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Networks
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Abstract—In next-generation mobile communications, space-
air-ground integrated networks (SAGINs) is an emerging in-
frastructure in future wireless access networks. Since artificial
intelligence (AI) applications become more and more important,
it is essential to build a deep learning service-oriented SAGINs.
In this article, we present a hierarchical intelligent computing
structure focusing on processing deep learning tasks in future
SAGINs. An optimization strategy is also proposed to improve the
quality-of-service (QoS) of deep learning tasks in the proposed
structure. We test our work in small testbed and simulations.
The evaluation results show that the proposed work outperforms
other offloading strategies in a SAGIN environment.

Index Terms—AGINsAGINsS, Deep Learning, AI, Service-
Oriented Networking.

I. INTRODUCTION

THE space-air-ground integrated network will play the
most important role in building next-generation mobile

networks [1]. Companies begin to construct several large
satellite communication networks with low earth orbit (LEO)
and very low earth orbit (VLEO) satellite in the space.
Many researchers proposed different hierarchical network ar-
chitectures with unmanned aerial vehicles (UAVs) in different
attitudes in the area. Meanwhile, the 5th generation mobile
communication (5G) brings millimeter-wave communications
requiring a higher density of base stations than before [2]. The
challenges and opportunities from space, air, and the ground
will promote the development of SAGINs in the next decade.

One critical challenge is to support mobile AI applications
in SAGIN architecture. Most recent deep learning-based mo-
bile AI applications are implemented with the cloud-centric
structure. Most deep learning tasks are finished in the cloud,
and mobile devices are only applied for the data collection. In
the SAGIN structure, the collected data from mobile devices
will be transferred between ground, air, and space, which leads
to very long response time. In the IoT scenarios, because of the
much higher density of devices and a much larger amount of
collected data, the quality of service (QoS) of AI applications
will worsen [3].

Intelligent edge computing is an opportunity to improve the
QoS of AI applications in mobile communications by offload-
ing some of AI computing to the edge devices. However, since
edge devices’ performance is strict for offloading a small part
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of deep learning tasks, most applications still need to transfer
collected data to the cloud through mobile networks.

One solution for improving the efficiency of the intelligent
edge computing is applying high-performance edge devices
for offloading, which is very difficult due to the limitation of
device size and power supply capacity. Another method is to
deploy different devices in the hierarchical structure of the
mobile communication. Usually, devices in the base station
have larger space and higher power supply than the edge
devices. Therefore, it is possible to deploy devices with higher
performance in the layer nearer to the backbone to offload
more complex deep learning tasks.

It is also possible to apply the hierarchical offloading
structure into the SAGIN for improving the QoS of AI
applications. This article presents the multilayer offloading
structure in space, air, and ground to support deep learning
tasks in SAGINs. Different offloading devices with different
performance are deployed in the SAGIN layers to offload
different deep learning tasks. We also design an offloading
strategy to improve the QoS of AI applications. In performance
evaluation, we apply a small hierarchical AI computing testbed
and extensive simulations to test the proposed structure and the
offloading strategy, respectively.

The main contributions of this paper are summarized as
follows.
• We investigate the issue of providing AI applications in

the future SAGIN environment. To the best of our knowl-
edge, this article is the first one focusing on offloading
deep learning tasks in SAGINs.

• A hierarchical offloading structure is proposed to solve
the issue in executing deep learning tasks in SAGINs.
We also design an optimization strategy to improve the
QoS of AI applications in the proposed structure.

• We develop a small hierarchical offloading testbed for the
performance evaluation. Also, the optimization strategy is
evaluated by extensive simulations.

The remainder of this paper can be outlined as follows. Sec-
tion II introduces task offloading in SAGIN environments and
hierarchical offloading structure in edge computing. Section III
introduces the details of the hierarchical offloading structure
in SAGINs. The optimization strategy in the proposed hier-
archical structure is described in Section Section IV. Section
V presents the proposed structure’s evaluation results and the
optimization strategy through a small testbed and extensive
simulations, respectively. Finally, the conclusions and future
work are drawn in Section VI.
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II. RELATED WORK

In this section, we first discuss the task offloading in SAGIN
and then introduce the hierarchical structure for offloading
deep learning tasks in edge computing.

A. Task Offloading in SAGIN

Task offloading is the central issue in edge or fog comput-
ing, which is to offload different tasks from the cloud to the
edge or fog devices. Task offloading usually aims to optimize
two goals, smaller network traffic, and lower network latency,
due to the limited bandwidth and long transmission distance
from edge to the cloud. In mobile networks, since wireless
communications bring higher latency with limited capacity,
it is very necessary to offload a part of computing in the
edge devices. A SAGIN environment has much higher latency
than general mobile networks, which means task offloading
becomes more critical than before.

