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Abstract. In this study, we develop a novel method for determining electron 

transport coefficients from electron swarm maps measured by a scanning drift-tube 

experiment. In our method, two types of electron continuity equations that describe 

either the spatial or the temporal evolution of an electron swarm are discovered in 

the electron swarm map. The electron transport coefficients can be determined 

from the coefficients in the discovered equations. Therefore, we can determine the 

Townsend ionization coefficient, ionization rate coefficient, center-of-mass drift 

velocity, mean arrival-time drift velocity, longitudinal diffusion coefficient, and 

longitudinal third-order transport coefficient. These transport coefficients in argon 

are determined over a wide range of reduced electric fields, E/N, from 29.7 to 

1351.6 Td (1 Td = 10-21 Vm2) using our method. We establish that the consideration 

of high-order transport coefficients, which have been systematically ignored so far, 

is important for the proper determination of low-order transport coefficients, 

specifically the electron drift velocity and longitudinal diffusion coefficient, in the 

presence of ionization growth. 

1. Introduction 

Electron swarm experiments play an important role in providing electron transport coefficients, 

which are essential for the development of the transport theory of electron swarms in weakly 

ionized plasmas as well as for plasma simulation [1]. Electron transport coefficients are also vital 

for constructing a self-consistent set of electron collision cross sections [2-4], which are required 

for calculating electron velocity distribution and electron energy distribution functions by 

Boltzmann equation analysis and Monte Carlo simulation (MCS) [5-7]. 

The scanning drift tube experiment recently developed by Donkó and co-workers [8-11] is 
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the electron swarm experiment which allows the measurement of the spatiotemporal evolution of 

an isolated electron swarm in a drift tube under homogeneous DC electric fields with high spatial 

and temporal resolutions. The measured evolution of the electron swarm is referred to as the 

electron swarm map. 

Donkó and co-workers approximated the measured electron swarm map to determine the 

electron transport coefficients as 

𝑛(𝑡, 𝑧) =
𝑛

(4𝜋𝐷 ) ⁄
exp 𝑅 𝑡 −

(𝑧 − 𝑊 𝑡)

4𝜋𝐷
, (1) 

where n0 is the electron number density at t = 0 and z = 0, Ri is the ionization collision frequency, 

Wr is the center-of-mass drift velocity (also referred to as the bulk drift velocity), and DL is the 

longitudinal diffusion coefficient. Equation (1) is an analytical solution of the drift-diffusion 

equation 

𝜕𝑛

𝜕𝑡
= 𝑅 𝑛 − 𝑊

𝜕𝑛

𝜕𝑧
+ 𝐷

𝜕 𝑛

𝜕𝑧
. (2) 

In certain types of electron swarm experiments the drift-diffusion equation is the basis for 

determining electron transport coefficients. However, the evolution of electron swarms is 

rigorously described by the electron continuity equation, which includes terms regarding high-order 

gradients of n(t, z) and their corresponding high-order transport coefficients [12, 13], which have 

been systematically ignored so far. 

The effect of considering high-order gradients and the corresponding high-order transport 

coefficients on determining the low-order transport coefficient, such as Ri, Wr, and DL, is unclear. 

Kawaguchi et al. [14] established that the value of DL in nitrogen determined based on equation (1) 

differs from that determined from the time variation of the spatial moment of the electron 

distribution in high reduced electric fields. This indicates that the analysis of the electron swarm 

map based on equation (1) would yield inaccurate electron transport coefficients in the presence of 

ionization growth. 

Recently, data-driven discovery of partial differential equations (PDEs), in which physical 

laws and governing equations in data have been discovered, has emerged [15, 16]. Physic-informed 

neural networks (PINNs) are data-driven methods for solving and discovering PDEs using deep 

learning [17, 18]. The basic idea of PINNs for discovering PDEs is that an artificial neural network 

(ANN), which has a high capability for representing non-linear functions, is trained to approximate 

the function adapted to PDEs and the given data. The PDE coefficients are treated as tunable 

parameters and optimized together with the training of the ANN. 

