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Abstract—In sixth-generation (6G) wireless communications,
deep learning will still be essential for the Internet of Vehicles
(IoV). 6G will bring new opportunities and challenges to current
deep learning systems applied in the IoV environment. This
article introduces a new framework named Learning IoV in 6G,
focusing on the deep learning applications for IoV in 6G. We also
apply the proposed framework in a flying base station (FBS) to
evaluate the performance for future IoV in 6G.

I. INTRODUCTION

Internet of Vehicles (IoV) is an emerging technology to
orchestrate vehicle to vehicle (V2V), vehicle to infrastructure
(V2I), vehicle to human (V2H), and vehicle to sensor (V2S)
for building next-generation intelligent transportation systems
(ITS). In IoV, as the fundamental of artificial intelligence (AI)
applications, deep learning technologies will play a critical role
in many applications such as autonomous driving, intelligent
traffic control, and usage-based insurance. In addition, existing
vehicle manufacturers have begun to add additional computing
facilities in high-end models to support deep learning process-
ing [1].

However, there are still several challenges to applying deep
learning-based applications in existing IoV environments. The
first challenge is the limited network coverage even with 5G
wireless communications, which are still based on deploying a
large number of base stations (BSs). Without enough network
coverage, it is not easy to maintain continuous services during
driving vehicles in sparsely populated areas [2].

The second challenge is applying more complex appli-
cations on limited hardware platforms. It is challenging to
replace the computing facilities in vehicles after leaving the
factory. Meanwhile, car facilities are not appropriate for exter-
nal applications due to the high-security requirement. Also, it
is almost impossible to share the processing resources between
different vehicles.

The sixth-generation (6G) communications will make huge
progress on the network coverage due to the application of
low earth orbit (LEO) and very low earth orbit (VLEO)
satellites. It is easy to cover global areas without building
base stations on the ground. During the next decade, some
providers such as SpaceX and OneWeb will construct several
satellite constellations with thousands of or more satellites
covering all over the earth. It is possible to develop global IoV
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applications without considering network access. Moreover,
for covering obscured areas (e.g., in tunnels, under viaducts,
etc.) or dense areas, 6G introduces movable BSs such as flying
BSs (FBSs) or autonomous vehicle-mounted BSs to support
flexible network coverage [3].

Intelligent edge computing is another opportunity for sup-
porting deep learning applications in IoV environments. Since
more and more edge devices of mobile networks have enough
computation capability to process deep learning tasks, deploy-
ing AI applications in edge becomes possible, especially in
future 6G wireless communications. Thus, instead of vehicle
facilities, edge servers will play a major role in supporting
future deep learning-based applications in IoV environments
[4], [5].

In this article, we survey some related literature and then
introduce the possible scenario of IoV in future 6G wireless
communications. The LEO and VLEO satellite-based wireless
networks will work as the primary access networks for IoV
devices, and as the complement, autonomous movable BSs
help the vehicles in obscured or dense areas connect to the
mobile network. Based on the 6G network structure, we dis-
cuss intelligent edge computing for processing deep learning
tasks with sensing data from vehicles and other sensors [6].

We also design and implement an unmanned aerial vehicle
(UAV) based prototype as FBS to illustrate the efficiency of
intelligent edge computing for IoV. The prototype offloads the
deep learning tasks from the cloud to the onboard computer
deployed on the UAV, reducing network latency and overload
during executing AI applications. The performance evaluation
results show the prototype outperforms the cloud-based deep
learning structure [7].

The remainder of this article can be outlined as follows. The
next section introduces 6G communications and intelligent
edge computing for IoV. Following are the deep learning
scenario for IoV in 6G and the design of the FBS prototype.
Finally, the fifth section presents the evaluation results of the
prototype in processing deep learning tasks, followed by the
conclusions drawn in the last section.

II. RELATED WORK

This section studies some related literature about 6G and
intelligent edge computing for IoV.

