated at 

the end of each generation as: 

𝜇𝐹 = (1 − 𝑐) ∙ 𝜇𝐹 + 𝑐 ∙ mean𝐿(𝑆𝐹) (26) 

where mean𝐿(∗) is Lehmer mean: 

mean𝐿(𝑆𝐹) =
∑ 𝐹2𝐹∈𝑆𝐹

∑ 𝐹𝐹∈𝑆𝐹

(27) 
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The pseudo code of JADE is presented as follows: 

Algorithm5: Procedure of JADE with Archive 

Begin 

Set 𝜇𝐶𝑅 = 0.5; 𝜇𝐹 = 0.5; 𝑨 = ∅. 

Create a random initial population {X𝑖,0|𝑖 = 1, 2, . . . , 𝑁𝑃}. 

for 𝑔 = 1 to 𝐺: 

𝑆𝐹 = ∅; 𝑆𝐶𝑅 = ∅. 

for 𝑖 = 1 to 𝑁𝑃: 

Generate 𝐶𝑅𝑖 = randn𝑖(𝜇𝐶𝑅 , 0.1); 𝐹𝑖 =  randc𝑖(𝜇𝐹 , 0.1). 

Randomly choose Xbest,𝑔
𝑝

 as one of the 100𝑝% best vectors. 

Randomly choose X𝑟1,𝑔 ≠ X𝑖,𝑔 from current population 𝑷. 

Randomly choose X̃𝑟2,𝑔 ≠ X𝑟1,𝑔 ≠ X𝑖,𝑔 from 𝑷 ∪ 𝑨. 

V𝑖,𝑔 = X𝑖,𝑔 + 𝐹𝑖 ∙ (Xbest,𝑔
𝑝

− X𝑖,𝑔) + 𝐹𝑖 ∙ (X𝑟1,𝑔 − X̃𝑟2,𝑔). 

Generate 𝑗rand = randint(1,𝐷) 

for  𝑗 = 1 to 𝐷: 

if 𝑗 = 𝑗rand or rand(0,1) < 𝐶𝑅𝑖: 

U𝑖,𝑔
𝑗
= V𝑖,𝑔

𝑗
. 

𝐞𝐥𝐬𝐞: 

U𝑖,𝑔
𝑗
= X𝑖,𝑔

𝑗
. 

end if 

end for 

if 𝑓(X𝑖,𝑔) ≤ 𝑓(U𝑖,𝑔): X𝑖,𝑔+1 = X𝑖,𝑔. 

𝐞𝐥𝐬𝐞: X𝑖,𝑔+1 = U𝑖,𝑔; X𝑖,𝑔 → 𝑨; 𝐶𝑅𝑖 → 𝑆𝐶𝑅; 𝐹𝑖 → 𝑆𝐹. 

end if 

Randomly remove solutions from 𝑨 so that |𝑨| ≤ 𝑁𝑃. 

𝜇𝐶𝑅 = (1 − 𝑐) ∙ 𝜇𝐶𝑅 + 𝑐 ∙ mean𝐴(𝑆𝐶𝑅) 

𝜇𝐹 = (1 − 𝑐) ∙ 𝜇𝐹 + 𝑐 ∙ mean𝐿(𝑆𝐹) 

end for 

end for 

End 
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The original JADE is a parameter-adaptive algorithm designed for single-objective 

optimization problems. However, when we incorporate JADE into the MOEA/D 

framework, a fatal issue arises with the original JADE. As mentioned earlier, in the 

MOEA/D framework, all evolution is conducted around the concept of 

neighborhoods. individuals involved in the calculation should be selected from within 

the neighborhood, that means X𝑖,𝑔, Xbest,𝑔
𝑝

 and X𝑟1,𝑔 should be picked out from the 

neighborhood 𝐵(𝑖). Based on the logic of subproblem updating in MOEA/D, in the 

vast majority of cases, the fitness of X𝑖,𝑔 is optimal for the current subproblem 𝜆𝑖, that 

is, vector (Xbest,𝑔
𝑝

− X𝑖,𝑔) almost always do negative work on the evolution of V𝑖,𝑔. 

To retain the advantages of JADE as much as possible and make it applicable to  

MOEA/D, some necessary modifications of DE/current − to − 𝑝best/1 are as follows: 

V𝑖,𝑔 = X𝑖,𝑔 + 𝐹𝑖 ∙ (X𝑖,𝑔 − X̃𝑖,𝑔) + 𝐹𝑖 ∙ (X𝑟1,𝑔 − X̃𝑟2,𝑔) (28) 

where X̃𝑖,𝑔 is randomly selected from set 𝑬𝑖 , which is an external archive store those  

individuals belonging to the 𝑖th subproblem that have survived in one of the previous 

generations but have been replaced until the current generation.  

 

3.4 DE-IDEAL 

From DE1-6 [29,30] and the mutation strategy of the IDE operator, it is evident that 

most operators focus on individuals from the current generation. JADE's mutation 

strategy involves recently explored inferior solutions, but a significant feature of JADE 

is the adaptive adjustment of parameters using 𝑆𝐶𝑅 and 𝑆𝐹. A simple archive is used 

to store no more than 𝑁𝑃 replaced individuals, and the methods for using and 

removing these replaced individuals are randomly selected. It is reasonable to believe 

that the utilization of these replaced individuals is limited. 

After analyzing and studying several variants of the DE operator, we realize that 

from the object space perspective, individual evolution can be abstracted as step size 

and direction. Differential vectors and 𝐹 influence the evolution step size, while 
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differential vectors and 𝐶𝑅 influence the evolution direction. When 𝐶𝑅 is large 

enough (e.g., CR=0.9 in DE1), the key factor determining the evolution direction is 

only the differential vector itself. Compared to step size, a correct evolution direction 

is more important. However, a differential vector that can provide a suitable evolution 

direction may not necessarily appear in the current population. In other words, 

differential vectors that have appeared in the evolutionary history have an equally 

high probability of generating differential vectors suitable for the current search 

situation.  

Therefore, based on the above logic, we propose a DE variant operator designed 

specifically for the MOEA/D framework called DE-IDEAL. In DE-IDEAL, we introduce 

the concept of the Historical Information Pool (𝑯𝑰𝑷) to store differential vectors that 

have appeared in the evolutionary process. The name DE-IDEAL is chosen because, 

when using vectors from 𝑯𝑰𝑷, we rely on basic Euclidean geometry, aiming to refine 

the current evolutionary direction towards an ideal state.  

Additionally, we aspire for DE-IDEAL to exhibit search characteristics that are 

entirely different from IDE and JADE. Consequently, we base the design of the DE-

IDEAL operator on the mutation strategy of DE6. The mutation strategy of DE6 is 

defined as: 

DE6  DE/current − to − best/1: V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑏𝑒𝑠𝑡
𝐺 − X𝑖

𝐺) + 𝐹 ∙ (X𝑟1
𝐺 − X𝑟2

𝐺 ) 

where X𝑏𝑒𝑠𝑡
𝐺  is the best solution in 𝐺 generation, and X𝑟1

𝐺 ,  X𝑟2
𝐺  are randomly selected 

from the current population 𝑷. As same as mentioned in Chapter 3.2, in MOEA/D 

framework, X𝑖
𝐺 always has a minimum fitness-value to 𝜆𝑖 in neighborhood 𝐵(𝑖), and 

X𝑟1
𝐺 ,  X𝑟2

𝐺  should be randomly selected from 𝐵(𝑖), the mutation strategy of DE-IDEAL 

should be modified as: 

V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑖
𝐺 − X𝑟1

𝐺 ) + 𝐹′ ∙ 𝐻𝑖 (29) 

where 𝐻𝑖 is a historical vector with the form as same as X𝑖
𝐺 or X𝑟1

𝐺  in design space, and 

randomly selected from set �̃�𝑖 (�̃�𝑖 ∈ 𝑯𝑰𝑷).  
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Figure 5: X𝑖
𝐺  and X′𝑖

𝐺represent a positional relationship in the objective space, and the red dotted 

arrow represents the vector Ṽ′. It is important to note that vector X𝑖
𝐺 , X′𝑖

𝐺  and 𝜆𝑖 here all start from 

ideal point. 

 

Historical information pool (𝑯𝑰𝑷) is used to store historical details. Specifically, 

when the parent individual X𝑖
𝐺, is successfully replaced by its child X𝑖

𝐺+1, Ṽ = X𝑖
𝐺+1 −

X𝑖
𝐺 will be append to 𝑯𝑰𝑷. To be clear, Ṽ is a vector with the same form as X𝑟1

𝐺  and 

X𝑟2
𝐺  in the design space, but it is also related to another vector Ṽ′ = 𝐹(X𝑖

𝐺+1) − 𝐹(X𝑖
𝐺) 

in the objective space. 𝑯𝑰𝑷 can hold as many items as the population size 𝑁𝑃. If the 

number of items in 𝑯𝑰𝑷 reaches 𝑁𝑃, the items that were first added to 𝑯𝑰𝑷 will be 

removed, and the new Ṽ will be added in. �̃�𝑖 is a subset of 𝑯𝑰𝑷, and the 

corresponding Ṽ′ of Ṽ in �̃�𝑖 should satisfy certain Euclidean geometric relations in the 

objective space. 

Assume we generate an individual X𝑖
𝐺, and its position in the objective space is 

shown in Fig. Ideally, it would be alluring for individual X𝑖
𝐺 to approach the ideal point 

strictly in the opposite direction of the weight vector 𝜆𝑖. Still, the reality is that there is 

usually some distance between individual X𝑖
𝐺 and he weight vector 𝜆𝑖. We expect that 

the individual X𝑖
𝐺 to be in the position of X′𝑖

𝐺, because X′𝑖
𝐺 is closer to the weight 
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vector 𝜆𝑖 and closer to the ideal point than X𝑖
𝐺, simultaneously. The key to getting 

from X𝑖
𝐺 to X′𝑖

𝐺 is to find a vector represents X′𝑖
𝐺 − X𝑖

𝐺. Let Ṽ′ = X′𝑖
𝐺 − X𝑖

𝐺, Ṽ′ must 

satisfy two conditions: 

⚫ Based on Euclidean geometry, ∠𝑉𝐼𝑊 (the angle from −Ṽ′ to 𝜆𝑖) must bigger 

than ∠𝑋𝐼𝑊 (the angle from X𝑖
𝐺 to  𝜆𝑖). 

⚫ ∠𝑉𝐼𝑋 (the angle from −Ṽ′ to X𝑖
𝐺) must be less than a threshold 𝜃′. Because an 

oversize ∠𝑉𝐼𝑋 may still lead X′𝑖
𝐺 closer to the weight vector 𝜆𝑖 but take X′𝑖

𝐺 

further away from the ideal point. 

We subjectively relate 𝜃′ to 𝜃 as 𝜃′ = arctan
1

𝜃
 . In addition, according to the 

geometric relationship shown in Figure 5, the scaling factor 𝐹′ should not be too big. 

Because an oversize 𝐹′ also lead X′𝑖
𝐺 further away from both weight vector 𝜆𝑖 and the 

ideal point. In general, 𝐹′ should be smaller then 𝐹 (𝐹′ = 0.2𝐹, e.g.).  

The pseudo code of DE-IDEAL is presented as follows: 

 

Algorithm6: Procedure of DE-IDEAL  

Begin 

set 𝑯𝑰𝑷 = ∅; Calculate 𝜃′ = arctan
1

𝜃
. 

Create a random initial population {X𝑖,0|𝑖 = 1, 2, . . . , 𝑁𝑃}. 

for 𝑔 = 1 to 𝐺: 

for 𝑖 = 1 to 𝑁𝑃: 

Randomly choose X𝑟1
𝐺 ≠ X𝑖

𝐺 from 𝐵(𝑖). 

if 𝑯𝑰𝑷 = ∅: 

V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑖
𝐺 − X𝑟1

𝐺 ). 

else: 

set �̃�𝑖 = ∅; get current weight vector 𝜆𝑖. 