In this study, we develop a novel approach for determining the electron transport coefficients 

in an electron swarm map. The electron continuity equation is discovered in the electron swarm 

map by leveraging PINNs. The electron transport coefficients are obtained from the coefficients in 

the discovered continuity equation. Our method allows us to deal with the electron continuity 

equation directly, making it unnecessary to assume an analytical form for the electron swarm map. 
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The collaboration between the PINNs and electron swarm experiments enables us to measure the 

low-order and high-order transport coefficients more accurately. Using our method, we determine 

many types of electron transport coefficients in argon, including the Townsend ionization 

coefficient, ionization rate coefficient, center-of-mass drift velocity, mean arrival-time drift 

velocity, longitudinal diffusion coefficient, and longitudinal third-order transport coefficient. 

 

2. Electron continuity equations and corresponding electron transport coefficients 

We clarify two types of electron continuity equations, which describe either the temporal or spatial 

evolution of an isolated electron swarm under DC uniform electric fields, E = (0, 0, -E). The 

corresponding electron transport coefficients are defined. The hydrodynamic equilibrium regime is 

considered here; therefore, the transport coefficient is independent of time and position. 

The temporal evolution of the electron swarm is written as [12, 19] 

𝜕𝑛(𝑡, 𝑧)

𝜕𝑡
= 𝜔 𝑛(𝑡, 𝑧) − 𝜔

𝜕𝑛(𝑡, 𝑧)

𝜕𝑧
+ 𝜔

𝜕 𝑛(𝑡, 𝑧)

𝜕𝑧
− 𝜔

𝜕 𝑛(𝑡, 𝑧)

𝜕𝑧
+ ⋯ . (3) 

The transport coefficients corresponding to equation (3) are called ω parameters. The first four ω 

parameters are defined as follows: 

𝜔 = 𝑅 =
𝑑

𝑑𝑡
ln 𝑁 (𝑡), (4) 

𝜔 = 𝑊 =
𝑑

𝑑𝑡
〈𝑧〉(𝑡), (5) 

𝜔 = 𝐷 =
1

2!

𝑑

𝑑𝑡
〈𝑍 〉(𝑡), (6) 

𝜔 = 𝑄 =
1

3!

𝑑

𝑑𝑡
〈𝑍 〉(𝑡), (7) 

where  

𝑁 (𝑡) = 𝑛(𝑡, 𝑧)𝑑𝑧 , (8) 

〈𝑧〉(𝑡) = 𝑁 (𝑡) 𝑧𝑛(𝑡, 𝑧)𝑑𝑧 , (9) 

𝑍 = 𝑧 − 〈𝑧〉. (10) 

𝜔 , 𝜔 , and 𝜔  are identical to 𝑅 , Wr, and DL, respectively. 𝜔  is the longitudinal third-order 

transport coefficient, QL. 

The spatial evolution of the electron swarm can be describes as [19] 

𝜕𝑛(𝑡, 𝑧)

𝜕𝑧
= 𝛼 𝑛(𝑡, 𝑧) − 𝛼

𝜕𝑛(𝑡, 𝑧)

𝜕𝑡
+ 𝛼

𝜕 𝑛(𝑡, 𝑧)

𝜕𝑡
− 𝛼

𝜕 𝑛(𝑡, 𝑧)

𝜕𝑡
+ ⋯ . (11) 

The transport coefficients corresponding to equation (11) are called α parameters. Equation (11) is 

equivalent and complementary to equation (3). The first four α parameters are defined as follows: 

𝛼 = 𝛼 =
𝑑

𝑑𝑧
ln 𝑁 (𝑧), (12) 
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𝛼 = 𝑊 =
𝑑

𝑑𝑧
〈𝑡〉(𝑧), (13) 

𝛼 =
1

2!

𝑑

𝑑𝑧
〈𝑇 〉(𝑧), (14) 

𝛼 =
1

3!

𝑑

𝑑𝑧
〈𝑇 〉(𝑧), (15) 

where 

𝑁 (𝑧) = 𝑛(𝑡, 𝑧)𝑑𝑡 , (16) 

〈𝑡〉(𝑧) = 𝑁 (𝑧) 𝑡𝑛(𝑡, 𝑧)𝑑𝑡 , (17) 

𝑇 = 𝑡 − 〈𝑡〉. (18) 

𝛼  and 𝛼  are identical to the Townsend first ionization coefficient, 𝛼 , and the reciprocal of the 

mean arrival-time drift velocity, Wm, respectively. 