A. 6G and IoV
The fifth-generation (5G) wireless communications will be

deployed in most areas in the next decade. In the 6G Era,
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current research works have already paid much attention to
the cross-field with UAV, Satellite, Internet of Vehicles, etc.
Nikooroo et al. regard UAVs as flying base stations in assist-
ing 6G communications in mobile networks. Their research
focuses on how to allocate the power carried by UAVs to
users in need while considering the movement of both sides
[3]. Satellite communications will be the most crucial part of
6G in the next decade to connect the uncovered areas on the
earth. Some initial systems, such as O3b, Starlink, Lightspeed,
and Kuiper, have provided basic network access services to
general customers. However, satellite communications need
special hardware to bridge satellites and ground end devices.
However, since the satellite communication devices are heavy
and energy consuming, applying airborne devices to bridge
ground vehicles and satellite is appropriate. Huang et al.
propose an integrated space and terrestrial network architecture
in which UAVs and other aircraft form an airborne tier between
ground networks and satellites. In this way, Geostationary
Earth Orbit (GEO), Medium Earth Orbit (MEO), and Low
Earth Orbit (LEO) satellites can build a connection with users
at the ground through this airborne tier [6]. Nawaz et al.
summarize the state-of-the-art technologies that appeared from
Beyond 5G (B5G) to 6G. UAVs and satellites separately play
the role of a mobile base station, and mmWave communication
provider [5]. Zhao et al. design an intelligent reflecting surface
architecture to reduce extra energy consumption and increasing
the spectrum of 6G communication among smart devices,
including UAVs and vehicles [2]. Tariq et al. study the possible
technologies that may become a hotspot soon. In the compar-
ison between the upcoming 5G, they point out that with 6G,
we can build a service-centric reliable real-time architecture to
satisfy pervasive cases, including ultra-sensitive applications,
satellite integration, autonomous vehicle-to-everything (V2X),
and so on [8].

B. Intelligent Edge Computing

Edge computing shows its efficiency in offloading comput-
ing from cloud to edge. As a result, the network traffic can
be reduced since it is not needed to transfer most data to the
cloud. Intelligent edge computing is a specific edge computing
model focusing on offloading AI or machine learning tasks to
edge. Therefore, we discuss several related works optimizing
the offloading convolutional neural networks (CNN) network
into edge servers. In the first work, we find that intermedia
data after processing by the first several layers is much smaller
than the input data. In the second work, we introduce deep
reinforcement learning to improve the resource scheduling of
the edge or fog servers.

Existed works on Edge AI have already paid attention to
many related fields, including IoT, mobile edge computing,
smart traffic, and blockchain. Zhou et al. survey the possible
recent research findings in the field of edge intelligence, which
include the up-to-date key technologies, architectures, and so
on [1]. Chen et al. propose a label-less learning approach
to solving the traffic flow control problem in the edge-cloud
network. In their design, we can intelligently allocate available
computing resources in traffic operations to meet the demand

from self-driving and other real-time applications [7]. Zhou et
al. discuss the possibility of allocating the inference compu-
tation of all network layers to devices in artificial intelligence
IoT systems [9]. Zhu et al. focus on the concepts of edge learn-
ing and learning-driven communication and solve the trade-off
between learning at the edge and edge-cloud communications
[10]. Wang et al. design an In-Edge AI framework to enhance
federated learning by decreasing extra system communication
workload in mobile edge computing [4]. Lin et al. introduce
blockchain in establishing a peer-to-peer knowledge trading
framework in edge AI-enabled IoT networks [11]. Moreover,
intelligent edge computing has become a promising technol-
ogy to support different AI applications. For example, Yang
et al. propose an intelligent edge architecture for 6G networks
to support advanced network services, such as automatic and
delicate resource management and network adjustment [12].
Meanwhile, since providing various intelligent services will
be a strong demand in the future, intelligent edge computing
will be an indispensable part of 6G communications.

III. LEARNING IOV IN 6G

In this section, the scenario of deep learning for IoV in 6G
is discussed, and we also give some major challenges for deep
learning tasks in IoV.