Calculate ∠𝑋𝐼𝑊. 

for 𝑘 in 𝑯𝑰𝑷: 

Calculate ∠𝑉𝐼𝑋; Calculate ∠𝑉𝐼𝑊. 
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If ∠𝑉𝐼𝑋 < 𝜃′ && ∠𝑉𝐼𝑊 ≥∠𝑋𝐼𝑊: 

𝑘 → �̃�𝑖. 

end if 

end for 

if �̃�𝑖 == ∅: 

V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑖
𝐺 − X𝑟1

𝐺 ). 

else: 

Randomly choose 𝐻𝑖 from �̃�𝑖. 

V𝑖
𝐺 = X𝑖

𝐺 + 𝐹 ∙ (X𝑖
𝐺 − X𝑟1

𝐺 ) + 𝐹′ ∙ 𝐻𝑖 

end if 

end if 

Generate 𝑗rand = randint(1,𝐷) 

for  𝑗 = 1 to 𝐷: 

if 𝑗 = 𝑗rand or rand(0,1) < 𝐶𝑅𝑖: 

U𝑖,𝑔
𝑗
= V𝑖,𝑔

𝑗
. 

𝐞𝐥𝐬𝐞: 

U𝑖,𝑔
𝑗
= X𝑖,𝑔

𝑗
. 

end if 

end for 

if 𝑓(X𝑖,𝑔) ≤ 𝑓(U𝑖,𝑔): 

X𝑖,𝑔+1 = X𝑖,𝑔. 

𝐞𝐥𝐬𝐞: 

X𝑖,𝑔+1 = U𝑖,𝑔; (X𝑖,𝑔+1 − X𝑖,𝑔) → 𝑯𝑰𝑷. 

end if 

remove earliest item appended into 𝑯𝑰𝑷 so that |𝑯𝑰𝑷| ≤ 𝑁𝑃. 

end for 

end for 

End 
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3.4 Covariance matrix adaptation evolution strategy (CMA-ES) in 

MOEA/D 

Differing from IDE, JADE, and DE-IDEAL, CMA-ES is an operator based on 

estimation of distribution and has a process similar to Algorithm3. CMA-ES 

incorporates several key innovations: It utilizes a covariance matrix C to track 

dependencies between two samples. This covariance matrix is a diagonal matrix and 

can be entirely defined by a set of standard orthogonal bases and a set of 

eigenvalues 𝜆. The update step is controlled by 𝜎. The direction of mean update aims 

to maximize the probability values of the last successful candidates, resembling a 

natural gradient descent. Two paths are recorded: evolution path 𝑝𝑐 primarily stores 

the correlation between consecutive step size for computing a well-defined 

correlation matrix, while conjugate evolution path 𝑝𝜎 is used to control the step size. 

CMA-ES addresses the dependencies and scaling between variables in the normal 

distribution 𝒩(𝑚(𝑔), (𝜎(𝑔))
2
C(𝑔))  by adjusting the covariance matrix C. Its core lies 

in how to fine-tune these parameters, especially the step size parameter and 

covariance matrix, to achieve the best possible search performance. The fundamental 

approach of parameter adjustment in CMA-ES is to gradually increase the probability 

of generating good solutions (increasing the probability of searching along favorable 

directions). 

In CMA-ES, a population of new search points is generated by sampling a 

multivariate normal distribution. The basic equation for sampling the search points in 

generation g+1 is expressed as (Hansen, 2006) [37]: 

x𝑘
(𝑔+1)

~𝒩 (𝑚(𝑔), (𝜎(𝑔))
2
C(𝑔)) (30)  

for 𝑘 = 1,… , 𝜆 

where ~ denotes the same distribution on the left and right side, x𝑘
(𝑔+1)

∈ ℝ𝑛 denotes 

the 𝑘th offspring (search point) in generation 𝑔 + 1, 𝑚(𝑔) ∈ ℝ𝑛 denotes the mean 

value of the search distribution at generation 𝑔, C(𝑔) ∈ ℝ𝑛×𝑛 denotes the covariance 
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matrix at generation 𝑔. 𝜆 = 4 + 3⌊ln𝐷⌋ for the population size, sample size, and 

number of offspring.  

𝑁 (𝑚(𝑔), (𝜎(𝑔))
2
C(𝑔))~𝑚(𝑔) + 𝜎(𝑔)𝑁(0, 𝐶(𝑔))~𝑚(𝑔) + 𝜎(𝑔)𝐵(𝑔)𝐷(𝑔)𝑁(0, 𝐼) is the multi-

variate normal search distribution. 

In the MOEA/D framework, all evolution centers around the neighborhood 𝐵(𝑖). 

Therefore, when employing the CMA-ES algorithm to generate new individuals in 

MOEA/D, the initial step involves sorting the individuals within 𝐵(𝑖) based on their 

fitness-value to the current subproblem as: 

𝑔𝑏𝑖𝑝(𝑥′1|𝜆
𝑖, z) ≤ 𝑔𝑏𝑖𝑝(𝑥′2|𝜆

𝑖, z), … , 𝑔𝑏𝑖𝑝(𝑥′𝑇|𝜆
𝑖, z) (31) 

It is essential to emphasize that in this context, the 𝜆𝑖 represents the current 

subproblem in MOEA/D, and it differs from the 𝜆 in CMA-ES, which represents the 

number of sampling solutions. 𝐗 = (𝑥′1, 𝑥
′
2, … , 𝑥′𝑇) represents the new set formed by 

sorting individuals in 𝐵(𝑖), from which the top 𝜇 = ⌊
𝜆

2
⌋ solutions are selected to 

update the distribution parameters of CMA-ES.  

The mean value of the distribution is the weighted maximum likelihood estimate of 

the selected 𝜇 solutions. Its update formula is as follows: 

𝑚(𝑔+1) =∑𝜔𝑖

𝑢

𝑖=1

𝑥𝑖:|𝐗|
𝑔

= 𝑚(𝑔) +∑𝜔𝑖

𝑢

𝑖=1

(𝑥𝑖:|𝐗|
𝑔

−𝑚(𝑔)) (32) 

The practice of obtaining the next generation's mean by combining the selected 

partial solutions here is referred to as multi-recombination, analogous to the 

crossover strategy DE operator, which involves exchanging information between 

different solutions. If the weight coefficients (𝜔1, 𝜔2,…, 𝜔𝜇) are all set to the same 

value 
1

𝜇
, then this formula represents the maximum likelihood estimate using the 

selected solutions. Alternatively, choosing 𝜔1 ≥ 𝜔2 ≥,… ,𝜔𝜇 > 0 emphasize the 

solutions ranked at the front [45]. 
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In CMA-ES, the evolution path 𝑝𝑐 constructed using historical search information is 

crucial for the update of the covariance matrix 𝐶. The method for constructing 𝑝𝑐 is as 

follows: 

𝑝𝑐
(𝑔+1)

= (1 − 𝑐𝑐)𝑝𝑐
(𝑔)
+√𝑐𝑐(2 − 𝑐𝑐)√𝜇𝜔

𝑚(𝑔+1) −𝑚(𝑔)

𝜎(𝑔)
(33) 

The above formula describes the movement of the distribution mean value, and it 

takes a weighted average of the movement direction 
𝑚(𝑔+1)−𝑚(𝑔)

𝜎(𝑔)
 in each iteration. This 

weighting ensures the cancellation of opposing directional components and the 

accumulation of similar components. This process is akin to the commonly used 

Momentum in neural network optimization. Therefore, the evolution path represents 

one of the best search directions. The design of term 𝜇𝜔 = (∑ (𝜔𝑖
2)

𝜇
𝑖=0 )−1 is based on 

√𝜇𝜔
𝑚(𝑔+1)−𝑚(𝑔)

𝜎(𝑔)
~𝑁(0, C(𝑔)) [45], which can be considered as a random vector 

sampled from the distribution described above. The design of term √𝑐𝑐(2 − 𝑐𝑐) is 

based on (1 − 𝑐𝑐)
2 + (√𝑐𝑐(2 − 𝑐𝑐))

2 = 1 [45], where learning rate 𝑐𝑐 =
4

𝑛+4
 is inversely 

proportional to the adjusted degrees of freedom (number of parameters). 𝜇𝜔 and 

√𝑐𝑐(2 − 𝑐𝑐) are referred to as the stationarity condition. 

The principle of updating the covariance matrix C is as follows: 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑐
(𝑔)
(𝑝𝑐
(𝑔+1)

|𝑚, C) (34) 

𝑎𝑟𝑔𝑚𝑎𝑥 ∏𝑝𝑐
(𝑔)
(
𝑥𝑖:|𝐗|
𝑔

−𝑚(𝑔)

𝜎(𝑔)
|𝑚, C)

𝜇

𝑖=1

(35) 

Based on this, the updating method for the covariance is as follows: 

C(𝑔+1) = (1 − 𝑐1 − 𝑐𝜇 + 𝑐𝑐)C
(𝑔) + 𝑐1𝑝𝑐

(𝑔)
(𝑝𝑐
(𝑔)
)
𝑇
+ 𝑐𝜇∑𝜔𝑖

𝑥𝑖:|𝐗|
𝑔

−𝑚(𝑔)

𝜎(𝑔)

𝜇

𝑖=1

(
𝑥𝑖:|𝐗|
𝑔

−𝑚(𝑔)

𝜎(𝑔)
)

𝑇

(36) 

where learning rate 𝑐1 =
2+min (1,𝜆/6)

(𝐷+1.3)2𝜇𝜔
, 𝑐𝜇 = min (1 − 𝑐1, √

2(𝜇𝜔−2+𝜇𝜔
−1)

(𝐷+2)2+𝜇𝜔
). 

CMA-ES defaults to using Cumulative Step Size Adaptation (CSA), which is currently 

the most successful and widely used step size adjustment method. The core principle 

of CSA can be understood as the successive search directions should be conjugate. 

That is, if the successive search directions are positively correlated (angle less than 
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𝜋/2), it indicates that the step size is too small and should be increased. If the 

successive search directions are negatively correlated, it indicates that the step size is 

too large and should be decreased. Similar to the previous evolution path 𝑝𝑐 , the 

method for constructing the conjugate evolution path is as follows: 

𝑝𝜎
(𝑔+1)

= (1 − 𝑐𝜎)𝑝𝜎
(𝑔)
+√𝑐𝜎(2 − 𝑐𝜎)𝜇𝜔C

(𝑔)−
1
2∑𝜔𝑖

𝑢

𝑖=1

𝑥𝑖:|𝐗|
𝑔

−𝑚(𝑔)

𝜎(𝑔)
(37) 

The update formula based on 𝑝𝜎 and step size 𝜎 should be: 

𝜎(𝑔+1) = 𝜎(𝑔) × exp

(

 
 
min

(

 
 
1,
𝑐𝜎
𝑑𝜎
(
||𝑝𝜎

(𝑔+1)
||

𝐸||𝒩(0, I)||
− 1)

)

 
 

)

 
 

(38) 

where 𝑐𝜎 =
𝜇𝜔+2

𝐷+𝜇𝜔+3
 and 𝑑𝜎 = 1 + 𝑐𝜎 + 2max (0,√

𝜇𝜔−1

𝐷+1
− 1)are control parameters that 

adjust the magnitude of step size variations. 
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Chapter 4 Ensemble Framework based on MOEA/D  

4.1 Introduction 

As one of the current state-of-the-art multi-objective evolutionary algorithms, 

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) [20] 

provides a framework for solving MOPs. In MOEA/D, a set of evenly weight vectors 

𝜆1, 𝜆2, . . . , 𝜆𝑁𝑃 in the objective space is used to decompose one MOP into multiple 

subproblems. For each of the subproblems, scalarization function (such as Weighted 

Sum Approach, Tchebycheff Approach [46] or PBI [20,28]) and weight vectors are 

used to coordinate each objective function's relationship, and each subproblem can 

be considered as a scalar optimization problem. Since that, it is natural to use genetic 

evolution operators those were originally designed to solve single-objective 

optimization problem such as the Differential Evolution (DE) and its variants to 

generate new solutions. The details regarding the MOEA/D framework and the DE 

operator have been thoroughly described in Chapter 2. 