The research on the space-air-ground integrated network
is becoming a hotspot in recent years. Liu et al. surveyed
about this trinity system which including the physical layer
characteristics & spectrum allocation, mobility management &
traffic offloading, existed architectures as well as challenges
& research directions in the near future [4]. Cheng et al. de-
veloped a simulation platform to provide support for carrying
out experiments and performance evaluation in space, aerial,
and terrestrial networks. With their effort, researchers in this
field can more easily put ideas and designs into practice [5].

Mobile edge computing, as a distributed computing solution
with good scalability, is widely recognized to play a role
in various cross-cutting areas. For space-air-ground integrated
networks, edge computing can further improve and optimize
the coordination between tiers. Zhang et al. studied the appli-
cation scenarios of heterogeneous IoT in which mobile edge
computing could handle the demands of multiple services from
the household, medical to urban transportation [6]. Zhou et
al. focused on the air-ground part while applying edge com-
puting in assisting resource-hungry & computation-intensive
applications [7]. Bekkouche et al. proposed scalable solutions
on the resource allocation in the air tier. In their work, by
minimizing the necessary traveled distance, each UAV can
cover a longer range [8]. Callegaro et al. also considered
using edge computing to enhance the work capacity of UAVs.
They focused on reducing the constraint from the payload and
designed a flexible autonomous airborne system [9]. Mei et al.
came up with the idea of achieving task offloading between
UAVs and ground base stations [10]. Wu et al. paid attention to
the situation of non-uniform heterogeneous cellular networks
in which edge computing can further enhance the performance
of UAV-mounted offloading [11]. For the part of satellite com-
munication, many state-of-the-art pieces of research applying
mobile edge computing. Wang et al. studied the low earth orbit
satellite network and proposed the concept of edge computing
satellites. In their work, different accessing planes and resource
requirements of terminals can be satisfied through fine-grained
resource management as well as dynamic scheduling [12].

B. Hierarchical Offloading for Deep Learning
Task offloading shows good efficiency in providing most

data-intensive services in mobile networks. However, it is
difficult to offload compute-intensive tasks, especially deep
learning tasks, to the edge due to the limited performance of
general edge devices. An efficient and feasible methodology
is hierarchical offloading that offloads tasks in different layers
in mobile networks. For example, in an Internet of Things
(IoT) environment, IoT devices connected to IoT gateways
while IoT gateways are linked by the access network. Most
access networks also have the hierarchical structure from the
access points or base stations to the backbone. Therefore, it
is possible to deploy different hardware in different layers of
the mobile networks for offloading deep learning tasks.

There are two categories of hierarchical offloading method-
ologies for deep learning. The first is offloading different deep
learning tasks in different layers of the mobile networks [13].
Usually, the edge devices have the lowest performance in
executing deep learning tasks while the cloud has the highest
capacity. Different deep learning tasks need different com-
puting resources. An image recognition task is executable in
an Arduino device, while a real-time video object detection
task usually needs a commercial desktop processor. In task
offloading, the simple tasks are offloaded to the devices near
to the edge while complex tasks are offloaded near to the cloud
or executed in the cloud directly.

The second methodology is offloading deep learning tasks
according to the hierarchical structure of the neural net-
works [14]. As the fundamental computing systems, the ar-
tificial neural networks for deep learning have a multilayer
hierarchical structure. Each layer receives output data of
the predecessor layer and generates intermediate data to the
successor. According to the neural network structure, the of-
floading strategy splits each neural network into different parts
according to the computing requirement and the intermediate
data size of each layer. Then, each part is assigned to the
appropriate layer of the mobile networks.

However, the above two methodologies have different pros.
and cons. The first methodology deploys complex tasks near to
the cloud, which means the collected raw data will be almost
transferred from the edge to the backbone with high network
traffic and latency. The second methodology is designed for
deep neural networks, and only parts of network structures
work correctly after the split. Meanwhile, users need to
develop specific programs for adaption with different mobile
networks and hardware. As a result, in this article, we focus on
the integration of the two methodologies in the optimization
strategy and mainly apply the first methodology with better
adaptability.

III. HIERARCHICAL OFFLOADING IN SAGIN
In this section, we first investigate the scenario in supporting

AI applications in SAGIN and then present the details of the
hierarchical offloading structure.