A. Scenario of Learning IoV in 6G

We use a small example to illustrate the scenario of IoV in
6G wireless communications. As shown in Fig. 1, there are
three distinct layers in the IoV in 6G, the vehicle layer, the
FBS layer, and the Satellite layer. Usually, the vehicle layer
consists of various vehicles connected by vehicle-to-vehicle
(V2V) communications. The link between two vehicles in one
hop has very high bandwidth and very low latency, which
is not stable due to the movement of vehicles on the road.
Meanwhile, a vehicle in the vehicle layer can connect to an
FBS, and when there is no nearby vehicle, each vehicle will
connect to an FBS for the network connection.

UAVs connect vehicles and satellites in the FBS layer as
the network bridge. A UAV also plays a role like a roadside
unit (RSU) in a classic vehicle to infrastructure (V2I) network
to connect vehicles in the communication area. Since the
communication area is larger than an FBS, the link between
a UAV and a satellite is stabler than a vehicle.

In the satellite layer, links between LEO/VLEO satellites
usually have large bandwidth and acceptable latency due to the
line of sight (LOS) communications with very high frequency.
For example, in Starlink satellite, links between satellites will
be built by laser communications with 193-Thz frequency to
provide a bandwidth of up to 10 Gbps [13]. Meanwhile, a
ground terminal needs a large antenna to receive and send
signals to satellites due to the long distance between satellites
and the ground. Therefore, we assume that only the FBS layer
and satellite ground stations can communicate with satellites
directly in the scenario.

When a deep learning task is deployed for the IoV en-
vironment, vehicles send the data to a processor for further
processing. Since most deep learning-based processes need
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very high computing capability, a high-end cloud server will
usually process the input data and send back results to vehicles.
As a result, in the above scenario, the data will be sent from
the vehicle layer, across the FBS and satellite layers, to a cloud
data center on the ground.

B. Challenges of Learning IoV in 6G

Based on the procedures of executing a deep learning task
in the IoV and 6G environment, the following challenges limit
the quality of service (QoS) or the quality of experience (QoE).

The first challenge is the high latency in real-time process-
ing tasks. The latency mainly consists of transferred, propaga-
tion, and processing. Propagation latency will be very long in
processing a deep learning task in satellite communications.
One hop in satellite communications will be near 100 ms,
while there are at least six hops in processing procedures even
without the FBS layer, including the hops between the vehicles
and satellite layer, between satellites, and between the satellite
layer and the ground station. The time for processing a deep
learning task is also significant for the real-time requirement.
For example, the processing time from a target recognition task
usually needs tens of milliseconds with a typical embedded
processor. Therefore, processing real-time tasks is complicated
in the satellite communication environment.

The second challenge is the bandwidth bottleneck between
the vehicle and the satellite layers. Due to the high bandwidth
requirement for transferring high-quality video streams, dense
areas with many vehicles will lead to congestion in uploading
data to satellites. Although existing video coding methods
show enough efficiency to reduce the video size, the much
higher resolution of future video sensing data will still be a
challenge to the uplink from the vehicle to the satellite.

The third challenge is the high cost of transferring data
in providing IoV services. Although the providers try to
reduce the cost of satellite communications, a large amount
of data transferring will lead to a unfadeable price of AI-
based IoV services. In a VLEO satellite system, satellites need
fuel to maintain their orbit because of the aerodynamic drag.
Therefore, the maintenance cost of VLEO satellite systems
will be higher than traditional LEO systems for providing
mobile network access.

The fourth challenge is maintaining stable links between
the satellite and UAVs, especially in the communications with
LEO and VLEO systems. Usually, an LEO satellite is only
visible to a UAV for 2 to 20 minutes, while it becomes
worse with VLEO satellites. Therefore, since an LEO or
VLEO satellite can cover a large area, processing all handover
requests from many UAVs is very challenging.