Due to different mutation strategies, the DE algorithm and its variants exhibit 

different search capabilities, which can be described as exploitation and exploration. 

Exploration is the process of visiting entirely new regions of a search space, while 

exploitation is visiting those regions within the neighborhood of previously visited 

points [21]. However, according to the ‘‘No Free Lunch’’ theory, it is difficult for one 

new solution generating operator to exhibit both exploitation and exploration 

capabilities. More specifically, different iteration stages have obvious tendency to the 

search characteristics. It is easy to imagine that at the beginning of the iteration, new 

solution generating operator with exploration capability will be more likely to achieve 

good performance, because most of the objective space is still untouched; Instead, at 

the ending of the iteration, new solution generating operator with exploitation 

capability will be more likely to achieve good performance.  

In order to efficiently solve the optimization problem through evolutionary 

computation, it is necessary to include new solution generating operators with 
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different search capabilities in the framework and adjust them in time for different 

problems and iteration stages. Therefore, in this chapter, we propose Ensemble 

Framework based on MOEA/D which named as MOEA/D-EF for short. MOEA/D-EF 

can contain a variety of new solution generating operators with different search 

capabilities and has a mechanism to switch them by the current search situation. 

Compared with other algorithms with fixed search capability, MOEA/D-EF can adapt 

to various problems and has better universality. 

 Some other researchers inspired this study. For example, in HMJCDE [47], the 

author constructed a hybrid framework based on modified CoDE [48] and JADE [35] 

to achieve a similar purpose to our study; Also, in the MVC framework [49], the 

author systematically divides the iterative process into learning generation and 

executing generation. The new solutions generated by three different candidate 

operators are compared in the learning generation. The algorithm that develops 

superior solutions is selected in the following executing generation. The essence of 

learning generation in the MVC framework is to evaluate the performance of three 

different candidate operators.  

We inherit part of the idea in MVC framework and provide fairer environment for 

evaluating multiple new solution generating operators in the Evaluation Generation 

(𝐸𝐺). However, most similar attempts, including the above model, are designed for 

single-objective optimization problems.  For single-objective optimization problems, 

when evaluating the advantages and disadvantages of a single-objective optimization 

algorithm, a simple comparison of improved difference is enough; On the contrary, 

one of the critical problems of multi-objective optimization is how to balance the 

relationship between multiple objective functions. Even though the MOEA/D 

framework can import modified single-objective optimization algorithms, evaluation 

of a multi-objective optimization algorithm needs to use a comprehensive indicator. 

Thus, the Hypervolume [] indicator, widely used in solving MOPs, is introduced for 

switching candidate algorithms in our approach. The candidate operator that 

achieves a higher cumulative Hypervolume value in one 𝐸𝐺 will be considered 
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superior and will be executed in the following Implementation Generation (𝐼𝐺). 

 

4.2 Algorithm 

Exploration and exploitation are two basic search capabilities for problem solving. 

Exploration is the process of visiting entirely new regions of a search space, while 

exploitation is the process of visiting those regions of a search space within the 

neighborhood of previously visited points [21]. Different DE mutation strategies 

possess different characteristics, and each of them shows distinct tradeoff between 

exploration and exploitation (TEE) [31,44,48]. The diagram illustrates the relative 

relationships of some mutation strategies on TEE as shown as in Figure 6: 

In order to make MOEA/D-EF as versatile as possible for various MOPs, it is 

essential that the new solution generation operators in MOEA/D-EF possess distinct 

TEE characteristics. Therefore, we select DE1, JADE, and DE-IDEAL as candidate 

operators. DE1 tends to emphasize exploration characteristics, DE-IDEAL leans more 

towards exploitation characteristics, while JADE serves as a balanced intermediary 

between the two. 

In MOEA/D-EF, we divide all generations into two parts, the Evaluation generation 

(𝐸𝐺) and the Implementation generation (𝐼𝐺). 𝐸𝐺 and 𝐼𝐺 match each other, and 

multiple 𝐸𝐺 − 𝐼𝐺 pairs will be presented in the whole iteration process. 𝐸𝐺 aims to 

evaluate the performance of different new solution generating operators (candidate 

operator) fairly by providing the same initial environment. However, it leads 𝐸𝐺 to 

consume several times the evaluation cost of its corresponding 𝐼𝐺. Therefore, 𝐸𝐺 is 

usually set to have a small capacity. In this study, all 𝐸𝐺s including the initial 𝐸𝐺1 were 

set to contain 5 generations, and the initial 𝐼𝐺1 was set to contain 10 generations. The 

capacity of the following 𝐼𝐺𝑘|𝑘>1 has the capacity as |𝐼𝐺𝑘|= 2|𝐼𝐺𝑘−1|𝑘>1| until |𝐼𝐺𝑘| ≥

40. 
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Figure 6 TEE of DE mutation strategies and related algorithms. 

 

In 𝐸𝐺, we first copy the population at current generation 𝑔 into 𝑞 copies（in this 

paper 𝑞 = 3）and assign the identical population as an initial population to each 

candidate operator. The candidate operators evolve independently by using copies 

until the last generation of the current 𝐸𝐺. At the end of the current 𝐸𝐺, we evaluate 

the performance of each candidate operator based on the Hypervolume value 

𝐻𝑉𝑗
𝑔
|1≤𝑗≤𝑞. The best-performing operator will be executed in the subsequent 𝐼𝐺. Also, 

at the end of the current 𝐸𝐺, each subproblem has 𝑞 solutions generated by 

candidate operators. For each subproblem, the optimal individuals are selected based 

on fitness value to form the initial population for the upcoming 𝐼𝐺. MOEA/D-EF 

works as follows: 

Input:  

⚫ MOP. 

⚫ A stopping criterion. 

⚫ 𝑁𝑃: the number of the subproblems considered in MOEA/D. 

⚫ A uniform spread of 𝑁 weight vectors: 𝜆1, … , 𝜆𝑁𝑃 . 

⚫ 𝑇: the number of the weight vectors in the neighborhood of each weight 

vector. 

⚫ 𝑞 candidate operators: DE1, JADE, DE-IDEAL. 

⚫ An external population (EP), which is used to store non-dominated solutions 

found during the search. 

Output: 𝐸𝑃 

 

 



 

45 

 

Algorithm7: MOEA/D-EF with candidate operators: DE1, JADE, DE-IDEAL 

Step 1) Initialization: 

Step 1.1) Set 𝐸𝑃=∅. 

Step 1.2) Compute the Euclidean distances between any two weight vectors and 

then work out the  𝑇 closest weight vectors to each weight vector. For each 𝑖 =

1,… ,𝑁𝑃, set 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇}, where 𝜆𝑖1 , … , 𝜆𝑖𝑇 are the 𝑇 closest weight vectors to 

𝜆𝑖. 

Step 1.3) Generate an initial population 𝑥1, … , 𝑥𝑁𝑃 randomly or by a problem-

specific method.  

Step 1.4) Initialize reference point z = (𝑧1, … , 𝑧𝑚)
𝑇. 

Step 1.5) Initialize the capacity of 𝐸𝐺 and 𝐼𝐺. Set the first generation 𝑔1 as the 

beginning of 𝐸𝐺1 

Step 2) Switch: 

if the current generation 𝑔 is the beginning of an 𝐸𝐺: 

Copy current population 𝑷, set 𝑷1 = 𝑷1 = 𝑷1 = 𝑷, assign 𝑷1, 𝑷2, and 𝑷3 to DE1, 

JADE and DE-IDEAL operator, respectively. 

then go Step 3). 

else if the current generation 𝑔 is in EG: 

go Step 3). 

else if the current generation 𝑔 is the end of an 𝐸𝐺: 

go Step 4). 

else: 

go Step 3). 

Step 3) Update: 

for 𝑖 = 1,… ,𝑁𝑃:  

Step 3.1) Reproduction: 

if the current generation 𝑔 is not the end of an 𝐸𝐺: 

generate X𝑖,1
𝑔+1

, X𝑖,2
𝑔+1

 and X𝑖,3
𝑔+1

 through the mutation strategies of DE1, JADE 

and DE-IDEAL, respectively. 

else if he current generation 𝑔 is in an 𝐼𝐺: 

generate X𝑖,𝑅
𝑔+1

, which represents the individual generated by the regnant 
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candidate operator determined in the end of last 𝐸𝐺. 

Step 3.2) Update of reference point z = (𝑧1, 𝑧2, … , 𝑧𝑗 , … , 𝑧𝑚): 

if z𝑗 > min (𝑓𝑗(X𝑖,1
𝑔+1
), 𝑓𝑗(X𝑖,2

𝑔+1
), 𝑓𝑗(X𝑖,3

𝑔+1
)): 

z𝑗 = min (𝑓𝑗(X𝑖,1
𝑔+1
), 𝑓𝑗(X𝑖,2

𝑔+1
), 𝑓𝑗(X𝑖,3

𝑔+1
)). 

X𝑖,𝑅
𝑔+1

 in 𝐼𝐺 has the similar way to update the reference point. 

Step 3.3) Update of Neighboring Solutions: 

Depends on the operator itself 

Step 3.4) Update of 𝑬𝑷: As same as Step 2.5 in Algorithm1. 

Step 4) End of 𝑬𝑮: 

Step 4.1) Reproduction: 

generate X𝑖,1
𝑔+1

, X𝑖,2
𝑔+1

 and X𝑖,3
𝑔+1

 as the same way as Step 3.1). 

Step 4.2) Calculation of Hypervolume value: 

Calculate 𝐻𝑉1
𝑔+1

, 𝐻𝑉2
𝑔+1

 and 𝐻𝑉3
𝑔+1

 represent the Hypervolume values of DE1, 

JADE and DE-IDEAL, respectively. 

Step 4.3) Determine candidate operators: 

Regnant operator 𝑅 = index of max (𝐻𝑉1
𝑔+1
, 𝐻𝑉2

𝑔+1
, 𝐻𝑉3

𝑔+1
). 

Step 4.4) Population merging: 

for 𝑖 = 1,… , 𝑁𝑃: 

𝑷𝑖
𝑔+1

= min (X𝑖,1
𝑔+1
, X𝑖,2
𝑔+1
, X𝑖,3
𝑔+1
) 

Step 4.5) Update of 𝑬𝑷: As same as Step 2.5 in Algorithm1.  

Step 5) Stopping Criteria: As same as Step 3 in Algorithm1. 

 

It should be added that even if the regnant algorithm being executed in IG is not 

DE-IDEAL or JADE, the historical information pool of DE-IDEAL and JADE's adaptive 

parameters should be continuously updated in their respective ways. 
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4.3 Numerical experiments 

4.3.1 Experimental conditions 

As described above, the proposed framework MOEA/D-EF contains three new 

solutions generation operators: DE1, JADE and DE-IDEAL. In this section, 

comprehensive experiments are conducted to evaluate our new framework and 

compare the effectiveness of MOEA/D-EF with the algorithms that only use pure DE1, 

JADE and DE-IDEAL operator as the new solutions generation operator. Since 

Hypervolume values were used as the switching indicator in the iteration of MOEA/D-

EF, the IGD value was selected as the evaluation indicator in the comprehensive 

experiment. IGD value is widely used in the MOPs. field because it is easy to be 

calculated and can directly show the convergence of the checked approach. Three-

objective WFG series problems [55] with 30,50 and 100 design variables are taken as 

the test instances. Our motivation is to make the MOEA/D-EF framework perform as 

well as possible in the face of different problems. Therefore, in addition to the 

conventional numerical analysis, we discuss the universality of the new algorithm 

utilizing horizontal comparison. 

For each approach, the subproblem number 𝑁𝑃 is set to 300, and the 

neighborhood size 𝑇 is set as 21. As introduced in Chapter 2, the scalarization 

function PBI is imported to decompose a MOP. The preset penalty parameter 𝜃 = 5. 

For DE1 and DE-IDEAL, the scaling factor 𝐹 crossover rate 𝐶𝑅 are set as 0.5 and 0.9, 

respectively. The unique scaling factor 𝐹′ of DE-IDEAL must be less than 𝐹. Therefore, 

𝐹′ is set as 0.1. As the definition given in Chapter 3, the ∠𝑉𝐼𝑋 in DE-IDEAL must be 

less than a threshold 𝜃′, we subjectively relate 𝜃′ to 𝜃 as 𝜃 = arctan
1

𝜃
 .   