A. AI applications in SAGIN
The scenario of providing AI applications in SAGIN is

very important for the design of the hierarchical offloading
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Fig. 1. Scenario of AI applications in a space-air-ground integrated network

structure. As shown in Fig. 1, we use an example to illustrate
the scenario after a SAGIN user requires an AI application.
In the scenario, there are six layers from the mobile device
to the cloud, including the mobile device layer, base station
(BS) layer, rotary-wing (RW) UAV layer, fixed-wing (FW)
UAV layer, LEO satellite layer, ground station layer and the
cloud layer.

The mobile device layer consists of mobile devices or IoT
devices that collect data for further processing. In a digital im-
age processing task, the collected data usually refers to digital
images or videos, which have a large size in transferring. Since
most mobile devices have limited communication power, most
mobile networks need to deploy access points or base stations
at low altitude. In the scenario, the air communication provides
network access for mobile devices.

Base stations are also able to offload tasks from connected
devices, including mobile devices and RW UAVs. Base sta-
tions have stable power supply and spare space to hold high-
performance computing and storage hardware. However, since
base stations are sparsely distributed in SAGIN covered areas,
the BS layer plays an alternative role in offloading deep
learning tasks.

The air communications include the FW UAV layer and
RW UAV layer. FW UAVs have a large load capacity to carry
large antennas for the communications between space and air.
Since FW UAVs with low agility need to fly in high altitude
for obstacle avoidance, RW UAVs at low altitude are applied
to build communications between mobile devices and FW
UAVs. Due to the load limitation, RW UAVs usually have
small antennas with small transmit power to cover a small
area of mobile devices.

The LEO satellite layer provides global communications
between UAVs and ground stations. Since the number of
ground stations is usually limited, only small parts of satellites
communicate to ground stations in a short time. Therefore,

a typical SAGIN builds direct links between satellites and
transfers data from air to ground in multiple hops.

The ground station layer is applied to connect the LEO
satellite layer and the cloud layer. A ground station has a
very large antenna for providing very large communication
bandwidth between satellites and ground communications.

Based on the illustrated scenario, we describe the procedures
in processing deep learning tasks without offloading. The
service provider first deploys the deep learning processing
program in the cloud. When a user begins to use the AI
application, the mobile device collects the required data and
sends the collected data to the RW UAV layer. Then, the
collected data will be transferred through the FW UAV layer,
LEO satellite layer, and ground station layer to the cloud
after several hops. After receiving the collected data, the deep
learning task process the data and output the result. The
result will also be transferred through the entire SAGIN. The
transferring distance of both collected data and output results
is very long, resulting in significant latency.

B. Hierarchical Offloading

From the above description of the scenario for providing AI
applications in SAGIN, the goal of the hierarchical offloading
structure is to reduce the distance between data collection and
computing. Therefore, we propose the hierarchical offloading
structure shown in Fig. 2.

In the hierarchical structure, we apply task offloading in five
layers, the mobile device layer, BS layer, RW UAV layer, FW
UAV layer, and LEO satellite layer. Because of different space,
power supply, and other limitations, different layers have
different hardware for offloading deep learning tasks. In the
mobile device layer, a system on a chip (SoC) in each mobile
device has the major processor for processing deep learning
tasks. Most modern SoCs have enough performance to finish
the inference parts in some simple deep learning tasks such as
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Fig. 2. Hierarchical task offloading for deep learning in SAGIN

object recognition in images or voice recognition. Meanwhile,
some SoC manufacturers begin to integrate AI accelerators
in commercial SoCs for better performance in supporting
AI applications, which improve the offloading capability of
mobile devices in task offloading.

Lightweight UAVs in the RW UAV layer usually have
several kilograms payload during the flying. It is possible to
a lightweight embedded AI platform, e.g., NVIDIA Jetson
series, with hundreds of grams on the RW UAV for pro-
cessing deep learning tasks. A typical lightweight embedded
AI platform usually has the more than one trillion floating
operations per second (TFLOPS) performance, which is near
to an entry-level desktop general-purpose computing on the
graphics processing unit (GPGPU). It is possible to offload the
deepest learning tasks in the inference phase to the lightweight
AI platform in the RW UAV layer.

FW UAVs usually have a very large payload with the long
flight time. The payload space and the power supply are also
much ampler than RW UAVs. Some products are embedding
one or more desktop GPGPUs in a payload module for UAVs.
The most powerful commercial OpenVTX GPGPU module
compatible with FW UAVs has two NVIDIA TU104 GPGPUs
with a performance of more than 40 TFLOPS. The embedded
GPGPU module can offload almost all deep learning tasks
even in the training phase with the mainstream computing
hardware.