It is necessary to introduce a new model to face the above
challenges. We will introduce intelligent edge computing in the
next section and show its opportunity to process deep learning
tasks with 6G networks.

IV. INTELLIGENT EDGE COMPUTING FOR IOV IN 6G

In this section, we will first introduce the model of in-
telligent edge computing and then present the design of our
prototype.

LEO/VLEO Satellites

UAV-based FBS

UAV-based FBS

UAV-based FBS

Vehicles

Fig. 1. Scenario of IoV in a possible 6G communication network

A. Intelligent Edge Computing in 6G

Since the challenges of processing deep learning tasks
come from extensive data transferring, edge computing will be
an opportunity to reduce uploading data with the offloading
strategy. Considering that only a part of the video sensing
data is applied in IoV services, extracting useful information
before uploading is possible and necessary. Intelligent edge
computing is a specific edge model focused on the learning
phase of data processing. Because the vehicle manufacturers
will not open the access right of vehicle computers to IoV
service providers, intelligent edge computing will mainly
depend on the edge servers deployed in the FBS and satellite
layers.

We discuss a typical methodology for processing deep
learning tasks. When a vehicle records a video or a photo,
all sensing data will be sent to the FBS layer first if BSs
exist near vehicles. Then, most BSs will have edge servers to
process the received data. The processing procedures depend
on the neural network structures in deep learning tasks. Since
the neural networks become more and more complex, edge
servers will only process a part of layers due to the limited
computing capacity. Even if only several layers are deployed
in the edge server, the sensing data will shrink sharply after
processing.

However, the propagation latency is hard to reduce if edge
servers in the FBS layer only process a part of a neural layer
of each task. Therefore, it is also needed to deploy enough
computing power in the satellite layer to process tasks and
return the results to vehicles or mobile users. The edge servers
in the satellite layer will be more powerful since satellites’ size
and energy supplement are adequate than FBSs. Meanwhile,
it is also possible to build a distributed computing model with
tens or hundreds of satellites in the near area.

Even if there is still a part of the data needed by the cloud
server, the upload bottleneck and transferring cost are much
reduced by the intelligent edge computing model. Meanwhile,
another solution is deployed to multiple networks with differ-
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FBS prototype

Flying control layer

Communication layer

Edge server layer

Positioning module Vision module
Movement control 

module

UAV platform

Communication 
controller 

Communication 
access module

Edge server
Offloading 

scheduling module
Deep learning 

accelerator

Satellite 
management module

Fig. 2. Main modules in the FBS prototype

ent depths. A simple neural network will generate initial results
from the sensing data to vehicles, which can be fully deployed
in the FBS layer. A deeper neural network will be deployed
in the BS and satellite layers, while the deepest network will
be deployed in the entire transferring procedure and the cloud
server. If users need low latency real-time services, a BS will
return the result in tens of or several milliseconds. While a
more detailed or specified result is required, the entire response
time will be hundreds of or more seconds.

As a result, intelligent edge computing will be an emerging
mode to face the challenges form learning IoV in 6G. The deep
learning specific offloading strategy and multiple networks
at different depths reduce the transferring data and response
latency.

B. FBS Prototype Design

We also propose an FBS prototype to offload deep learning
tasks for IoV in future 6G networks. As shown in Fig. 2,
except for the mechanical part, the entire FBS prototype has
three layers: the flying control, the communication, and the
edge server.

There are three major modules in the flying control layer:
the positioning module, the vision module, and the move-
ment control module. The positioning module measures the
real-time altitude, longitude, and latitude information. The
vision module recognizes the object in the video or radar
sensors. The movement control module moves the UAV to
an appropriate position based on the location information,
surrounding environment, and vehicle distribution. Meanwhile,
upper layers will also interact with the flying control layer
to adjust the position according to the network status or
offloading requirement.