For JADE,  the process of generating adaptive parameters 𝐹𝑖 in 𝐶𝑅𝑖 is the same as 

that of the original JADE, with the only difference being that the initial 𝐹𝑚 and 𝐶𝑅𝑚 

are randomly generated in the interval [0.3,0.7], whereas the initial 𝐹𝑚 and 𝐶𝑅𝑚 in the 

original JADE are both set to 0.5. The switching indicator Hypervolume in MOEA/D-EF 



 

48 

 

is set with the Reference point [5,5,5]. 

Numerical experiments with 30,50 and 100 design vectors were repeated 21 times, 

respectively. The result of IGD values is shown in Table x to x, where MOEA/D-EF is 

called EF and DE-IDEAL is called IDEAL for short, respectively; S300V30 represents 

each approach contains 300 sub-problems and 30 design variables e.g. The AV 

column represents the average IGD value, and the R column represents the ranking 

of the approach in the current problem. The R column in the last row represents the 

average score of the ranking, and obviously, the smaller the average score, the better 

the approach performs. 

 

4.3.2 Experimental results 

As shown from Table 2 to 4, DE-IDEAL always takes the lead in WFG4,7,8. JADE 

takes the lead in WFG5,6 but always performs worst in other problems. MOEA/D-EF 

never took the lead on any problems but never had a worst-case performance. DE-

IDEAL had the best overall performance in IGD value and ranking score. With the 

number of design variables increases to 100, the difference between those two 

approaches became very limited. To some extent, this result supports our conjecture 

about the new solution generating operator using historical information. 
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Table 2: Average IGD value and Ranking Score for WFG problems with 30 design variables. 

S300 V30 

EF DE1 IDEAL JADE 

AV R AV R AV R AV R 

WFG1 1.4676 3 1.4607 1 1.4613 2 1.4814 4 

WFG3 0.1679 2 0.1566 1 0.1723 3 0.6122 4 

WFG4 0.3100 2 0.3239 3 0.2899 1 0.4765 4 

WFG5 0.1821 2 0.2253 4 0.1877 3 0.1760 1 

WFG6 0.1940 2 0.2518 4 0.2118 3 0.1885 1 

WFG7 0.3562 3 0.3553 2 0.3495 1 0.5983 4 

WFG8 0.4414 3 0.4440 2 0.4201 1 0.6483 4 

WFG9 0.1991 2 0.2489 4 0.2202 3 0.1916 1 

  2.4  2.8  2.1  2.9 

 

 

Table 3： Average IGD value and Ranking Score for WFG problems with 50 design variables. 

S300 V50 

EF DE1 IDEAL JADE 

AV R AV R AV R AV R 

WFG1 1.4676 3 1.4663 2 1.4635 1 1.4925 4 

WFG3 0.2628 2 0.2880 3 0.2617 1 0.7330 4 

WFG4 0.3375 2 0.3627 3 0.3177 1 0.5045 4 

WFG5 0.1896 2 0.2531 4 0.1903 3 0.1814 1 

WFG6 0.1730 2 0.2827 4 0.2090 3 0.1680 1 

WFG7 0.4240 2 0.4410 3 0.4060 1 0.7042 4 

WFG8 0.4794 2 0.4982 3 0.4702 1 0.7507 4 

WFG9 0.1842 2 0.2906 4 0.2052 3 0.1763 1 

  2.1  3.3  1.8  2.9 
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Table 4：Average IGD value and Ranking Score for WFG problems with 100 design variables. 

S300 V100 

EF DE1 IDEAL JADE 

AV R AV R AV R AV R 

WFG1 1.4760 3 1.4684 1 1.4688 2 1.4965 4 

WFG3 0.3995 2 0.4166 3 0.3917 1 0.8600 4 

WFG4 0.3622 2 0.4094 3 0.3447 1 0.5995 4 

WFG5 0.1922 2 0.1961 3 0.1984 4 0.1865 1 

WFG6 0.1811 2 0.3307 4 0.2051 3 0.1652 1 

WFG7 0.4796 2 0.5117 3 0.4560 1 0.7669 4 

WFG8 0.5199 2 0.5470 3 0.4956 1 0.8012 4 

WFG9 0.1776 2 0.3238 4 0.2034 3 0.1687 1 

  2.1  3  2  2.9 

 

Although the average IGD value and ranking score intuitively reflect the 

performance of each approach on specific problems, they cannot intuitively reflect 

the universality of a certain approach. Universality represents a spirit with equilibrium 

that does not require the approach to be dominant in a particular problem but re-

quires the approach should not perform poorly in any situation. Based on the above 

thinking, we made a horizontal comparison of the four different approaches` IGD 

value. The specific evaluation methods are as follows: 

𝐸𝑗|1≤𝑗≤4 =∑(
𝐼𝐺𝐷𝑗

𝑖

𝐼𝐺𝐷mean
𝑖

− 𝐼𝐺𝐷mean
𝑖 )

9

𝑖=1

(39) 

𝐼𝐺𝐷mean
𝑖 =

∑ 𝐼𝐺𝐷𝑗
𝑖9

𝑖=1

4
(40) 

where 𝑗 is the index represents MOEA/D-EF, DE1, JADE and DE-IDEAL, respectively. 𝑖 

is the index of WFG series problems. 
𝐼𝐺𝐷𝑗

𝑖

𝐼𝐺𝐷mean
𝑖  scales the average IGD values of each 

approach in the same problem to the same scale, The result of the summation 𝐸𝑗 , is 

the final universality degree of algorithms. The results are listed in Table x, according 

to the definition given above, a negative 𝐸𝑗 indicates that this algorithm performs 
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better than the average of all. The smaller the value of 𝐸𝑗 , the more obvious the 

advantage of this algorithm. From what has been discussed above, it can be seen that 

MOEA/D-EF has obvious advantages. 

 

4.4 Summary 

In this study, we propose a new hybrid model based on the MOEA/D framework for 

addressing multi-objective optimization problems, abbreviated as MOEA/D-EF. In 

comparison to existing frameworks with similar motivations, our novel research 

introduces the following innovations: 

⚫ We extend the algorithmic framework and evolutionary operators originally 

designed for solving single-objective optimization problems to address multi-

objective optimization problems, with adaptive modifications specifically 

tailored to the MOEA/D framework. 

⚫ We designed an evolution operator adaptive switching mechanism based on 

prior knowledge. In contrast to traditional methods such as mathematical 

induction, we utilize performance metrics to assess the current search status, 

enabling the adaptive selection of evolution operators. 

⚫ Unlike a simple comparison of algorithm performance on a specific problem, 

we propose a more comprehensive approach to evaluate algorithm 

adaptability. Assessing the overall performance of different algorithms across 

an entire test suite provides a better indication of the algorithm's general 

applicability. 

The results indicate that the new MOEA/D-EF algorithm, while not consistently 

outperforming all other algorithms on any individual test problem within the WFG 

test suite, generally exhibits outstanding performance, often ranking second across 

various scenarios. In contrast, the comparison algorithms may excel on certain 

problems but demonstrate poor performance on others. This outcome reaffirms the 

"No Free Lunch" theorem and underscores the importance of algorithm generality.  
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Chapter 5 Hyper-Heuristic Multi-Objective 

Optimization Approach Based on MOEA/D Framework 

5.1 Introduction 

The multi-objective evolutionary algorithm based on decomposition (MOEA/D, 

Zhang and Li, 2007) [20] is a state-of-the-art algorithm that provides a framework for 

solving multi-objective optimization problems (MOPs, Coello and Lamont, 2004; Deb, 

K., 2011) [2,4]. Each subproblem is treated as a scalar optimization problem, where a 

scalarization function (e.g., the weighted-sum or Tchebycheff approach proposed by 

Miettinen (1999)) [50] and weight vectors are utilized to coordinate the relationships 

among the objective functions. Therefore, it is reasonable to utilize genetic evolution 

algorithms originally designed to solve single-objective optimization problems (SOPs), 

especially crossover (CX)-based algorithms such as the differential evolution (DE) and 

its variants [11,12,14], to generate new solutions.  

Hansen et al. (2003) acknowledged that the evolution strategy with covariance 

matrix adaptation (CMA-ES) [36] was an effective algorithm based on the estimation 

of distribution (ED) (Springer Science & Business Media, 2001) [51] that has been 

widely applied in various domains. CMA-ES enhances the search process by 

estimating a more promising region utilizing the distribution information of the 

current population. Although CMA-ES was originally utilized for single-objective 

optimization, it can be applied to solve MOPs, as demonstrated by Igel et al. (2007) 

and Zapotecas-Mart’ınez et al. (2015) [52, 53]. 
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Figure 7 The Conceptual comparison of generating new individuals based on CX strategy and ED 

strategy. 

 

As a further comparison between the CX and ED strategies, it was observed that CX 

was efficient and effective for a global search but tended to become stagnant and 

was not well suited for problems with strong variable dependence (non-separable 

problems). Conversely, ED was effective for problems with dependent variables but 

incurred a huge evaluation cost. he concepts of these two different strategies are 

illustrated in Figure 7. 

DE and its variants use crossover (CX) and mutation strategies to generate new 

solutions. In particular, CX is recognized as an efficient approach for creating 

promising individuals by combining information from two or more existing 
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individuals (parents). 

Generally, new individuals (children) are compared to one of their parents, and the 

children replace their parents if they demonstrate better evaluation values. This is 

referred to as a successful replacement scenario. Similar to but different from the 

feasibility ratio (FR) [54], the overall successful replacement rate (SRR) is expressed as 

follows: 

SRR =
successful replacement times

max evaluation times
(41) 

Table 5 presents the average SRRs in two-, three-, and five-objective WFG [57] 

problems. The numerical experiment was initialized with 300 subproblems and 30 

variables (1000 sub-problems and 32 variables in WFG_5D problems). The iterations 

were repeated 21 times. The results of numerical experiments revealed that the SRR 

in pure MOEA/D-DE exhibited a low level of efficiency for the WFG test suite. That is, 

a significant portion of the evaluation cost did not contribute to the final solution. 

Also, there is an inherent problem when using ED strategies especially CMA-ES to 

solve MOPs that significantly increases the evaluation cost. This is because many 

sampling points are required to obtain the probability distribution in the objective 

space. Based on the above analysis, a hybrid approach was proposed in this study, 

called MOEA/D-HH for short, which aiming to dynamically switch between different 

generating operators based on the search situation within the MOEA/D framework, 

with the core concept of ‘recycling- redistribute’. 
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Table 5: Average SRRs in two-, three-, and five-objective WFG problems (where # indicates the 

number of subsequent hyperparameter). The numerical experiment was initialized with 300 

subproblems and 30 variables (1000 subproblems and 32 variables in WFG_5D problems). The 

iterations were repeated 21 times. 

# Objectives (𝑴) 

Problems 
Two Three Five 

WFG1 0.1833 0.0963 0.2120 

WFG2 0.2579 0.1152 0.2452 

WFG3 0.2667 0.1333 0.2177 

WFG4 0.1273 0.0541 0.1494 

WFG5 0.1370 0.0632 0.2006 

WFG6 0.1752 0.0687 0.1556 

WFG7 0.2457 0.0726 0.1957 

WFG8 0.2488 0.0759 0.2019 

WFG9 0.1122 0.0594 0.1383 

 

Specifically, when a CX operator in a subproblem fails to generate new 

nondominated individuals for several generations, this indicates that CX cannot be 

expected to dis-cover a new nondominated individual within a finite number of 

generations. At this time, MOEA/D-HH switches from the CX to the CMA-ES operator 

for recycling inefficient evaluation costs. 