 

3. Methodology  

Figure 1 shows a schematic of the data-driven discovery of the electron continuity equations in the 

electron swarm map. An ANN is used to represent the electron swarm map. The architecture of the 

ANN used in this study is described in section 3.1. The procedure for training the ANN and 

discovering the electron continuity equations is described in section 3.2. The preparation of the 

training dataset, which contains examples of an electron swarm map, is described in section 3.3. 

 

 

 

Figure 1. Schematic diagram of data-driven discovery of electron continuity equations. 
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3.1 ANN 

We employed a multilayer feedforward neural network modified by Wang et al. [20] to represent 

the electron swarm map. The input of the neural network is the coordinates of points, t and z, which 

are stored in a matrix X. The output of the neural network 𝑢(𝑋; 𝜽) is calculated as follows: 

𝑈 = 𝜎(𝑋𝑊 + 𝑏 ), (19) 

𝑉 = 𝜎(𝑋𝑊 + 𝑏 ), (20) 

𝐻( ) = 𝜎 𝑋𝑊 , + 𝑏 , , (21) 

𝑍( ) = 𝜎 𝐻( )𝑊 , + 𝑏 ,     (𝑘 = 1,2, … , 𝐿), (22) 

𝐻( ) = 1 − 𝑍( ) ⊙ 𝑈 + 𝑍( ) ⊙ 𝑉 (𝑘 = 1,2, … , 𝐿), (23) 

𝑢(𝑋; 𝜽) = 𝐻( )𝑊 + 𝑏. (24) 

Here, L denotes the number of hidden layers, 𝜎 denotes a non-linear activation function, and  ⊙ 

denotes the Hadamard product (element-wise multiplication). W1, W2, Wz, k, and W are the weight 

matrices. b1, b2, bz,k, and b are the bias matrices. The elements of these matrices are tunable 

parameters of the ANN, which are denoted as θ. 

 

3.2 Training the ANN and discovering the electron continuity equations 

First, we discover the following non-linear PDE in the training dataset: 

𝜕

𝜕𝑡
− 𝜆 + 𝜆

𝜕

𝜕𝑧
− 𝜆

𝜕

𝜕𝑧
+ 𝜆

𝜕

𝜕𝑧
𝑢(𝑡, 𝑧) = 0. (25) 

The PDE coefficients, 𝝀 = (𝜆 , 𝜆 , 𝜆 , 𝜆 ), are treated as tunable parameters. Hereafter, 

equation (25) is written as 𝐿 𝑢(𝑡, 𝑥) = 0 with the operator 𝐿 . The latent solution of equation 

(25), 𝑢(𝑡, 𝑧), is represented by the ANN, 𝑢(𝑡, 𝑧; 𝜽). 

All tunable parameters, 𝝀  and θ, are optimized to minimize the following loss function: 

ℒ(𝜽, 𝝀 ) = 𝑤 ℒ (𝜽, 𝝀 ) + 𝑤 ℒ (𝜽), (26) 

where 

ℒ (𝜽, 𝝀 ) =
1

𝑁
𝐿 𝑢 𝑡

( )
, 𝑧

( )
; 𝜽 , (27) 

and 

ℒ (𝜽) =
1

𝑁
𝑢 𝑡

( )
, 𝑧

( )
; 𝜽 − 𝑛

( )
. (28) 

Here, 𝑛
( ) denotes the value of the electron swarm map at 𝑡

( )
, 𝑧

( ) . The values of ℒ  and ℒ  

indicate how well the function represented by the ANN satisfies equation (25) and the training 

dataset, respectively. Owing to the representation 𝑢(𝑡, 𝑧; 𝜽) by the ANN, the value of 𝐿 𝑢 can be 

calculated analytically using automatic differentiation. The balance between ℒ  and ℒ  is 

controlled by wr and wd. In this study, 𝑤 = 1, 𝑤 = 100. 
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When ℒ converges, the ANN represents the electron swarm map adapted to the training 

dataset and equation (25) with optimized 𝝀 . Simultaneously, by comparing equations (3) and 

(25), the optimized 𝝀  represents ω0 – ω3 given that high-order gradients and corresponding 

transport coefficients can be ignored. 