Since details of 6G protocols are not yet proposed in the
communication layer, we assume there are at least three mod-
ules, the communication controller, the communication access,
and the satellite management module. The communication

Fig. 3. Testbed of the FBS prototype with a DJI Matrice 100 platform

controller controls and monitors the network access status
and sends requirements to the flying control layer for position
adjustment. The communication access module connects the
satellites and vehicles through different interfaces. The satellite
management module organizes the locations of satellites and
handovers in satellite communications.

The edge server layer consists of an edge server, an of-
floading scheduling module, and a deep learning accelerator.
The edge server will have an isolation mechanism to sep-
arate different tasks. For example, lightweight virtualization
(Infrastructure as a Service) or a docker system (Platform
as a Service) will be applied in future edge servers. The
offloading scheduling module will estimate the QoS and QoE
of the offloading decision of each task and assign the rest
of the computing resources. The deep learning accelerator
manages specific hardware and lightweight frameworks for
accelerating deep learning tasks. In the future, specially-
designed application-specific integrated circuit (ASIC) chips
will play an essential role in supporting intelligent vehicle
services.

When the IoV provider wants to deploy an AI service in the
6G network, it needs to apply edge resources according to the
expected coverage area, required computing power, and QoS
or QoE demand. After that, the carrier will assign the required
edge resources in the satellite and FBS layers. The maximum
size of the assigned docker or virtual machine can reflect the
required resources. After deployment, the FBS receives the
sensing data from vehicles. The flying control layer will move
the UAV to an appropriate position calculated by commu-
nications requirements and offloading of vehicles. When the
FBS receives sensing data from vehicles, the offloading layer
will offload proper computing in the corresponding docker or
virtual machine. After processing in the edge server, the FBS
will simultaneously send the initial result to vehicles and cloud
services. In the next section, we will test the efficiency of the
prototype design with a UAV and a deep learning oriented
onboard computer.

V. FBS PROTOTYPE EVALUATION

We test the performance of the FBS prototype on a testbed
and then evaluate the scalability of the FBS prototype with
extensive simulations.

A. Testbed Experiments

The FBS prototype testbed shown in Fig. 3 is developed
with a DJI Matrice 100 platform, a quadcopter for develop-
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Fig. 4. Experiment results on the FBS prototype testbed

ment. On the Matrice 100, we mount an ASUS RT-AC68U Wi-
Fi router as the access point and an AQUOS SERIE SHV32
smartphone for LTE access. As the edge server on the UAV,
we also install a DJI Manifold onboard computer that has
an NVIDIA Tegra K1 system on a chip (SoC), 2GB DDR3L
system RAM, and 16 GB eMMC 4.51 storage. Since the Tegra
K1 SoC includes an NVIDIA GPU consisting of 192 ALUs,
the edge server can process lightweight deep learning tasks.
We use a Google Pixel 3A XL smartphone as the video sensor.

We install an Ubuntu 14.04 LTS as the operating system in
Manifold. We use the CUDA L4T r21.3 package to process
deep learning tasks. We use Darknet as the neural network
framework and apply tiny-YOLO to detect objects in video
data from the video sensor [14]. Since the prototype focuses
on the tasks in the inference phase, we only test the inference
performance with a pretrained tiny-YOLO model. The model
is trained by the COCO dataset, with more than 200,000
images and 80 object categories. The mean average precision
of tiny-YOLO is near 24.

We prepared five 30-second videos with different resolutions
as input for object detection in all experiments. The resolutions
are 480p (720x480), 720p (1280x720), 1080p (1920x1080),
1440p (2560x1440) and 2160p (3840x2160). As a comparison,
we apply a server with an Intel core i9 10850k CPU and 64
GB memory. The operating system on the server is Ubuntu
16.04 LTS, and its CUDA version is 10.0.

The bandwidth overhead for real-time processing tasks in
the cloud server is first recorded in Fig. 4(a). From the
bandwidth record, for transferring the 4k video to the cloud,
it needs near 10 Mbps uplink bandwidth. A 5G base station
can only support uploading no more than 100 videos simul-
taneously. As an available satellite system in the next decade,
Starlink only has 610 Mbps bandwidth. Thus, processing high-
resolution video data recorded by vehicles by the cloud is still
a challenge to future communication systems. Offloading deep
learning tasks from cloud to edge is an emerging technology
for supporting future IoV services.