According to its characteristics, the CMA-ES operator has a high probability of 

estimating the correct search direction for a sub-problem if there are sufficient 

sampling points. The evaluation cost of evaluating these sampling points comes from 

the redistribution of the evaluation cost occupied by CX. After switching to CMA-ES, 

CMA-ES is continued if a new individual can be nondominated. However, CMA-ES 

switches back to CX if it fails to update the individual to save evaluation costs. The 

sampling points generated by the CMA-ES are based on the distribution of the 

current subproblem and its neighborhood. Even if the sampling points are not 

nondominated, they still contain useful information regarding the evolutionary 

process. 

To balance the evaluation cost of CMA-ES, when a sub-problem begins using the 

CMA-ES operator to generate new individuals, the individuals in the vicinity of this 

sub-problem (sub-neighborhood) switch to using the IDE operator for generating 

new individuals. The IDE is recognized as a powerful algorithm for solving SOPs, but it 

also requires a higher evaluation cost to solve MOPs. The sampling points generated 
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by the CMA-ES are sufficient for the IDE operator, so there is no need for additional 

evaluation costs. The IDE reuses the sampling points generated by CMA-ES, which 

dilutes the high evaluation cost of CMA-ES, thus achieving the purpose of mitigate 

the evaluation cost. 

 

5.2 Algorithm 

The framework is divided into three main parts: initialization, reproduction, and 

updating. Classical algorithms based on this framework utilize genetic operators to 

generate an offspring population (new individuals) during the reproduction phase. 

Subsequently, the newly generated individuals are used to update the current 

population. The reproduction and update processes continue to iterate until the 

stopping criteria are satisfied. Most approaches, such as MOEA/D-DE, utilize a single 

fixed operator throughout the search process to generate new individuals. Conversely, 

MOEA/D-HH, which is built up-on the MOEA/D framework and shares the same 

hyper-parameter initialization method as MOEA/D-DE, introduces the integration of 

multiple distinct operators for generating off-spring. Therefore, an operator selector 

was necessary during the reproduction phase of MOEA/D-HH. This selector not only 

determined the mating population but also chose the appropriate generating 

operator based on the current search condition. An efficiency inspection was 

performed on the subproblem after the regular update phase to evaluate the current 

search condition. The results of this inspection served as the criteria for switching 

between CX- and ED-based operators. This switching mechanism involved two 

components: a selector operator and efficiency inspection. The core process of 

MOEA/D-HH is illustrated in Figure 8. 
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Figure 8: Core process of MOEA/D-HH. 

 

In MOEA/D-HH, different sub-problems may utilize different operators to generate 

new solutions. Initially, all the subproblems employ the DE1 operator, as specified in 

Equation (). However, a decline in DE operator effectiveness is indicated if it 

encounters difficulties in identifying the appropriate evolutionary direction for several 

generations as the search progresses. In such cases, MOEA/D-HH switches the 

operator from DE1 to CMA-ES. The CMA-ES operator is known for its ability to 

identify correct search directions by utilizing distribution information. Therefore, is 

expected to be more effective in generating new non-dominated individuals. The 

parameters of CMA-ES will be initialized assuming that the operator of subproblem 𝑖 

is switched to CMA-ES at generation 𝑔, as shown in Table 6. 



 

58 

 

Table 6: Initialized parameters of CMA-ES in MOEA/D-HH. 

Parameters Values 

𝑚 mean value of 𝐵(𝑖)𝑔 

𝑝𝜎  0 

𝜎 0.5 

𝑝𝑐 0 
C  𝐼 

 

At the same time, MOEA/D-HH will create a provisional archives population 

A(𝑖)𝑔 = ∅ to store new individuals that are subsequently generated. After the 

initialisation, the procedure for CMA-ES in MOEA/D-HH is shown as follows: 

 

Input: Setting solution X = 𝐵(𝑖)𝑔 ∪ A(𝑖)𝑔. 

Output: 𝑦𝑏𝑒𝑠𝑡 , which is the individual with best fitness value in set Y. 

Algorithm8: CMA-ES in MOEA/D-HH Framework 

Step 1) Sorting X using the fitness value of the scalarizing function. 

Step 2) Updating distribution parameters using sorted X. 

Step 3) Generating new solutions: 

Initialize the set of new solutions Y = ∅. 

for 𝑖 = 0,1,… , 𝑈𝑐𝑜𝑢𝑛𝑡 × 𝜆: 

𝑌 ← 𝑌 ∪ 𝑦𝑖 = 𝑚+ 𝜎C
𝑧

||𝑧||
, where 𝑧~𝒩(0, I). 

Step 4) Repairing: if an element of 𝑦𝑖 ∈ 𝑌 is out of the boundary, its element value is 

reset to the boundary. 

Step 5) Storing: A(𝑖)𝑔+1 ← A(𝑖)𝑔 ∪ 𝑌. 

 

The method in Step3) is equivalent to Equation (30). Specifically, 𝑈𝑐𝑜𝑢𝑛𝑡 =

1,2,… , 𝑈𝑚𝑎𝑥 ∈ ℤ represents the number of unsuccessful replacements. If 𝑦𝑏𝑒𝑠𝑡 cannot 

replace the current best 𝑥𝑖
𝑔, then 𝑈𝑐𝑜𝑢𝑛𝑡+= 1. 

The CMA-ES strategy generates several new individuals based on the dominance 

distribution. Obviously, 𝑦𝑏𝑒𝑠𝑡 can be generated as long as enough individuals are 

generated that are not dominated by 𝑥𝑖
𝑔. However, considering the practical 

evaluation cost, the volume of set Y cannot be expanded without limit. Therefore, in 

this study, 𝑈𝑚𝑎𝑥 = 3. 
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Based on the characteristics of the MOEA/D framework, subproblems within the 

neighborhood have similar solutions. Moreover, set Y (similar to 𝐴(𝑖)) is strongly 

dependent on 𝐵(𝑖), indicating that the individuals in 𝑌 are influenced by the current 

subproblem 𝑖 and the entire neighbourhood. In addition, archived individuals 

improve the diversity of the population. 

In MOEA/D-HH, the operator of other subproblems 𝑖′ ∈ [𝑖 −
𝜆

2
, 𝑖) ∪ (𝑖, 𝑖 +

𝜆

2
] within 

the neighbourhood will switch to the IDE operator after the operator of subproblem i 

switches to CMA-ES, where 𝜆 described in Equation () is the size of CMA-ES offspring. 

The IDE procedure in MOEA/D-HH is shown as follows: 

 

Input: Setting solution X = 𝐵(𝑖′)𝑔 ∪ A(𝑖)𝑔. 

Output: new individual of the 𝑖′th subproblem X𝑖′
𝑔+1

. 

Algorithm9: IDE in MOEA/D-HH Framework 

Step 1) Sorting and Partitioning: 

Step 1.1) Sorting X using fitness value of scalarizing function. 

Step 1.2) Superior group 𝑆 ← top 30% of X, group 𝐼 ← other individuals.  

Step 2) Generation of mutation vector: 

Randomly select X𝑆
𝑔 and X𝐼

𝑔 from groups 𝑆 and 𝐼, respectively. 

Generate new mutation vector V𝑖′
𝑔 = X𝑖′

𝑔 + 𝐹 ∙ (X𝑆
𝑔 − X𝐼

𝑔). 

Step 3) Crossover: 

𝑢𝑖′,𝑗
𝑔
= {
𝑣𝑖′,𝑗
𝑔
 , if (𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅, or 𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖′`,𝑗
𝑔  

where 𝑢𝑖′,𝑗
𝑔

 denotes the trial vector, 𝐹 denotes the mutation factor, and 𝐶𝑅 denotes 

the crossover probability. 

Step 4) Updating: 

if 𝑓𝑖𝑡(U𝑖′
𝑔
) ≤ 𝑓𝑖𝑡(X𝑖′

𝑔
): 

X𝑖′
𝑔+1

= U𝑖′
𝑔
. 

else: 

X𝑖′
𝑔+1

= X𝑖′
𝑔
. 
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As described earlier in this Chapter, the operator switching mechanism in MOEA/D-

HH consists of two components: selection and efficiency inspection. MOEA/D-HH 

initialises an empty list 𝐿𝑖𝑛𝑑𝑒𝑥 = ∅ to store the indices of these subproblems, which 

facilitates the tracking of subproblems using CMA-ES. The subproblems execute the 

CMA-ES strategy if the current subproblem 𝑖 is present in 𝐿𝑖𝑛𝑑𝑒𝑥. Additionally, the 

current subproblem 𝑖 will use the IDE strategy for generating new individuals, if 

subproblem 𝑖 is not included in 𝐿𝑖𝑛𝑑𝑒𝑥 and there is a subproblem 𝑖′ ∈ [𝑖 −
𝜆

2
, 𝑖) ∪ (𝑖, 𝑖 +

𝜆

2
] in 𝐿𝑖𝑛𝑑𝑒𝑥. When neither of the above conditions is satisfied, the subproblems 

execute the DE1 strategy. The selection part of the operator-switching mechanism is 

summarised as Figure 9: 

 

 

Figure 9: Operator selection strategy in MOEA/D-HH. 

 

 



 

61 

 

 
Figure 10: Efficiency inspection concept in MOEA/D-HH. 

 

Efficiency Inspection is the other component of the operator-switching mechanism 

that is responsible for managing the members in 𝐿𝑖𝑛𝑑𝑒𝑥. The fundamental concept is 

illustrated in Figure 10. The criterion for identifying inefficiency is when a newly 

generated individual fails to outperform the current best solution, and this situation 

persists for a specified number of generations. This specified number of generations 

is considered a threshold. In our study, we established thresholds of five and three 

generations for the CX and ED strategies, respectively. 

The threshold for the ED strategy was the same as the setting of 𝑈𝑐𝑜𝑢𝑛𝑡 that was 

proposed in Algorithm8. This was because the evaluation cost of the ED strategy was 

much higher than that of CX. The criterion during the efficiency inspection of a 

subproblem using CMA-ES is whether the threshold is exceeded. If the threshold is 

exceeded, the index of the subproblem is removed from 𝐿𝑖𝑛𝑑𝑒𝑥 and its provisional 

archive population is cleared simultaneously. Unlike the ED strategy, the CX strategy 

has a lower evaluation cost that allows for higher tolerance for inefficient situations.  

In numerical experiments, it is common to observe stagnation in the search 

progress of a certain subproblem for several generations, whereas other subproblems 

in its neighbourhood continue to update non-dominated individuals with new 

solutions during the same   time period. Therefore, the focus is on the subproblem 

itself and all other subproblems in its sub-neighbourhood that may exceed the 

inefficiency threshold when inspecting the efficiency of a subproblem using DE1 or 

IDE. In this study, the size of the sub-neighbourhood was set to parameter 𝜆. 
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5.3 Numerical experiments 

5.3.1 Experimental conditions 

Experiments were conducted using the WFG test suite (Huband et al., 2005) [55] to 

assess the effectiveness of the proposed MOEA/D-HH and compare its performance 

with that of the original MOEA/D-DE. Furthermore, a reference version called 

MOEA/D-HHF was introduced that utilised fixed operators to examine the efficacy of 

the switching mechanism in MOEA/D-HH. 

In MOEA/D-HHF, the index of a subproblem is represented by 𝑖 and the size of the 

neighbourhood is denoted by 𝑇. The ith subproblem employs the CMA-ES strategy 

to generate new individuals only when 𝑖%𝑇 == 0. Subproblem 𝑖′ ∈ [𝑖 −
𝜆

2
, 𝑖) ∪ (𝑖, 𝑖 +

𝜆

2
] uses the IDE strategy, while the remaining subproblems utilise the DE1 operator. 

In this experiment, 21 trials were conducted for each approach and the average 

values were calculated. The penalty-based boundary intersection PBI scalarising 

function and WFG test suite were employed as the set of problem instances. The 

performances of these approaches were evaluated using the inverted generational 

distance plus (IGD+) metric (Ishibuchi et al., 2015) [56]. 

The WFG test suite was utilised as a problem instance in these experiments, which 

has been widely used and offers flexibility in adjusting the number of objectives and 

decision variables as needed. Test functions and a true Pareto front for two-, three-, 

and five-objective problems (referred to as WFG_2D, WFG_3D, and WFG_5D, 

respectively) were generated following the methodology outlined by Huband et al. 