Another form of the electron continuity equation 

𝜕

𝜕𝑧
− 𝜆 + 𝜆

𝜕

𝜕𝑡
− 𝜆

𝜕

𝜕𝑡
+ 𝜆

𝜕

𝜕𝑡
𝑢(𝑡, 𝑧) = 0, (29) 

is also discovered. 𝝀 = (𝜆 , 𝜆 , 𝜆 , 𝜆 ) is a tunable parameter, and equation (29) is written 

as 𝐿 𝑢(𝑡, 𝑧) = 0 with the operator 𝐿 . The procedure for optimizing 𝜽 and 𝝀  is the same, 

except for replacing ℒ (𝜽, 𝝀 ) in the loss function as follows:  

ℒ (𝜽, 𝝀 ) =
1

𝑁
𝐿 𝑢 𝑡

( )
, 𝑧

( )
; 𝜽 . (30) 

Comparing equations (11) and (29), the optimized 𝝀  represents α0 – α3 given that high-order 

gradients and corresponding transport coefficients can be ignored. 

Points 𝑡
( )

, 𝑧
( )

∈ Ω are randomly sampled at each iteration from the training dataset, 

where Ω  is the input domain ( Ω = [0,1] ). Points 𝑡
( )

, 𝑧
( )

∈ Ω  are sampled using the 

evolutionary sampling method [21]. We initially sample points 𝑡
( )

, 𝑧
( )  from a uniform 

distribution 𝒰(Ω) . At each iteration, the sampling points satisfying 𝐿 𝑢 𝑡
( )

, 𝑧
( )

; 𝜽 >

ℒ (𝜽, 𝝀 ) or 𝐿 𝑢 𝑡
( )

, 𝑧
( )

; 𝜽 > ℒ (𝜽, 𝝀 ) are retained, and the other sampling points are 

rejected. To compensate for the rejected points, we resample the points from 𝒰(Ω). The retained 

and resampled points are the sampling points used in the next iteration. 

The procedure for optimizing the tunable parameters in determining ω parameters is 

summarized as follows: 

(1) Initialize all tunable parameters at the first iteration. 

(2) Sample points 𝑡
( )

, 𝑧
( )  (i = 1, 2, ..., Nr) from 𝒰(Ω). 

(3) Sample points 𝑡
( )

, 𝑧
( )  (i = 1, 2, ..., Nd) from the training dataset. 

(4) Calculate ℒ(𝜽, 𝝀 ). 

(5) Update all tunable parameters to minimize the value of ℒ(𝜽, 𝝀 ). 

(6) Resample points 𝑡
( )

, 𝑧
( )  using the evolutionary sampling method. 

(7) Repeat steps (3) – (6) until the value of ℒ(𝜽, 𝝀 ) converges. 

 

3.3 Preparing the training dataset 

Figure 2 shows the procedure used to prepare the training dataset. Because we only focus on the 

hydrodynamic equilibrium regime, we extract the regime from the electron swarm map. We 
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checked the time from t = 0 and distance from z = 0 required to reach the equilibrium regime using 

the MCS described below. The values of t, z, and n(t, z) in the extracted swarm map are normalized 

to be distributed between 0 and 1. The normalized electron swarm map is used as the training 

dataset. 

 

Figure 2. Procedure for preparing the training dataset. 

 

4. Results and discussion 

First, we benchmark the ability of our method to discover the electron continuity equation using the 

MCS results in section 4.1. Thereafter, we determine the electron transport coefficients in argon 

using the electron swarm map measured by the scanning drift tube [10, 11] in section 4.2.  

In this work, we used the ANN, which has four hidden layers with 50 units each. A 

hyperbolic tangent function is used as an activation function. The weight and bias matrices are 

initialized using the Glorot initialization method [22]. The components of 𝝀  and 𝝀  are initially 

set to 1. All tunable parameters are optimized using Adam [23]. The initial learning rate is 10-2 and 

decays every 5000 iterations with a decay rate of 0.9. The number of sampling points is set to Nr = 

1000 and Nd = 1000. 