We then test the latency in processing the five videos. The
latency mainly includes transmission time and processing time.
As shown in Fig. 4(b) and 4(c), we compare the latency of
processing five videos on the edge and the cloud server. Due to
the Tegra K1 SoC limitation, the processing time on the cloud
server is shorter than the time on the edge. The transmission
time is reduced significantly by the edge computing model,
especially in high-resolution transfer videos. Considering the
DJI Manifold is a model released three years ago, the new
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Fig. 5. Simulation results with the FBS prototype

edge hardware will dramatically improve the performance of
processing AI-based tasks.

Moreover, we test the power consumption of the testbed
and the cloud server for processing the task. The edge device
consumes 3.2 Watts of power in the idle status, while the cloud
server needs more than 10 Watts. The edge device needs 8.7
Watts of power to process the task, while the cloud server
consumes more than 50 Watts.

B. Large Scale Simulations

For evaluating the scalability of the proposed FBS proto-
type, we also take extensive simulations in a road environment.
We use SUMO to generate a 10 × 10 traffic grid, and each road
connecting two adjacent intersections is set to be 100 meters.
Up to 180 vehicles are on the map with an average speed of 10
m/s. The communication range of an FBS is set to 200 meters,
and the bandwidth between vehicles and an FBS is 600 Mbps.
For covering the entire map, the number of FBS is set from
40 to 160. The satellite aggregated uplink bandwidth is set to
610 Mbps from Starlink. The average latency with edge and
cloud is set as the results in Fig. 4(b) and 4(c). We record
the positions of each vehicle in each second and import the
position data into the simulator developed by Matlab 2019b.
Each test is taken 20 times, and we record the average results.

As shown in Fig. 5, we set the number of FBSs from 40
to 160 for serving vehicles for network communications and
real-time object recognition tasks. We first test the maximum
service capability of a real-time object recognition task and
set the video resolutions from 480p to 2160p. From the
result of the testbed experiments, an FBS can simultaneously
process five real-time video streams. From Fig. 5(a), we
record the maximum number of tasks with different resolutions
from 480p to 2160p. Service capability is limited when the
resolution is 480p because of the low bandwidth requirement
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for transferring low-bitrate videos. When processing high-
resolution videos, the number of tasks is limited by the
uplink bandwidth of the satellite communication. Increasing
the number of FBSs can improve the system capability since
edge servers offload tasks from the cloud server. When the
number of FBSs is set to 160, the system can process more
than 600 videos, nearly twice the number with 5 FBSs.

As shown in Fig. 5(b), we compare the average latency with
the prototype and cloud-based solution. We set the number
of tasks to 1600, which is the maximum service capacity of
the given settings. We assume the cloud will handle tasks
that the FBS does not process. The number of FBS is set
to 40. Although the performance of the Jetson K1 platform is
very weak, the average latency with FBS is still better than
the cloud-based solution when the video resolution is set to
2160p. As a result, the FBS prototype will improve the service
capability and reduce the average latency of the deep learning
tasks for IoV in 6G wireless communications.

VI. CONCLUSION AND FUTURE WORK

Intelligent edge computing will improve the efficiency of
deep learning tasks for IoV in wireless communications. When
satellite communications are applied in future 6G networks,
the intelligent edge in FBSs will be an emerging technology
for future AI-based IoV applications. Our FBS prototype
shows preliminary results for accelerating deep learning tasks
in mobile networks. In the future, a meaningful way to improve
the efficiency of the FBS prototype is to apply a new DJI
Manifold computer, and we also plan to design a new edge-
oriented deep learning framework.
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Fig. 3. Testbed of the FBS prototype with a DJI Matrice 100 platform
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Fig. 4. Experiment results on the FBS prototype testbed
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Fig. 5. Simulation results with the FBS prototype