(2006) [57]. 

The position and distance parameters were set to 𝑘 = 2 and 𝑙 = 𝑛 − 𝑘, respectively, 

for the WFG_2D problems, where n represents the number of variables. The position 

parameter was set to 𝑘 = 4 for WFG_3D and WFG_5D. 
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Table 7: Hyper-parameter compositions in the MOEA/D framework, where indicates the number of 

sub-sequent hyperparameter. 

 

IGD+ was employed as a performance indicator to evaluate the performance of the 

approaches. The IGD+ metric measures the distance between the obtained solutions 

and true Pareto front. A lower IGD+ value indicates that the solutions are closer to 

the true Pareto front, implying better performance. 

The parameters used for the MOEA/D framework are listed in Table 7. The 

neighbourhood size 𝑇 in the MOEA/D framework is generally set to be less than 10% 

of the population size 𝑁. This is because having a large neighbourhood can result in a 

loss of necessary similarity between subproblems. However, the CMA-ES algorithm 

requires a certain number of individuals in the neighbourhood, and there is a hidden 

condition regarding the number of offspring, which is expressed as 𝑇 ≥ 𝜆，where 𝜆 =

4 + 3⌊ln 𝑛⌋. 

Therefore, MOEA/D-HH cannot be applied when the parameters are set to 𝑁 = 150, 

𝑇 = 15, and 𝑛 = 100. The conditions for the CMA-ES were not met in this case. 

For the WFG problems, the position parameter k must be a multiple of 𝑀 − 1. 

Additionally, the distance parameter 𝑙 = 𝑛 − 𝑘 must be divisible by 𝑘. Consequently, 

the number of design variables was set as 𝑛 = 32 for the WFG_5D problems, which 

was the closest number to 30 and satisfied the aforementioned conditions. 

The parameter for the PBI scalarising function was set to 𝜃 = 5. The mutation factor 𝐹 

and crossover probability 𝐶𝑅 were set to 0.5 and 0.9, respectively, for the DE1 and IDE 

operators.  

 

 

 

Parameters Values 

# Objectives (𝑀) 2 3 5 

Population size (𝑁) 150 300 300 1000 

# Design variables (𝑛) 30 50 30 50 100 30 50 100 32 

Neighbourhood size (𝑇) 15 21 21 51 

Terminal criteria (# evaluate)  100,000 
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5.3.2 Experimental results of wfg_2D problem 

Numerical experiments were conducted on the WFG_2D problem using five sets of 

hyper-parameters. The average IGD+ values obtained from these experiments are 

presented in Table 8, where the parameters 𝑁 and 𝑛 represent the number of 

subproblems and variables, respectively. The DE1 column represents the results of 

the original MOEA/D-DE, which served as a baseline control and was generated using 

the jMetalpy library (Benítez-Hidalgo et al., 2019) [58]. Columns HH and HHF 

represent the results for MOEA/D-HH and MOEA/D-HHF, respectively. The results 

indicated that the original MOEA/D-DE outperformed MOEA/D-HH and MOEA/D-

HHF in most cases. However, MOEA/D-HH demonstrated better performance in 

WFG5 (𝑁 = 300, 𝑛 = 30, 50, 100), WFG6 (𝑁 = 150, 𝑛 = 50; 𝑁 = 300, 𝑛 = 30, 50, 100), 

and WFG9 (𝑁 = 300, 𝑛 = 100). However, MOEA/D-HHF, which served as a control to 

evaluate the effectiveness of the switching mechanism, performed better than 

MOEA/D-HH for WFG2 (𝑁 = 150, 𝑛 = 30, 50), WFG6 (𝑁 = 150, 𝑛 = 30), and WFG9 

(𝑁 = 150, 𝑛 = 30; 𝑁 = 300, 𝑛 = 30). These results provided preliminary evidence of 

the effectiveness of the adaptive switching mechanism. 
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Table 8: Average value of IGD+ in WFG_2D problems. 

 
𝑵 = 𝟏𝟓𝟎 

 
𝑵 = 𝟑𝟎𝟎 

DE1 HH HHF DE1 HH HHF 

WFG1 
𝑛 = 30 
𝑛 = 50 

1.1343 

1.1912 

1.2215 

1.2379 

1.2354 

1.2489 

𝑛 = 30 
𝑛 = 50 
𝑛 = 100 

1.1682 

1.2057 

1.2355 

1.2107 

1.2322 

1.2456 

1.2359 

1.2463 

1.2572 

WFG2 

 

0.0757 

0.1264 

0.0989 

0.1692 

0.0966 

0.1686 

 

0.0608 

0.1050 

0.1800 

0.0766 

0.1260 

0.1964 

0.0990 

0.1764 

0.2437 

WFG3 
0.1356 

0.1640 

0.1616 

0.1962 

0.1809 

0.2535 

0.1394 

0.1691 

0.2368 

0.1474 

0.1761 

0.2379 

0.1810 

0.2489 

0.3229 

WFG4 
0.0973 

0.1156 

0.1068 

0.1309 

0.1181 

0.1446 

0.1009 

0.1207 

0.1484 

0.1051 

0.1259 

0.150 

0.1151 

0.1442 

0.1655 

WFG5 
0.0672 

0.0692 

0.0686 

0.0704 

0.0729 

0.0777 

0.0678 

0.0708 

0.0752 

0.0665 

0.0683 

0.0706 

0.0724 

0.0809 

0.0990 

WFG6 
0.0893 

0.0593 

0.0889 

0.0570 

0.0887 

0.0632 

0.0924 

0.0645 

0.0513 

0.0887 

0.0572 

0.0391 

0.0949 

0.0883 

0.0633 

WFG7 
0.0183 

0.0356 

0.0481 

0.0728 

0.0633 

0.1236 

0.0259 

0.0464 

0.0948 

0.0365 

0.0567 

0.1010 

0.0598 

0.1112 

0.1884 

WFG8 
0.1058 

0.1390 

0.1376 

0.1804 

0.1799 

0.2400 

0.1046 

0.1400 

0.1959 

0.1185 

0.1499 

0.2045 

0.1620 

0.2185 

0.2757 

WFG9 
0.0795 

0.0558 

0.0890 

0.0655 

0.0758 

0.0850 

0.0816 

0.0682 

0.0637 

0.0895 

0.0700 

0.0331 

0.0715 

0.1000 

0.1227 

 

The evolutionary trajectory was analysed, and selected results are presented in 

Figures 11-13. The 𝑥 coordinate denotes the progress of iterations, whereas the 𝑦 

coordinate represents the average IGD+ values. These figures demonstrate that 

MOEA/D-HHF exhib-ited faster convergence during the initial stages of iteration, 

despite the significant differences between the results of the HHF and the other two 

algorithms. 
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Figure 11: Visual evolutionary trajectory of two-objective WFG4 problem with 300 subproblems 

and 30 variables. 

 
Figure 12: Visual evolutionary trajectory of two-objective WFG6 problem with 300 subproblems 

and 30 variables. 

 

Figure 13: Visual evolutionary trajectory of two-objective WFG8 problem with 300 subproblems 

and 30 variables. 
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Table 9: SRR and PR of operators in WFG_2D problems (1). 

 

The impacts of MOEA/D-HH on the SRR is presented in Tables 9 and 10. The bold 

entries in these tables compare the SRR values of MOEA/D-DE with those of 

MOEA/D-HH. The rightmost columns provide the specific SRR and picked rate (PR) of 

each operator in MOEA/D-HH. In these tables, it is a fundamental requirement that 

the sum of the PR in each row equals one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subproblem 

Number 𝑵 = 𝟏𝟓𝟎 

MOEA/D-

DE SRR 

MOEA/D-

HH SRR 

MOEA/D-HH 

DE-SRR(PR) IDE-SRR(PR) CMA-SRR(PR) 

WFG1 

𝑛 = 30 
𝑛 = 50 

0.1057 

0.0921 

0.0637 

0.0604 

0.2928 (0.3070) 

0.3003 (0.2984) 

0.0513 (0.6605) 

0.0501 (0.6683) 

0.0344 (0.0325) 

0.0328 (0.0332) 

WFG2 
0.1482 

0.1579 

0.1015 

0.1054 

0.2830 (0.5539) 

0.2883 (0.5627) 

0.0405 (0.4211) 

0.0455 (0.4133) 

0.0541 (0.0249) 

0.0718 (0.0240) 

WFG3 
0.1471 

0.1580 

0.1117 

0.1246 

0.2923 (0.5510) 

0.2828 (0.5692) 

0.0489 (0.4278) 

0.0707 (0.4133) 

0.0251 (0.0212) 

0.0723 (0.0175) 

WFG4 
0.0641 

0.0710 

0.0540 

0.0589 

0.2269 (0.3278) 

0.2306 (0.3481) 

0.0510 (0.6378) 

0.0563 (0.6204) 

0.0437 (0.0344) 

0.0516 (0.0314) 

WFG5 
0.0726 

0.0785 

0.0562 

0.0611 

0.2619 (0.3339) 

0.2587 (0.3400) 

0.0424 (0.6321) 

0.0514 (0.6302) 

0.0044 (0.0340) 

0.0071 (0.0299) 

WFG6 
0.0936 

0.1015 

0.0780 

0.0838 

0.2895 (0.3937) 

0.2895 (0.4078) 

0.0512 (0.5786) 

0.0567 (0.5680) 

0.0028 (0.0277) 

0.0025 (0.0243) 

WFG7 
0.1281 

0.1378 

0.0990 

0.1067 

0.2789 (0.4900) 

0.2686 (0.4978) 

0.0581 (0.4869) 

0.0765 (0.4819) 

0.0479 (0.0231) 

0.0830 (0.0203) 

WFG8 
0.1305 

0.1357 

0.1057 

0.1073 

0.2869 (0.4794) 

0.2779 (0.4764) 

0.0682 (0.4984) 

0.0790 (0.5029) 

0.0685 (0.0222) 

0.0900 (0.0206) 

WFG9 
0.0658 

0.0737 

0.0495 

0.0563 

0.2283 (0.3155) 

0.2316 (0.3690) 

0.0432 (0.6498) 

0.0466 (0.5989) 

0.0211 (0.0347) 

0.0246 (0.0321) 



 

68 

 

Table 10: SRR and PR of operators in WFG_2D problems (2). 