 

4.1 Benchmark study 

The electron swarm map is obtained from our MCS, and the obtained electron swarm map is used 

as the training dataset. Our method is benchmarked by comparing the electron transport 

coefficients determined from the training dataset with those calculated from the MCS. The details 

of the MCS were provided in Refs. [3, 7]. The motion of electrons in argon under a DC uniform 

electric field E = (0, 0, −E) is traced using the Monte Carlo method. The initial electrons are 

generated at t = 0 and z = 0, and their electron energy distribution is assumed as a Maxwell–

Boltzmann distribution with a mean energy of 1.0 eV. No walls or boundaries are considered in the 

simulation. The electron velocity and position after τ are updated by  

𝒗(𝑡 + 𝜏) = 𝒗(𝑡) +
𝑞𝑬

𝑚
𝜏 (31) 
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𝒓(𝑡 + 𝜏) = 𝒓(𝑡) + 𝒗(𝑡)𝜏 +
1

2

𝑞𝑬

𝑚
𝜏 (32) 

where q denotes the electron charge and m denotes the electron mass. The flight time between 

successive collisions is calculated using the null collision method [24]. The electron position and 

velocity are sampled at constant time intervals. The electron swarm map and electron transport 

coefficients are obtained from sampling data. The gas temperature, T, is set as 293 K. The gas 

pressure, p, is set to the same value as that in the scanning drift tube experiment [10, 11], ranging 

from p = 0.08 to 2.1 Torr. The value of the reduced electric field, E/N, in the simulation ranges 

from 35.9 to 1351.6 Td, where N denotes the number density of gas molecules. The electron 

collision cross section set of argon reported by Yanguas-Gil et al. [25] is used. 

Figure 3 shows the electron swarm map at E/N = 438 Td obtained from the MCS and 

predicted by the trained ANN. The absolute error between the two swarm maps is also presented. 

The maximum length for recording the electron swarm map is set to 6 cm, which is almost the 

same as the length in the scanning drift tube experiment. The trained ANN reproduces the electron 

swarm map obtained from the MCS well. The mean absolute error is 1.63×10-3. We find almost the 

same result in the other conditions, indicating that the ANN used in this study can represent the 

electron swarm map in the range of E/N considered here.  

When we observe the spatial electron distribution, the spatial variation of the electron swarm 

map at a fixed time, the distribution could spread beyond z = 6 cm over time. The spatial electron 

distribution was not necessarily captured from the rising and falling edges in the scanning drift tube 

experiment because of the maximum length of the drift tube. Conversely, when we observe the 

temporal electron distribution, the temporal variation of the electron swarm map at a fixed position, 

the distribution is well captured, making it easy to discover α parameters appropriately rather than 

ω parameters in the electron swarm map. 

 

 

Figure 3. Electron swarm map at E/N = 438 Td. (a) Swarm map obtained from our MCS. (b) 

Swarm map predicted by the trained ANN. (c) Absolute error between the two swarm maps. 
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Figure 4 shows the relative difference between the ω parameter calculated from the MCS and 

that determined from the electron swarm map using the present method as functions of E/N as 

shown in solid lines. The relative difference is defined by 

𝛥 =
ζ − ζ

𝜁
× 100 (%), (33) 

where 𝜁  and ζ  denote the transport coefficient obtained from the MCS and the electron 

swarm map, respectively. Here, we also calculated the relative difference for ω0 – ω2 determined by 

fitting equation (1) to the swarm map and discovering the drift-diffusion equation, 

𝜕

𝜕𝑡
− 𝜆 + 𝜆

𝜕

𝜕𝑧
− 𝜆

𝜕

𝜕𝑧
𝑢(𝑡, 𝑧) = 0, (34) 

which is obtained by removing the fifth term on the right-hand side of equation (25). In general, the 

relative difference tends to increase with E/N values. The large relative difference may be attributed 

to truncating the electron continuity equation. The values of ω0 – ω2 from fitting equation (1) are 

found to be the least consistent with those calculated from the MCS. The values of ω0 – ω2 

determined from discovering the drift-diffusion equation is not necessarily consistent with those 

from equation (1). We found that the values of ω0 – ω2 determined from discovering equation (25) 

are the most consistent with those from the MCS, indicating the need for considering the high-order 

transport coefficient to describe the spatiotemporal evolution of the electron swarm properly, 

especially in the high E/N region. The values of ω0, ω1, ω2, and ω3 determined from equation (25) 

were up to 5.2%, 7.5%, 35%, and 82% lower than those calculated from the MCS. 