In the LEO satellite layer, the payload is very limited
because of the expensive space launch cost. From the SpaceX
company, the launch cost of the LEO satellite payload is near
to 2700 dollars per kilogram, which is still much more expen-
sive than the AI computing hardware. Meanwhile, equipment
in the space usually is exposed to severe cosmic rays, which
requiring robust chips with a specific design. Therefore, the

LEO satellite can only carry a very light and robust device for
offloading minimal parts of deep learning tasks.

As a result, we present a hierarchical offloading methodol-
ogy based on the above structure. The methodology offloads
tasks from the cloud to each layer of the SAGIN network
according to the task parameters and QoS requirements.
However, in each layer of SAGINs, devices have different
performance for processing deep learning tasks and network
performance for data transferring. It is necessary to find an
efficient way to offload tasks into each layer of devices to
guarantee the QoS requirements. In the rest of this article, we
state the offloading problem in SAGINs and present a strategy
to optimize the task offloading the hierarchical structure.

IV. OPTIMIZATION STRATEGY

We first compare the differences between the five layers
in the hierarchical offloading, including offloading capability,
power supply, and network parameters. As shown in Table I,
we list offloading parameters of five layers in the hierarchical
structure. From the comparison, there are three issues as
follows in the design of the offloading strategy.

First, the offloading capacity is very limited in the mobile
layer, RW UAV layer, and LEO satellite layer, while FW UAVs
provide the largest capacity for offloading deep learning tasks.
However, the number of FW UAVs is much less than RW
UAVs and mobile devices, which means it is better to offload
large tasks in the FW UAV layer.

Second, the battery lifetime limited the service capacity of
the mobile device layer and RW UAV layer. In hierarchical
offloading, only a part of battery capacity is available for
offloading deep learning tasks.

Third, the network performance of the FW UAV layer and
LEO satellite layer is much worse than the lower two layers.
The offloading strategy should put more deep learning tasks
in the lower layers for shorter service response time.

Therefore, according to the above three issues, we formulate
the optimization problem then present the offloading strategy.
In AI applications, the response time is the most important
QoS index of service providing. We use the average service
response time as the main object of the offloading strategy.

The problem of deep learning task offloading in SAGINs:
Given a set of deep learning tasks and a SAGIN, the deep
learning task offloading problem attempts to schedule the deep
learning tasks to five network layers in the SAGIN such that
the average service response time is minimized.

According to the problem statement, we present the offload-
ing optimization strategy to solve the offloading problem as
the following steps.
Step 1: Offloading tasks in local mobile devices first until the

capacity runs out.
Step 2: If a connected base station exists, offloading tasks to

the base station until the base station’s capacity runs
out.

Step 3: Estimating the service response time of each remain-
ing task in the cloud.

Step 4: Estimating each remaining task’s service response
time after offloading in the RW UAV, FW UAV, and
Satellite layers.
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TABLE I
COMPARISON OF FIVE LAYERS IN HIERARCHICAL OFFLOADING

Layer Offloading Capacity Power Supply Uplink Bandwidth Uplink Latency
Mobile Device 10~1000 GFLOPS Battery (<10 Watts) 1~5 Gbps 1 ms
Base Station 1~20 TFLOPS AC Power (10~500 Watts) 100 Gbps 10 ms

RW UAV 1~10 TFLOPS Battery (10~30 Watts) 10 Gbps 10 ms
FW UAV 20~40 TFLOPS Petrol Engine (100~1000 Watts) 1 Gbps 30 ms

LEO Satellite 100 GFLOPS Solar Power (10~20 Watts) 1 Gbps 30~100 ms

TABLE II
HARDWARE IN THE TESTBED

Hardware Operating System Performance Bandwidth Layer Height Amount
Raspberry Pi 4 Raspbian Buster 13.5 GFLOPS 1 Gbps Mobile Device 0 m 2

Jetson Nano Ubuntu 18.04 472 GFLOPS 1 Gbps FW UAV (DJI M100) 100 m 2
Jetson TX2 Ubuntu 18.04 1331 GFLOPS 1 Gbps FW UAV (DJI M210) 100 m 2

Step 5: Calculate each remaining task’s reduced service re-
sponse time with offloading in the RW UAV, FW UAV,
and Satellite layers.

Step 6: Calculating the quotient of expected reduced service
response time divided by the required computing
operations.

Step 7: Sorting remaining tasks by the above quotients in a
descending sequence.

Step 8: Offloading all tasks in the sequence until the capacity
of each layer is full.