Subproblem 

Number 𝑵 = 𝟑𝟎𝟎 

MOEA/D-

DE SRR 

MOEA/D-

HH SRR 

MOEA/D-HH 

DE-SRR(PR) IDE-SRR(PR) 
CMA-

SRR(PR) 

WFG1 

𝑛 = 30 
𝑛 = 50 
𝑛 = 100 

0.1833 

0.1598 

0.1424 

0.1472 

0.1332 

0.1276 

0.2907 (0.5575) 

0.2938 (0.5253) 

0.2846 (0.5355) 

0.0937 (0.4295) 

0.0893 (0.4595) 

0.0772 (0.4513) 

0.0533 (0.0130) 

0.0553 (0.0152) 

0.0447 (0.0132) 

WFG2 

0.2579 

0.2664 

0.2650 

0.2225 

0.2252 

0.2300 

0.3082 (0.8461) 

0.3107 (0.8544) 

0.3002 (0.8761) 

0.0621 (0.1463) 

0.0629 (0.1381) 

0.0581 (0.1186) 

0.0843 (0.0076) 

0.1185 (0.0075) 

0.1295 (0.0053) 

WFG3 

0.2667 

0.2869 

0.2871 

0.2480 

0.2757 

0.2888 

0.3002 (0.9064) 

0.3025 (0.9478) 

0.2968 (0.9814) 

0.0622 (0.0896) 

0.1109 (0.0503) 

0.1671 (0.0180) 

0.0198 (0.0039) 

0.1076 (0.0020) 

0.1991 (0.0006) 

WFG4 

0.1273 

0.1351 

0.1445 

0.1129 

0.1196 

0.1317 

0.2276 (0.5780) 

0.2227 (0.6084) 

0.2181 (0.6522) 

0.0829 (0.4054) 

0.0924 (0.3773) 

0.0958 (0.3379) 

0.0749 (0.0166) 

0.0863 (0.0143) 

0.1076 (0.0099) 

WFG5 

0.1370 

0.1469 

0.1613 

0.1148 

0.1294 

0.1420 

0.2592 (0.5816) 

0.2644 (0.6132) 

0.2516 (0.6487) 

0.0617 (0.4010) 

0.0718 (0.3727) 

0.0783 (0.3422) 

0.0033 (0.0173) 

0.0062 (0.0141) 

0.0058 (0.0091) 

WFG6 

0.1752 

0.2032 

0.2268 

0.1509 

0.1905 

0.2179 

0.2936 (0.6324) 

0.3005 (0.7172) 

0.2947 (0.7798) 

0.0744 (0.3543) 

0.0964 (0.2745) 

0.1105 (0.2158) 

0.0025 (0.0133) 

0.0054 (0.0083) 

0.0122 (0.0044) 

WFG7 

0.2457 

0.2625 

0.2652 

0.2265 

0.2473 

0.2567 

0.2920 (0.8624) 

0.2875 (0.9039) 

0.2782 (0.9305) 

0.0771 (0.1323) 

0.1216 (0.0928) 

0.1625 (0.0678) 

0.0358 (0.0053) 

0.1203 (0.0033) 

0.2050 (0.0017) 

WFG8 

0.2488 

0.2539 

0.2531 

0.2316 

0.2413 

0.2448 

0.2981 (0.8415) 

0.2930 (0.8660) 

0.2838 (0.8845) 

0.1028 (0.1532) 

0.1259 (0.1299) 

0.1395 (0.1127) 

0.0870 (0.0054) 

0.1262 (0.0041) 

0.1663 (0.0028) 

WFG9 

0.1122 

0.1361 

0.1649 

0.0930 

0.1062 

0.1315 

0.2168 (0.5046) 

0.2259 (0.5521) 

0.2294 (0.6444) 

0.0739 (0.4760) 

0.0817 (0.4312) 

0.0844 (0.3459) 

0.0525 (0.0194) 

0.0642 (0.0167) 

0.0427 (0.0098) 

 

From these tables, particularly Table 10, it is clear that the HH-DE(PR) values were 

remarkably high, while the SRR values of MOEA/D-DE were superior to those of 

MOEA/D-HH. These high values indicate that MOEA/D-DE performed exceptionally 

well in the experimental environment. 

Consequently, MOEA/D-HH adaptively selected a higher proportion of DE1 

operators. This observation is consistent with the MOEA/D-DE and MOEA/D-HH 

curves shown in the figures. 

 

 

 



 

69 

 

5.3.3 Experimental results of wfg_3D problem 

Numerical experiments were conducted on the WFG_3D problems using three 

different sets of hyper-parameters, and the average IGD+ values are listed in Table 11. 

In contrast to the results observed for the WFG2_D problems, the original MOEA/D-

DE only outperformed MOEA/D-HH in certain instances, such as WFG1 (𝑛 =  30, 50, 

100), WFG3 (𝑛 =  30), and WFG9 (𝑛 =  30). 

The performance of MOEA/D-HHF was inferior to that of MOEA/D-HH, highlighting 

the effectiveness of the operator-switching mechanism. Selected results for the 

evolutionary trajectory are shown in Figures 14-18. MOEA/D-HH did not exhibit 

superior performance compared to that of MOEA/D-DE in WFG1, WFG3, and WFG9 

with 𝑛 =  30, as shown in Figures 14, 15, and 16, respectively. However, the 

differences in their performances were exceedingly small. 
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Table 11: Average value of IGD+ in WFG_3D problems. 

 DE1 HH HHF 

WFG1 
𝑛 = 30 
𝑛 = 50 
𝑛 = 100 

1.4392 

1.4459 

1.4516 

1.4551 

1.4610 

1.4632 

1.4489 

1.4705 

1.4789 

WFG2 

 

0.3499 

0.4195 

0.5159 

0.3114 

0.3618 

0.4161 

0.3875 

0.4525 

0.5376 

WFG3 

0.1334 

0.2580 

0.3920 

0.1429 

0.2390 

0.3491 

0.2299 

0.3126 

0.3988 

WFG4 

0.3000 

0.3426 

0.3839 

0.2566 

0.2779 

0.2904 

0.3289 

0.3143 

0.3151 

WFG5 

0.1728 

0.1979 

0.2323 

0.1521 

0.1604 

0.1701 

0.1866 

0.2326 

0.2698 

WFG6 

0.1913 

0.1996 

0.2367 

0.1792 

0.1421 

0.1228 

0.2102 

0.2429 

0.2404 

WFG7 

0.3225 

0.4050 

0.4842 

0.2580 

0.3072 

0.3503 

0.3462 

0.3983 

0.4083 

WFG8 

0.4180 

0.4714 

0.5202 

0.3846 

0.4126 

0.4227 

0.4474 

0.4801 

0.4671 

WFG9 

0.1925 

0.2212 

0.2651 

0.1968 

0.1809 

0.1567 

0.2214 

0.2567 

0.2814 
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Figure 14: Visual evolutionary trajectory of three-objective WFG1 problem with 300 subproblems 

and 30 variables. 

 

 
Figure 15: Visual evolutionary trajectory of three-objective WFG3 problem with 300 subproblems 

and 30 variables. 

 

 
Figure 16: Visual evolutionary trajectory of three-objective WFG9 problem with 300 subproblems 

and 30 variables. 
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Figure 17: Visual evolutionary trajectory of three-objective WFG4 problem with 300 subproblems 

and 30 variables. 

 

 
Figure 18: Visual evolutionary trajectory of three-objective WFG8 problem with 300 subproblems 

and 30 variables. 

 

In contrast, MOEA/D-HH exhibited a significantly better performance than those of 

MOEA/D-DE and MOEA/D-HHF for WFG4, as shown in Figure 17. In addition, 

MOEA/D-HH demonstrated superior performance on WFG8, as shown in Figure 18. 

WFG8 can be considered as a challenging problem owing to the variations in the 

distance related parameter values among the different Pareto optimal solutions. 

Figure x displays the solutions obtained through optimization for the WFG8 problem. 

In this figure, the red points represent our proposed MOEA/D-HH algorithm, while 

the blue and green points correspond to the reference MOEA/D-DE1 and MOEA/D-

HH, respectively. Upon careful observation, it becomes apparent that, regardless of  
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Figure 19: Comparison of evolutionary results for the WFG8 problem, including an overall 3D 

performance graph and projections on each dimension. 

 

the projection on any dimension, the red points consistently cluster closer to the 

origin than the points in other colours. In Pareto optimization terms, this indicates 

that the evolutionary results of MOEA/D-HH have a greater dominance over the 

solutions obtained by other methods. This result aligns with the outcomes of IGD+.  

The SRR and PR results are listed in Table 12. Similar to the WFG_2D problems, 

MOEA/D-HH generally exhibited lower SRR values than those of MOEA/D-DE. 

However, the HH-DE-SRR values were significantly higher in the MOEA/D-HH group. 

The dominance relationship between the solutions was less likely to be generated 

and the solutions were more likely to be non-dominated as the number of objectives 

increased. This indicates that searching is very difficult in multi-objective problems. 
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Table 12: SRR and PR of operators in WFG_3D problems. 

 
MOEA/D-

DE SRR 

MOEA/D-

HH SRR 

MOEA/D-HH 

DE-SRR(PR) IDE-SRR(PR) 
CMA-

SRR(PR) 

WFG1 

𝑛 = 30 
𝑛 = 50 
𝑛 = 100 

0.0963 

0.0983 

0.0978 

0.0842 

0.0850 

0.0861 

0.2664 (0.4828) 

0.2667 (0.4955) 

0.2587 (0.5298) 

0.0512 (0.4892) 

0.0530 (0.4775) 

0.0443 (0.4475) 

0.0283 (0.0281) 

0.0297 (0.0270) 

0.0247 (0.0227) 

WFG2 

0.1152 

0.1143 

0.1089 

0.0998 

0.0977 

0.1000 

0.2398 (0.5386) 

0.2378 (0.5321) 

0.2326 (0.5515) 

0.0752 (0.4384) 

0.0786 (0.4453) 

0.0744 (0.4302) 

0.0888 (0.0230) 

0.0933 (0.0225) 

0.0948 (0.0182) 

WFG3 

0.1333 

0.1267 

0.1190 

0.1173 

0.1211 

0.1240 

0.2357 (0.5140) 

0.2574 (0.5221) 

0.2503 (0.5368) 

0.1084 (0.4631) 

0.1185 (0.4565) 

0.1163 (0.4462) 

0.1527 (0.0229) 

0.1764 (0.0214) 

0.1806 (0.0170) 

WFG4 

0.0541 

0.0534 

0.0533 

0.0497 

0.0506 

0.0522 

0.2363 (0.3399) 

0.2362 (0.3492) 

0.2244 (0.3690)  

0.0455 (0.6184) 

0.0484 (0.6108) 

0.0480 (0.5980) 

0.0481 (0.0418) 

0.0481 (0.0400) 

0.0529 (0.0330) 

WFG5 

0.0632 

0.0639 

0.0635 

0.0567 

0.0586 

0.0587 

0.2698 (0.3327) 

0.2679 (0.3441) 

0.2510 (0.3524) 

0.0468 (0.6307) 

0.0508 (0.6214) 

0.0501 (0.6194) 

0.0104 (0.0367) 

0.0104 (0.0345) 

0.0112 (0.0282) 

WFG6 

0.0687 

0.0735 

0.0785 

0.0670 

0.0731 

0.0791 

0.2434 (0.3909) 

0.2349 (0.4199) 

0.2140 (0.4489) 

0.0630 (0.5752) 

0.0736 (0.5501) 

0.0812 (0.5286) 

0.0552 (0.0340) 

0.0614 (0.0300)  

0.0752 (0.0225) 

WFG7 

0.0726 

0.0713 

0.0666 

0.0718 

0.0714 

0.0703 

0.2502 (0.3962) 

0.2501 (0.4100) 

0.2342 (0.4292) 

0.0697 (0.5849) 

0.0711 (0.5516) 

0.0667 (0.5389) 

0.1573 (0.0389) 

0.1592 (0.0384) 

0.1564 (0.0319) 

WFG8 

0.0759 

0.0716 

0.0680 

0.0755 

0.0720 

0.0717 

0.2600 (0.4101) 

0.2562 (0.4195) 

0.2424 (0.4397) 

0.0693 (0.5517) 

0.0676 (0.5419) 

0.0639 (0.5281) 

0.1508 (0.0382) 

0.1516 (0.0386) 

0.1543 (0.0323) 

WFG9 

0.0594 

0.0650 

0.0719 

0.0549 

0.0594 

0.0662 

0.2044 (0.3834) 

0.2051 (0.3815) 

0.1927 (0.4206) 

0.0540 (0.5818) 

0.0648 (0.5868) 

0.0687 (0.5561) 

0.0380 (0.0348) 

0.0536 (0.0317) 

0.0587 (0.0233) 

 

The random-based CX strategy incurs a high evaluation cost to explore a vast 

search space in multi-objective problems. The distribution-based ED operator incurs 

a higher evaluation cost for generating new individuals than the CX operator. 

However, the individuals generated by the ED strategy have a higher likelihood of 

being in the correct search direction (promising regions). This is because the 

individuals generated by ED take advantage of the approximate gradient information. 
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5.3.4 Experimental results of wfg_3D problem 

Numerical experiments were conducted on the WFG_5D problem using a single set 

of hyper-parameters, and the average IGD+ values are presented in Table 13. The 

experimental results exhibited interesting patterns as the number of objectives 

increased. Although MOEA/D-DE performed well in the WFG1 problem, MOEA/D-

HHF demonstrated its superiority for the first time in the WFG2, WFG5, and WFG6 

problems. 

To provide further insight, selected results of the evolutionary trajectory are 

presented in Figures 20–22. MOEA/D-HHF achieved the best overall performance 

with a faster convergence rate during the early iterations, as shown in Figure 20. 