Figure 5 shows the relative difference between the α parameter calculated from the MCS 

and that determined using our method as a function of E/N. Here, we also determined the α0 – α2 

from discovering  

𝜕

𝜕𝑧
− 𝜆 + 𝜆

𝜕

𝜕𝑡
− 𝜆

𝜕

𝜕𝑡
𝑢(𝑡, 𝑧) = 0, (35) 

which is obtained by removing the fifth term on the right-hand side of equation (29). Compared to 

the ω parameter, the relative difference in the α parameter is not significantly affected by E/N 

values. The discrepancy in the trend of the relative difference for the ω and α parameters is 

attributed to the difference in the temporal and spatial distributions captured in the electron swarm 

map. The effect of considering the third-order transport coefficient clearly appears in the relative 

difference for α1. The values of α0, α1, α2, and α3 determined from equation (29) were up to 7.4%, 

1.6%, 22%, and 45% lower than those calculated from the MCS.  
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Figure 4. Relative difference for the ω parameter. (a) ω0, (b) ω1, (c) ω2, and (d) ω3. The relative 
differences for the ω parameter determined from discovering equations (25) and equation (34) are 
shown in solid lines and dashed lines, respectively. The relative differences for the ω parameter 
determined from fitting equation (1) to the electron swarm map are shown in dotted lines. 
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Figure 5. Relative difference for the α parameter. The relative differences for the α parameter 

determined from discovering equations (29) and equation (35) are shown in solid lines and dashed 

lines. 
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4.2. Electron transport coefficients in argon determined from the measured electron swarm map 

Figure 6 shows the reduced ionization coefficient, αT/N, in argon as a function of E/N. Kruithof 

[26], Golden and Fisher [27], Abdulla et al. [28], and Ishizuka et al. [29] measured αT/N via the 

steady-state Townsend experiment. Korolov et al. [10] determined the value of αT/N from their 

measured ionization rate coefficient, bulk drift velocity, and diffusion coefficient, according to the 

discussion in Ref. [30]. The value of αT/N calculated from the MCS using the electron collision 

cross section sets of argon reported by Yanguas-Gil et al. [25] and Nakamura and Kurachi [31] is 

also shown. The value of αT/N determined in this study is consistent with previously measured 

values and our MCS results.  

 

 

Figure 6. Reduced ionization coefficient, αT/N, in argon. Previous data: Kruithof [26], Golden and 

Fisher [27], Abdulla et al. [28], Ishizuka et al. [29], and Korolov et al. [10]. The solid lines are our 

MCS results using the electron collision cross sections reported by Nakamura and Kurachi [31] and 

Yanguas-Gil et al. [25] 
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Figure 7 shows the variation in the measured and calculated ionization rate coefficients Ri/N 

in argon as a function of E/N. Haefliger and Franck [32] measured the value of Ri/N through the 

pulsed-Townsend experiment. Korolov et al. [10] measured the value of Ri/N by fitting equation (1) 

to the measured electron swarm map. The value of Ri/N determined in this study well reproduces 

the calculated and previously measured values of Ri/N. 