The latency between nodes in the same layer is much lower
than uploading latency from the lower to the upper layer in the
above strategy. Therefore, we choose layers as units to offload
tasks in the SAGIN with a time complexity of O(n2) where n
is the number of tasks.

V. PERFORMANCE EVALUATION

In this section, we take the performance evaluation in two
ways, experiments in a small testbed and extensive simula-
tions.

A. Small Experiment

We build a small testbed with several embedded AI com-
puting platforms and mobile devices list in Table 1. We apply
two DJI Matrice 210 Series V2 (M210) and two DJI Matrice
100 (M100) drones to load Jetson Nano and TX2 at the height
of 100 meters. In all experiments, we take an object detection
task in the testbed. We record the total service response time,
including the processing time and network latency. Since
the network latency is very small in a 5 GHz Wi-Fi (IEEE
802.11ac) network environment, the network latency mainly
comes from the data transferring time.

We apply a trained SSD-mobilenet V2 model as
the algorithm for object detection in a high definition
(1920×1080@30p) video files with 20 seconds. The video is
resized down to 300×300 pixels before inputting to the model.
We test the entire service response time from the Raspberry Pi
to the Jetson TX2. Each node will forward the data to the next
one when the task is not offloaded. We also test the testbed’s
scalability by recording the response time of simultaneously
processing 2, 3, and 4 videos.
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Fig. 3. Service response time with different offloading hardware

From the results shown in Fig. 3, offloading the deep learn-
ing task to the Jetson TX2 brings the lowest service response
time. After offloading the task to Jetson Nano, the service
response time is two times langer than TX2. Because of the
time for data transfer, the service response time after offloading
tasks to Jetson Nano nodes is similar to the processing time
on Raspberry Pi nodes. Therefore, the hardware performance
will be a significant part of processing deep learning tasks
with enough network performance. However, if the data size
becomes larger with limited network performance, the deep
learning task offload efficiency will be more critical.

B. Simulation Result

We also take extensive simulations to evaluate the per-
formance of the optimization algorithm. All simulations are
developed by the NetworkX 2.5 Python library. In all sim-
ulations, we apply 500 mobile devices, 2 base stations, 10
RW UAVs, 5 FW UAVs, and three satellites for building the
SAGIN. Considering a satellite can stably cover a given point
no more than 100 seconds, we assume all deep learning tasks
can be processed in [0.1,1] seconds, and the entire simulation
time period is 50 seconds. In each second, every mobile device
will send a deep learning task with a probability of 0.05 until
there is not enough time for processing tasks. The device
capacity of each layer is set as shown in Table I. The collected
data size of each task is uniformly distributed in [10, 1000]
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Fig. 4. Average response time with hierarchical offloading

MB. The required computing capacity is uniformly distributed
in [10, 2000] GLOPS.

We first test the cumulative distribution probability of each
mobile device’s average service response time. As shown in
Fig. 4(a), the average response time with the optimization
offloading strategy is much shorter than the FIFO strategy and
random strategy for all mobile devices. The longest average
response time with the random strategy is worse than 10
seconds. If we use the service satisfaction ratio as another
measurement of QoS and set the required average response
time is less then 2 seconds, the optimization offloading strategy
can have near to 80% satisfaction ratio while the other two
methods only archive 20%.

Since the service capacity usually limits the QoS, we also
test the average response time with the different number of
mobile devices. We added 500 mobile devices in each step and
recorded the average response time in 5 steps. As shown in Fig.
4(b), the optimization strategy in the hierarchical offloading
has the shortest average response time, even with 2500 mobile
devices. The average response time with the FIFO strategy
is near to 1.5 times longer than the optimization strategy.
When the number of mobile devices becomes 2500, the FIFO
strategy performs similarly with the random strategy.

VI. CONCLUSION AND FUTURE WORK

In this article, the hierarchical structure shows good effi-
ciency for processing deep learning tasks in SAGINs. Due
to the inherent latency for transferring data from the edge
to the cloud, the novel offloading structure will improve the
QoS of providing AI applications. Meanwhile, a well designed
offloading strategy is also very important in the hierarchical
offloading structure. In the future, we plan to build a more
powerful testbed with more embedded AI computing plat-
forms. Meanwhile, a new strategy for a long period offloading
will be studied with the consideration of the movement of
satellites, UAVs, and mobile devices.
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Fig. 2. Hierarchical task offloading for deep learning in SAGIN
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Fig. 3. Service response time with different offloading hardware
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(b) Average response time with different number of mobile devices

Fig. 4. Average response time with hierarchical offloading