However, the convergence rate of MOEA/D-HH exhibited a significant improvement 

when the number of evaluations exceeded 40,000, achieving a final result very close 

to that of MOEA/D-HHF. 
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Table 13: Average value of IGD+ in WFG_5D problems. 

 DE1 HH HHF 

WFG1 2.0336 2.0346 2.0403 

WFG2 0.7278 0.6249 0.6214 

WFG3 0.9334 0.7364 0.9091 

WFG4 0.7183 0.6825 0.7058 

WFG5 0.6621 0.6579 0.6431 

WFG6 1.1639 1.1193 1.1156 

WFG7 0.8753 0.7354 0.8351 

WFG8 0.9514 0.8803 0.9610 

WFG9 0.3865 0.3614 0.4929 

 

 
Figure 20: Visual evolutionary trajectory of five-objective WFG2 problem with 1000 subproblems 

and 32 variables. 

 

 
Figure 21: Visual evolutionary trajectory of five-objective WFG3 problem with 1000 subproblems 

and 32 variables. 
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Figure 22: Visual evolutionary trajectory of five-objective WFG8 problem with 1000 subproblems 

and 32 variables. 

 

MOEA/D-HH presented substantial advancements in the search process, 

particularly during the middle stage, as shown in Figure 21. Specifically, the 

evolutionary trajectory of MOEA/D-HH was significantly different from those of the 

other methods after the middle stage of the search. This behaviour can be attributed 

to the favourable compatibility between the switching mechanism and characteristics 

of this problem. 

The improvements and evolutionary trajectory observed in MOEA/D-HH clearly 

indicate its superior performance compared to that of MOEA/D-DE. The same is true 

for the difficult WFG8 problem, as shown in Figure 22. The SRR and PR results are 

listed in Table 14. In contrast to previous results, the SRR values of MOEA/D-HH were 

generally higher than those of MOEA/D-DE for WFG_5D problems, and HH-DE(PR) 

achieved the highest values compared to those of the 2D and 3D problems. 

HH-IDE(PR) and HH-CMA(PR) exhibited relatively lower values. Conversely, HH-IDE-

SRR and HH-CMA-SRR were even higher than HH-DE-SRR in some cases, which was 

not observed in the 2D and 3D problems. These results are consistent with the 

expectations for MOEA/D-HH. 
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Table 14: SRR and PR of operators in WFG_5D problems. 

 
MOEA/D-

DE SRR 

MOEA/D-HH 

SRR 

MOEA/D-HH 

DE-SRR(PR) IDE-SRR(PR) CMA-SRR(PR) 

WFG1 0.2122 0.1916 0.2535 (0.8602) 0.0955 (0.1323) 0.1257 (0.0074) 

WFG2 0.2342 0.3019 0.3134 (0.9508) 0.4769 (0.0465) 0.3647 (0.0027) 

WFG3 0.2178 0.2218 0.3580 (0.7831) 0.1150 (0.2036) 0.0996 (0.0133) 

WFG4 0.1494 0.1402 0.2636 (0.7645) 0.0506 (0.2185) 0.0134 (0.0170) 

WFG5 0.2006 0.1893 0.3727 (0.7586) 0.0458 (0.2236) 0.0011 (0.0178) 

WFG6 0.1556 0.1616 0.2765 (0.7340) 0.1306 (0.2490) 0.0987 (0.0167) 

WFG7 0.1957 0.2117 0.3690 (0.7769) 0.1254 (0.1986) 0.3421 (0.0245) 

WFG8 0.2019 0.2043 0.3731 (0.7672) 0.1024 (0.2075) 0.3159 (0.0253) 

WFG9 0.1383 0.1521 0.2142 (0.7350) 0.1661 (0.2535) 0.1211 (0.0115) 

 

5.4 Summary 

Numerous studies have highlighted the limitations of relying on only one single 

offspring-generation strategy in optimization algorithms, which has led to the 

increasing popularity of hybrid evolutionary algorithms. In our paper, we introduce 

the MOEA/D-HH method, and we aim to elucidate the underlying factors 

contributing to the advantages of hybrid algorithms. Within this proposed algorithm, 

we have devised an adaptive operator switching mechanism rooted in the concept of 

operator efficiency inspection, specifically focusing on the successful replacement 

rate (SRR). This mechanism takes into consideration the specific characteristics of the 

MOEA/D framework and strives to balance the evaluation costs between the CX and 

ED strategy. Empirical support for the effectiveness of this switching mechanism is 

provided through experimental results.  

Furthermore, the experimental results indicate that operators (DE1 and IDE) based 

on the CX strategy take a mainstream in the hybrid algorithm MOEA/D-HH (they are 

selected with a higher probability by the switching mechanism). Simultaneously, from 

the perspective of the SRR, the inclusion of non-mainstream operators (the ED 

operator) significantly enhances the search efficiency of DE1. The significant 

improvement in the mainstream strategy (or operator) at the SRR level can directly 

impact the overall performance of the algorithm, even when the overall SRR of the 

hybrid algorithm does not exhibit substantial fluctuations. This phenomenon is 
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particularly evident when MOEA/D-HH is applied to the 3-objective test suite. We 

hope that our research can provide fresh insights for related studies. The main 

contributions of this paper are follows: 

⚫ Concept of re-emphasising the necessity for a hybrid algorithm: Different from 

the previous hybrid algorithms that combine CX and ED strategies, we 

dynamically ‘recycle’ the inefficient evaluation cost occupied by CX and 

‘redistribute’ it to ED from the point of view of successful replacement rate 

(SRR).  

⚫ Reuse of evaluation costs: Although various evolutionary algorithms based on 

CX or ED have been proposed in existing studies, most of them focus only on 

non-dominant individuals. Based on the underlying logic of the ED strategy, 

those dominated solutions are also considered containing information relevant 

to evolution. Therefore, in the proposed algorithm, dominated solutions 

generated by the ED strategy are reused as archive populations, which 

contributes to new ideas for maintaining diversity and balancing the high 

evaluation cost of ED strategies in hybrid algorithms. 

⚫ Framework adaptation: In this study, we propose an operator switching 

mechanism depend on the Efficiency Inspection. Different from the switching 

mechanism in other hybrid algorithms, our proposal is tailor-made, which fully 

considers the characteristics of the neighbourhood in the MOEA/D framework. 
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Chapter 6 Conclusions 

6.1 Summary of this research  

In this doctoral dissertation, I encompassed my primary work over the past few 

years. During my doctoral studies, I dedicated myself to solving multi-objective 

optimization problems through evolutionary algorithms, designing and implementing 

efficient hybrid algorithms based on the MOEA/D framework. Among these, the 

MOEA/D-EF model integrates several evolution operators with different search 

characteristics based on the CX strategy into the MOEA/D framework. Meanwhile, the 

MOEA/D-HH model integrates evolution operators based on both the CX and ED 

strategies into the MOEA/D framework. To achieve this objective, we extensively 

researched and analyzed advanced evolution operators with different search 

characteristics and strategies, making necessary adaptations during the research 

process. Additionally, based on the distinct characteristics of these operators, 

adaptive operator switching mechanisms were designed to align with the MOEA/D 

framework.  

In the second chapter of this paper, several important concepts relevant to this 

study are reviewed, including the MOEA/D framework, evolution operators based on 

the CX strategy, evolution operators based on the ED strategy, and two performance 

metrics widely used in multi-objective optimization problems. In the third chapter, 

the introduced evolution operators in this study are discussed in detail. Among them, 

IDE and JADE were originally designed to solve single-objective optimization 

problems, and we modified these two operators in conjunction with the relevant 

concepts of neighborhoods in the MOEA/D framework. DE-IDEAL is an original 

operator tailored for the MOEA/D framework. Its main feature is based on the 

geometric relationships in Euclidean space between ideal and current situations, 

selecting appropriate historical information to enhance the evolution efficiency of the 

operator. CMA-ES is an operator based on the ED strategy, similar to IDE and JADE, 

and is suitable for single-objective optimization problems. We achieved the objective 

of using CMA-ES within the MOEA/D framework to address multi-objective 

optimization problems by modifying its initialization and parameter update methods. 

In chapter four of this paper, we provided a detailed introduction to a hybrid model 

named MOEA/D-EF, characterized by the utilization of a priori-based operator 

switching mechanism. This mechanism aims for adaptive selection of suitable 

operators based on the current search situation. Additionally, we introduced a 

method for evaluating the overall performance of the algorithm across an entire test 

suite in the context of the MOEA/D-EF research. The results of numerical experiments 

supported the broader applicability of MOEA/D-EF compared to the contrastive 

model. In chapter five of this paper, we provided a detailed introduction to a hybrid 

model named MOEA/D-HH, which features an operator switching mechanism based 

on Efficiency Inspection. This mechanism aims to achieve adaptive switching between 

operators based on the CX strategy and operators based on the ED strategy, 
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depending on the current search situation. Considering the substantial evaluation 

cost associated with operators based on the ED strategy, the MOEA/D-HH model 

effectively reallocates the evaluation cost saved by operators based on the CX 

strategy, which would otherwise contribute minimally to the final evolutionary results. 

This saved computational cost is then allocated to operators based on the ED 

strategy. Simultaneously, offspring generated by operators based on the ED strategy 

can be reused by operators based on the CX strategy, further balancing their 

evaluation costs. The results of numerical experiments indicate that the operator 

switching mechanism based on Efficiency Inspection in MOEA/D-HH is highly 

effective, demonstrating significant advantages in certain test problems. 

The structure of this doctoral dissertation closely parallels my research journey. It 

commenced by establishing a knowledge foundation related to the fundamental 

theory of multi-objective optimization problems. Subsequently, I engaged in the 

analysis, design, and modification of evolutionary operators. With a deeper 

understanding of the 'No Free Lunch' theory, the focus shifted towards implementing 

hybrid optimization algorithms within the MOEA/D framework. Furthermore, during 

the research on MOEA/D-HH, efforts were made to identify and explain the potential 

reasons for the superiority of hybrid algorithms. More than a mere conclusion for this 

paper, it serves as a summary of my doctoral research work. I sincerely and humbly 

hope that my research process and findings can provide inspiration and some 

insights for other students or researchers in this field. 

 

6.2 Future issues of this research  

This study still has some limitations. Firstly, the framework for solving multi-

objective optimization problems using evolutionary computation methods is not 

limited to MOEA/D; other models such as NSGA-II, NSGA-III, and more are widely 

used in this field. However, in this study, other models were not introduced as 

comparative algorithms. Secondly, in the numerical experiments of MOEA/D-HH, we 

observed an excessive use of the IDE operator, and due to the low level of SRR for 

IDE, we suspect that the performance of MOEA/D-HH on the WFG_2D problem may 

be affected by this. Thirdly, although the WFG test suite is widely applied in the field 

of multi-objective optimization, it may not represent all scenarios, especially those in 

the real world that can be abstracted into multi-objective optimization problems. 

Fourthly, some studies suggest that as the number of objective functions increases, 

methods based on Pareto dominance may not effectively find solutions for multi-

objective optimization problems. This is because, with an increasing number of 

objective functions, the conditions for determining a dominance relationship become 

more stringent. In other words, when the number of objective functions is large 

enough, any solution may not dominate or be dominated by other solutions. 

Therefore, addressing the aforementioned limitations, future research may focus 

on the following aspects: Firstly, continuous optimization and modification of the 

MOEA/D-HH model to mitigate potential negative impacts caused by the excessive 
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use of the IDE operator. Comparative experiments could be conducted in subsequent 

trials, introducing advanced algorithms such as NSGA-III for benchmarking. 

Additionally, exploring alternative test tools beyond the WFG test suite, including the 

DTLZ suite, may offer a more comprehensive evaluation. Secondly, attempting to 

apply the MOEA/D-HH algorithm to address real-world problems or theoretical 

computations in other domains, such as the theoretical calculation of multi-physics 

field problems, facilitating the translation from theory to practical applications. 

Thirdly, staying abreast of the latest research developments in the field of multi-

objective optimization, particularly seeking new methods that surpass Pareto 

dominance on many objective optimization problems. 
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