 

 

Figure 7. Ionization rate coefficient, Ri/N, in argon. Previous data: Korolov et al. [10]; Haefliger 

and Franck [32]. The solid lines are our MCS results using the electron collision cross sections 

reported by Nakamura and Kurachi [31] and Yanguas-Gil et al. [25] 
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The variation in Wr and Wm determined in this work as a function of E/N is shown in figure 8, 

together with that calculated from our MCS. The values of the electron drift velocity measured by 

Nakamura and Kurachi [31] and Korolov et al.[10] are also plotted. When ionization growth 

occurs, the value of the electron drift velocity depends on its definition [30]. Nakamura and 

Kurachi measured the electron drift velocity from the slope of the peak time of the measured 

arrival-time spectra (ATS) of an electron swarm against the drift distance. Their measured electron 

drift velocity is the peak-time drift velocity, Wp. Korolov et al. [10] determined the electron drift 

velocity from the slope of the peak position of the spatial electron distribution over time. They used 

equation (1) to approximate the measured electron swarm map. Under this approximation, the peak 

position of the spatial electron distribution is consistent with the center-of-mass of the distribution; 

therefore, they claimed that their determined electron drift velocity was Wr. 

The values of Wr and Wm determined in this study are consistent with those calculated from 

our MCS. These values are almost equal and consistent with the measured value of Wp in the low 

E/N region. With increasing E/N values, the value of Wr becomes higher than that of Wm. The 

relationship between the two electron drift velocities is described as [19] 

𝑊 = 𝑊 − 2𝛼 𝐷 + 3(𝛼 ) 𝑄 − ⋯ . (36) 

When the values of 𝑄  and high-order transport coefficients are small, equation (36) indicates Wr 

> Wm when αT > 0. Such a relationship was observed in the electron swarm experiment in methane 

[33] as well as in the MCS in real gases [34, 35] and model gases [36]. 

The value of Wr determined in this study is consistent with that determined by Korolov et al. 

in the low E/N region; however, the two values become inconsistent with increasing E/N values. 

The previously determined value of Wr is also inconsistent with the value of Wr calculated from our 

MCS. The inconsistency was also remarked by Korolov et al., who attributed it to the electron 

collision cross sections used in their calculation; however, our determined values of the electron 

drift velocities well reproduced the MCS results. This indicates that the peak position of the spatial 

electron distribution is not equal to its center of mass; therefore, the electron drift velocity 

determined by Korolov et al. is not necessarily equal to Wr. 
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Figure 8. Electron drift velocity in argon. Previous data: Nakamura and Kurachi [31] and Korolov 

et al. [10]. The solid and dotted lines are our MCS results using the electron collision cross sections 

reported by Nakamura and Kurachi [31] and Yanguas-Gil et al. [25]  
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Figure 9 shows the value of the reduced longitudinal diffusion coefficient NDL in argon as a 

function of E/N. Nakamura and Kurachi [31] determined NDL from the characteristic width of the 

measured ATS. Hernández-Ávila et al. [37] determined NDL from the gap currents measured in the 

pulsed Townsend experiment. Korolov et al. [10] determined NDL by fitting equation (1) to the 

measured electron swarm map. The value of NDL determined in this study is consistent with 

previously measured data below 300 Td and reproduces the value of NDL calculated from our 

MCS.  

The value of NDL determined in this study is higher than that determined by Korolov et al., 

which is lower than our MCS results. This discrepancy is caused by approximating the electron 

swarm map using equation (1). The comparison results, as shown in the electron drift velocity and 

longitudinal diffusion coefficient, demonstrate the necessity of considering high-order transport 

coefficients for the proper determination of electron transport coefficients from the electron swarm 

map. 

 

 

Figure 9. Reduced longitudinal diffusion coefficient, NDL, in argon. Previous data: Nakamura and 

Kurachi [31]; Hernández-Ávila et al. [37]; Korolov et al. [10]. The solid lines are our MCS results 

using the electron collision cross sections reported by Nakamura and Kurachi [31] and Yanguas-Gil 

et al. [25]  
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The variations in Nα2 and N2α3 as functions of E/N are shown in figure 10, together with 

those calculated from our MCS. The values of Nα2 and N2α3 decrease monotonically with 

increasing E/N values. The values of Nα2 and N2α3 determined in this study are similar to those 

calculated from our MCS.  

  

Figure 10. Variation of Nα2 and N2α3 as functions of E/N values in argon. The solid lines are our 

MCS results using the electron collision cross sections reported by Nakamura and Kurachi [31] and 

Yanguas-Gil et al. [25] 
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Figure 11 shows the value of the reduced longitudinal third-order transport coefficient, N2QL, 

in argon determined from ω3 and α parameters together with our MCS results. The value of N2QL 

calculated from the Boltzmann equation analysis [38] is also shown. QL can be obtained from α 

parameters as [39] 

𝑄 ≈
2(𝛼 )

(𝛼 )
−

𝛼

(𝛼 )
. (37) 

The physical meaning of QL is discussed by Simonović et al. [40]. When QL ≠ 0, the electron 

distribution deviates from the Gaussian function. The positive value of QL means that the trailing 

edge of the electron distribution is elongated. A steep decrease of QL with increasing E/N values in 

the low E/N region is related to the Ramsauer-Townsend minimum of the elastic momentum 

transfer cross section of Ar [38]. The values of N2QL determined from the swarm map are of the 

same order of magnitude as those from our MCS. The two types of N2QL determined from the 

electron swarm map differ from each other, and the value of N2QL from α parameters is close to our 

MCS result. As shown in figure 4, the determined values of ω3 could have large uncertainty; 

therefore, the value of N2QL determined from α parameters could be more reliable than that 

determined from ω3. 

 

 

Figure 11. Reduced longitudinal third-order transport coefficient, N2QL, in argon. The solid lines 

are our MCS results using the electron collision cross sections reported by Nakamura and Kurachi 

[31] and Yanguas-Gil et al. [25]  

8

6

4

2

0

-2

N
2
Q

L
 (

×
1

0
-4

4
 m

-3
s-1

)

10
1

2 3 4 5 6

10
2

2 3 4 5 6

10
3

2

E/N (Td)

Measurement
 obtained from ω3

 obtained from α parameters

Boltzmann equation analysis
 Simonovic et al. (2020)

Monte Carlo simulation
 Nakamura and Kurachi
 Yanguas-Gil et al.



19 

5. Conclusions 

In this study, we developed a method for determining the electron transport coefficients via 

data-driven discovery of electron continuity equations in electron swarm maps. Our method 

discovers two types of electron continuity equations, allowing us to determine the ω and α 

parameters, which include the Townsend first ionization coefficient, αT, ionization rate coefficient, 

Ri/N, , center-of-mass drift velocity, Wr, mean arrival-time drift velocity, Wm, longitudinal diffusion 

coefficient, DL, and longitudinal third-order transport coefficient, QL. We can directly deal with the 

electron continuity equation using our method; therefore, assuming an analytical form of the 

electron swarm map is not required. This makes it easy to consider third- and higher-order transport 

coefficients when analyzing an electron swarm map. 

In order to demonstrate the present method and clarify the importance of considering 

third-order transport coefficient, a benchmark study was carried out using the electron swarm map 

in argon calculated from the MCS. The transport coefficients determined by fitting a Gaussian 

function to the electron swarm map are the least consistent with the transport coefficients 

calculated from the MCS. We found that discovering the electron continuity equation in the 

electron swarm map yields more accurate transport coefficients. Considering third-order transport 

coefficient improves the accuracy of the transport coefficient determined using the present method. 

As a general trend, the transport coefficients determined using the present method becomes lower 

than the transport coefficients calculated from the MCS with increasing E/N values. This may 

indicate the need for considering higher-order transport coefficients for the proper description of 

the electron swarm map.  

The electron transport coefficients in argon were determined using our method, from E/N = 

29.7 Td to 1351.6 Td. The electron swarm map measured by a scanning drift tube experiment was 

used. For the αT/N and Ri/N, the determined values were found to be consistent with the previously 

measurements and our MCS results. For the electron drift velocity, the determined value of Wr and 

Wm are consistent with the values of Wr and Wm calculated from the MCS. The determined values 

of Wr become larger than those of Wm with increasing E/N values, and such a tendency is consistent 

with the theoretical relationship between Wr and Wm. For the reduced longitudinal diffusion 

coefficient NDL, the determined values are consistent with our MCS results but higher than the 

values of NDL reported by Korolov et al., who determined them by curve fitting to the electron 

swarm map. We also determined the reduced longitudinal third-order transport coefficient, N2QL, 

second order α parameter, Nα2, and third-order α parameter, N2α3. The transport coefficients 

determined in this work are valuable for assessing the electron collision cross sections of argon and 

plasma simulations.  
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